Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
J Control Release ; 371: 445-454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844180

RESUMO

In boron neutron capture therapy (BNCT), boron drugs should exhibit high intratumoral boron concentrations during neutron irradiation, while being cleared from the blood and normal organs. However, it is usually challenging to achieve such tumor accumulation and quick clearance simultaneously in a temporally controlled manner. Here, we developed a polymer-drug conjugate that can actively control the clearance of the drugs from the blood. This polymer-drug conjugate is based on a biocompatible polymer that passively accumulates in tumors. Its side chains were conjugated with the low-molecular-weight boron drugs, which are immediately excreted by the kidneys, via photolabile linkers. In a murine subcutaneous tumor model, the polymer-drug conjugate could accumulate in the tumor with the high boron concentration ratio of the tumor to the surrounding normal tissue (∼10) after intravenous injection while a considerable amount remained in the bloodstream as well. Photoirradiation to blood vessels through the skin surface cleaved the linker to release the boron drug in the blood, allowing for its rapid clearance from the bloodstream. Meanwhile, the boron concentration in the tumor which was not photoirradiated could be maintained high, permitting strong BNCT effects. In clinical BNCT, the dose of thermal neutrons to solid tumors is determined by the maximum radiation exposure to normal organs. Thus, our polymer-drug conjugate may enable us to increase the therapeutic radiation dose to tumors in such a practical situation.


Assuntos
Terapia por Captura de Nêutron de Boro , Polímeros , Terapia por Captura de Nêutron de Boro/métodos , Animais , Polímeros/química , Polímeros/farmacocinética , Polímeros/administração & dosagem , Linhagem Celular Tumoral , Compostos de Boro/farmacocinética , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Luz , Feminino , Camundongos , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Boro/farmacocinética , Boro/administração & dosagem , Boro/química , Camundongos Endogâmicos BALB C , Humanos
2.
J Mater Chem B ; 12(25): 6128-6136, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38836578

RESUMO

Boron neutron capture therapy (BNCT) is an emerging approach for treating malignant tumors with binary targeting. However, its clinical application has been hampered by insufficient 10B accumulation in tumors and low 10B concentration ratios of tumor-to-blood (T/B) and tumor-to-normal tissue (T/N). Herein, we developed fluorinated BPA derivatives with different fluorine groups as boron delivery agents for enabling sufficient 10B accumulation in tumors and enhancing T/B and T/N ratios. Our findings demonstrated that fluorinated BPA derivatives had good biological safety. Furthermore, fluorinated BPA derivatives showed improved 10B accumulation in tumors and enhanced T/B and T/N ratios compared to the clinical boron drug fructose-BPA (f-BPA). In particular, in B16-F10 tumor-bearing mice, fluorinated BPA derivatives met the requirements for clinical BNCT even at half of the clinical dose. Thus, fluorinated BPA derivatives are potentially effective boron delivery agents for clinical BNCT in melanoma.


Assuntos
Compostos Benzidrílicos , Terapia por Captura de Nêutron de Boro , Halogenação , Animais , Camundongos , Terapia por Captura de Nêutron de Boro/métodos , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Fenóis/química , Fenóis/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Compostos de Boro/química , Compostos de Boro/farmacologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Estrutura Molecular
3.
Cancer Med ; 13(11): e7250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826090

RESUMO

PURPOSE: Since June 2020, boron neutron capture therapy (BNCT) has been a health care service covered by health insurance in Japan to treat locally advanced or recurrent unresectable head and neck cancers. Therefore, we aimed to assess the clinical outcomes of BNCT as a health insurance treatment and explore its role among the standard treatment modalities for head and neck cancers. MATERIALS AND METHODS: We retrospectively analyzed data from patients who were treated using BNCT at Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, between June 2020 and May 2022. We assessed objective response rates based on the Response Evaluation Criteria in Solid Tumors version 1.1, and adverse events based on the Common Terminology Criteria for Adverse Events, version 5.0. Additionally, we conducted a survival analysis and explored the factors that contributed to the treatment results. RESULTS: Sixty-nine patients (72 treatments) were included in the study, with a median observation period of 15 months. The objective response rate was 80.5%, and the 1-year locoregional control, progression-free survival, and overall survival rates were 57.1% (95% confidence interval [CI]: 43.9%-68.3%), 42.2% (95% CI: 30.1%-53.8%), and 75.4% (95% CI: 62.5%-84.5%), respectively. Locoregional control was significantly longer in patients with earlier TNM staging and no history of chemotherapy. CONCLUSIONS: BNCT may be an effective treatment option for locally advanced or recurrent unresectable head and neck cancers with no other definitive therapies. If definitive surgery or radiation therapy are not feasible, BNCT should be considered at early disease stages.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Masculino , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/mortalidade , Japão , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Adulto , Idoso de 80 Anos ou mais , Resultado do Tratamento , Seguro Saúde , Taxa de Sobrevida
4.
Sci Rep ; 14(1): 13950, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886395

RESUMO

Tumor-to-normal ratio (T/N) measurement of 18F-FBPA is crucial for patient eligibility to receive boron neutron capture therapy. This study aims to compare the difference in standard uptake value ratios on brain tumors and normal brains using PET/MR ZTE and atlas-based attenuation correction with the current standard PET/CT attenuation correction. Regarding the normal brain uptake, the difference was not significant between PET/CT and PET/MR attenuation correction methods. The T/N ratio of PET/CT-AC, PET/MR ZTE-AC and PET/MR AB-AC were 2.34 ± 0.95, 2.29 ± 0.88, and 2.19 ± 0.80, respectively. The T/N ratio comparison showed no significance using PET/CT-AC and PET/MR ZTE-AC. As for the PET/MRI AB-AC, significantly lower T/N ratio was observed (- 5.18 ± 9.52%; p < 0.05). The T/N difference between ZTE-AC and AB-AC was also significant (4.71 ± 5.80%; p < 0.01). Our findings suggested PET/MRI imaging using ZTE-AC provided superior quantification on 18F-FBPA-PET compared to atlas-based AC. Using ZTE-AC on 18F-FBPA-PET /MRI might be crucial for BNCT pre-treatment planning.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Compostos de Boro , Fenilalanina/análogos & derivados
5.
Theranostics ; 14(8): 3193-3212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855185

RESUMO

As a developing radiation treatment for tumors, neutron capture therapy (NCT) has less side effects and a higher efficacy than conventional radiation therapy. Drugs with specific isotopes are indispensable counterparts of NCT, as they are the indespensable part of the neutron capture reaction. Since the creation of the first and second generations of boron-containing reagents, NCT has significantly advanced. Notwithstanding, the extant NCT medications, predominantly comprised of small molecule boron medicines, have encountered challenges such monofunctionality, inadequate targeting of tumors, and hypermetabolism. There is an urgent need to promote the research and development of new types of NCT drugs. Bio-nanomaterials can be introduced into the realm of NCT, and nanotechnology can give conventional medications richer functionality and significant adaptability. This can complement the advantages of each other and is expected to develop more new drugs with less toxicity, low side effects, better tumor targeting, and high biocompatibility. In this review, we summarized the research progress of nano-drugs in NCT based on the different types and sources of isotopes used, and introduced the attempts and efforts made by relevant researchers in combining nanomaterials with NCT, hoping to provide pivotal references for promoting the development of the field of tumor radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Animais , Terapia por Captura de Nêutron/métodos , Nanopartículas/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Terapia por Captura de Nêutron de Boro/métodos , Compostos de Boro/uso terapêutico , Compostos de Boro/química , Compostos de Boro/farmacologia
6.
Appl Radiat Isot ; 210: 111359, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772121

RESUMO

This study aimed to identify the optimal conditions for delivering sufficient doses to deep-seated lesions within short irradiation times for two boron carriers of different T/N ratios. The therapeutic depth and irradiation time of a neutron beam for beam shaping assemblies (BSAs) with a Li or Be target and a MgF2 or CaF2 moderator were examined with the fast-neutron dose per epithermal neutron (FNR) as a parameter. When T/N = 3.61, the therapeutic depth was almost saturated at an FNR of about 10 × 10-13 Gy cm2; when the FNR value was about 10 × 10-13 Gy cm2, the therapeutic depth of the neutron beam for the BSA with a Be target and a MgF2 moderator was almost identical to that for the neutron beam for the BSA with a Be target and a CaF2 moderator, and slightly greater than those for the neutron beams for the BSAs with a Li target and a MgF2 or CaF2 moderator; moreover, the irradiation time of the neutron beam for the BSA with a Be target and a MgF2 moderator was shorter than that for the neutron beam for the BSA with a Be target and a CaF2 moderator. When T/N = 100, the therapeutic depths of the neutron beams for the BSAs varied greatly depending on the FNR, and were greater than the corresponding values for T/N = 3.61. We therefore concluded that the BSA with a Be target and a MgF2 moderator that produced a neutron beam with an FNR of about 10 × 10-13 Gy cm2 is optimal for delivering sufficient doses to deep-seated lesions in short irradiation times when T/N = 3.61, and stricter control over FNR is required when T/N = 100.


Assuntos
Terapia por Captura de Nêutron de Boro , Dosagem Radioterapêutica , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Nêutrons/uso terapêutico , Terapia com Prótons/métodos , Aceleradores de Partículas
7.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38744248

RESUMO

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio , Aceleradores de Partículas , Imagens de Fantasmas , Controle de Qualidade , Lítio/química , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Aceleradores de Partículas/instrumentação , Reprodutibilidade dos Testes , Polimetil Metacrilato/química , Nêutrons , Ouro/química , Alumínio/química , Água/química , Radiometria/métodos , Radiometria/instrumentação , Dosagem Radioterapêutica
8.
Biomaterials ; 309: 122605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38754291

RESUMO

Multidisciplinary therapy centered on radical surgery for resectable pancreatic cancer is expected to prolong prognosis, but relies on CA19-9 biomarker levels to determine treatment strategy. Boron neutron capture therapy (BNCT) is a chemoradiotherapy using tumor hyperaccumulator boron drugs and neutron irradiation. The purpose of this study is to investigate novel boron drug agents for BNCT for pancreatic cancer. Bioinformatics was used to evaluate the uptake of current boron amino acid (BPA) drugs for BNCT into pancreatic cancer. The expression of the amino acid transporter LAT1, a BPA uptake transporter, was low in pancreatic cancer and even lower in high CA19-9 pancreatic cancer. In contrast, the glucose transporter was high in high CA19-9 pancreatic cancers and inversely correlated with LAT1 expression. Considering the low EPR effect in pancreatic cancer, we synthesized a small molecule Glucose-BSH, which is boron BSH bound to glucose, and confirmed its specific uptake in pancreatic cancer. uptake of Glucose-BSH was confirmed in an environment compatible with the tumor microenvironment. The therapeutic efficacy and safety of Glucose-BSH by therapeutic neutron irradiation were confirmed with BNCT. We report Glucose-BSH boron drug discovery study of a Precision Medicine BNCT with application to high CA19-9 pancreatic cancer.


Assuntos
Terapia por Captura de Nêutron de Boro , Glucose , Neoplasias Pancreáticas , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Humanos , Glucose/metabolismo , Linhagem Celular Tumoral , Animais , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Boro/química , Feminino , Camundongos Nus
9.
Sci Rep ; 14(1): 11253, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755333

RESUMO

Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio , Nêutrons , Terapia por Captura de Nêutron de Boro/métodos , Lítio/química , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica
10.
Cells ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786022

RESUMO

Given the renewed interest in boron neutron capture therapy (BNCT) and the intensified search for improved boron carriers, as well as the difficulties of coherently comparing the carriers described so far, it seems necessary to define a basic set of assays and standardized methods to be used in the early stages of boron carrier development in vitro. The selection of assays and corresponding methods is based on the practical experience of the authors and is certainly not exhaustive, but open to discussion. The proposed tests/characteristics: Solubility, lipophilicity, stability, cytotoxicity, and cellular uptake apply to both low molecular weight (up to 500 Da) and high molecular weight (5000 Da and more) boron carriers. However, the specific methods have been selected primarily for low molecular weight boron carriers; in the case of high molecular weight compounds, some of the methods may need to be adapted.


Assuntos
Compostos de Boro , Terapia por Captura de Nêutron de Boro , Peso Molecular , Terapia por Captura de Nêutron de Boro/métodos , Compostos de Boro/química , Humanos
11.
Med Phys ; 51(6): 4413-4422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669482

RESUMO

BACKGROUND: Monte Carlo simulation code is commonly used for the dose calculation of boron neutron capture therapy. In the past, dose calculation was performed assuming a homogeneous mass density and elemental composition inside the tissue, regardless of the patient's age or sex. Studies have shown that the mass density varies with patient to patient, particularly for those that have undergone surgery or radiotherapy. A method to convert computed tomography numbers into mass density and elemental weights of tissues has been developed and applied in the dose calculation process using Monte Carlo codes. A recent study has shown the variation in the computed tomography number between different scanners for low- and high-density materials. PURPOSE: The aim of this study is to investigate the effect of the elemental composition inside each calculation voxel on the dose calculation and the application of the stoichiometric CT number calibration method for boron neutron capture therapy planning. METHODS: Monte Carlo simulation package Particle and Heavy Ion Transport code System was used for the dose calculation. Firstly, a homogeneous cubic phantom with the material set to ICRU soft tissue (four component), muscle, fat, and brain was modelled and the NeuCure BNCT system accelerator-based neutron source was used. The central axis depth dose distribution was simulated and compared between the four materials. Secondly, a treatment plan of the brain and the head and neck region was simulated using a dummy patient dataset. Three models were generated; (1) a model where only the fundamental materials were considered (simple model), a model where each voxel was assigned a mass density and elemental weight using (2) the Nakao20 model, and (3) the Schneider00 model. The irradiation conditions were kept the same between the different models (irradiation time and irradiation field size) and the near maximum (D1%) and mean dose to the organs at risk were calculated and compared. RESULTS: A maximum percentage difference of approximately 5% was observed between the different materials for the homogeneous phantom. With the dummy patient plan, a large dose difference in the bone (greater than 12%) and region near the low-density material (mucosal membrane, 7%-11%) was found between the different models. CONCLUSIONS: A stoichiometric CT number calibration method using the newly developed Nakao20 model was applied to BNCT dose calculation. The results indicate the importance of calibrating the CT number to elemental composition for each individual CT scanner for the purpose of BNCT dose calculation along with the consideration of heterogeneity of the material composition inside the defined region of interest.


Assuntos
Terapia por Captura de Nêutron de Boro , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Terapia por Captura de Nêutron de Boro/métodos , Calibragem , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Doses de Radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem
12.
J Neurooncol ; 168(1): 91-97, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598087

RESUMO

PURPOSE: Boron neutron capture therapy (BNCT) is a tumor cell-selective particle-radiation therapy. In BNCT, administered p-boronophenylalanine (BPA) is selectively taken up by tumor cells, and the tumor is irradiated with thermal neutrons. High-LET α-particles and recoil 7Li, which have a path length of 5-9 µm, are generated by the capture reaction between 10B and thermal neutrons and selectively kill tumor cells that have uptaken 10B. Although BNCT has prolonged the survival time of malignant glioma patients, recurrences are still to be resolved. miRNAs, that are encapsulated in small extracellular vesicles (sEVs) in body fluids and exist stably may serve critical role in recurrence. In this study, we comprehensively investigated microRNAs (miRNAs) in sEVs released from post-BNCT glioblastoma cells. METHOD: Glioblastoma U87 MG cells were treated with 25 ppm of BPA in the culture media and irradiated with thermal neutrons. After irradiation, they were plated into dishes and cultured for 3 days in the 5% CO2 incubator. Then, sEVs released into the medium were collected by column chromatography, and miRNAs in sEVs were comprehensively investigated using microarrays. RESULT: An increase in 20 individual miRNAs (ratio > 2) and a decrease in 2 individual miRNAs (ratio < 0.5) were detected in BNCT cells compared with non-irradiated cells. Among detected miRNAs, 20 miRNAs were associated with worse prognosis of glioma in Kaplan Meier Survival Analysis of overall survival in TCGA. CONCLUSION: These miRNA after BNCT may proceed tumors, modulate radiation resistance, or inhibit invasion and affect the prognosis of glioma.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , MicroRNAs , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos da radiação , MicroRNAs/metabolismo , MicroRNAs/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação
14.
Appl Radiat Isot ; 209: 111330, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657372

RESUMO

Boron neutron capture therapy (BNCT) has received extensive attention as an advanced binary radiotherapy method. However, BNCT still faces poor selectivity of boron agent and is insufficient boron content in tumor tissues. To improve the tumor-targeted ability and boron content, this research aims to design, synthesize and preliminary evaluate a new borane agent Carborane-FAPI, which coupling the o-carborane to the compound skeleton of a mature fibroblast activating protein (FAP) inhibitor (FAPI). FAP is a tumor-associated antigen. FAP expressed lowly in normal organs and highly expressed in tumors, so it is a potential target for diagnosis and treatment. Boronophenylalanine (BPA) is the most widely investigated BNCT drug in present. Compared with BPA, the boron content of a single molecule is increased and drug targeting is enhanced. The results show that Carboaren-FAPI has low toxicity to normal cells, and selective enrichment in tumor tissues. It is a promising boron drug that has the potential to be used in BNCT.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Animais , Camundongos , Proteínas de Membrana/metabolismo , Endopeptidases , Serina Endopeptidases/metabolismo , Gelatinases/metabolismo , Compostos de Boro/uso terapêutico , Compostos de Boro/farmacocinética , Linhagem Celular Tumoral
15.
Radiat Prot Dosimetry ; 200(7): 623-628, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38527175

RESUMO

Although boron neutron capture therapy (BNCT) causes minor damage to normal cells owing to the nuclear reactions induced by neutrons with major elements of tissues such as hydrogen and nitrogen, it is useful to estimate the accurate exposure dose for radiation protection. This study aims to estimate the contribution of internal exposure in radiation exposure dose for BNCT. The study was performed by referring to clinical studies at a reactor-based BNCT facility on the basis of computational dosimetry. Five irradiation regions of head and neck were selected for the estimation. The results suggest that external exposure occurred primarily in and around the irradiation field. Furthermore, during the exposure dose estimation in BNCT, internal exposure was found to be not negligible, implying that the irradiation regions in treatment planning must be considered for avoiding damage to certain critical organs that are susceptible to internal exposure.


Assuntos
Terapia por Captura de Nêutron de Boro , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Dosagem Radioterapêutica , Nêutrons , Doses de Radiação , Radiometria/métodos , Proteção Radiológica/métodos , Exposição à Radiação/análise , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Neoplasias de Cabeça e Pescoço/radioterapia , Imagens de Fantasmas , Simulação por Computador
16.
Appl Radiat Isot ; 207: 111249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428203

RESUMO

The 71Ga(n,γ)72Ga reaction-based epithermal neutron flux detectors are novel instruments developed to measure the epithermal neutron flux of boron neutron capture therapy (BNCT) treatment beams. In this study, a spherical epithermal neutron flux detector using 71Ga(n,γ)72Ga reaction was prototyped. The performance of the detector was experimentally evaluated at an accelerator-based BNCT (AB-BNCT) device developed by Lanzhou University, China. Based on the experimental results and related analysis, we demonstrated that the detector is a reliable tool for the quality assurance of BNCT treatment beams.


Assuntos
Terapia por Captura de Nêutron de Boro , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons , Dosagem Radioterapêutica , Raios gama , Método de Monte Carlo
17.
Appl Radiat Isot ; 208: 111303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531243

RESUMO

Boron neutron capture therapy (BNCT) is an effective binary radiation therapy that depends on nuclear capture reactions. In recent years, BNCT can be performed without a reactor owing to the development of accelerator-based neutron sources. A new BNCT irradiation facility is proposed, which is based on a 15 mA 2.5 MeV proton accelerator with a 100 µm thickness natural lithium target as a neutron converter. A great quantity of studies has shown that neutron beams with different spectra have unique therapeutic effects on tumors. An appropriate neutron beam for BNCT is obtained by Beam Shaping Assembly (BSA) and the moderator plays a main role in determining the BSA outlet beam spectrum. To figure out the dose distribution in phantom with various kinds of neutron spectrum modes during BNCT, a series of cases are calculated by MCNPX code. The results give a database for treatment of brain tumors with BNCT by using different moderators.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Encefálicas/radioterapia , Lítio , Dosagem Radioterapêutica , Prótons , Nêutrons , Método de Monte Carlo
18.
Chem Rev ; 124(5): 2441-2511, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382032

RESUMO

Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Boro/química , Química Farmacêutica , Compostos de Boro/química , Neoplasias/tratamento farmacológico , Ácidos Borônicos , Terapia por Captura de Nêutron de Boro/métodos
19.
Med Phys ; 51(6): 4524-4535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299670

RESUMO

BACKGROUND: In boron neutron capture therapy (BNCT)-a form of binary radiotherapy-the primary challenge in treatment planning systems for dose calculations arises from the time-consuming nature of the Monte Carlo (MC) method. Recent progress, including the use of neural networks (NN), has been made to accelerate BNCT dose calculations. However, this approach may result in significant dose errors in both the tumor and the skin, with the latter being a critical organ in BNCT. Furthermore, owing to the lack of physical processes in purely NN-based approaches, their reliability for clinical dose calculations in BNCT is questionable. PURPOSE: In this study, a physically constrained MC-NN (PCMC-NN) coupling algorithm is proposed to achieve fast and accurate computation of the BNCT three-dimensional (3D) therapeutic dose distribution. This approach synergizes the high precision of the MC method with the speed of the NN and utilizes physical conservation laws to constrain the coupling process. It addresses the time-consuming issue of the traditional MC method while reducing dose errors. METHODS: Clinical data were collected from 113 glioblastoma patients. For each patient, the 3D dose distributions for both the coarse and detailed dose grids were calculated using the MC code PHITS. Among these patients, the data from 14 patients were allocated to the test set, 9 to the validation set, and the remaining to the training set. A neural network, 3D-Unet, was built based on the coarse grid dose and patient CT information to enable fast and accurate computation of the 3D detailed grid dose distribution of BNCT. RESULTS: Statistical evaluations, including relative deviation, dose deviation, mean absolute error (MAE), and mean absolute percentage error (MAPE) were conducted. Our findings suggested that the PCMC-NN algorithm substantially outperformed the traditional NN and interpolation methods. Furthermore, the proposed algorithm significantly reduced errors, particularly in the skin and GTV, and improved computational accuracy (hereinafter referred to simply as 'accuracy') with a MAPE range of 1.6%-4.0% and a maximum MAE of 0.3 Gy (IsoE) for different organs. The dose-volume histograms generated by the PCMC-NN aligned well with those obtained from the MC method, further validating its accuracy. CONCLUSIONS: The PCMC-NN algorithm enhanced the speed and accuracy of BNCT dose calculations by combining the MC method with the NN algorithm. This indicates the significant potential of the proposed algorithm for clinical applications in optimizing treatment planning.


Assuntos
Algoritmos , Terapia por Captura de Nêutron de Boro , Método de Monte Carlo , Redes Neurais de Computação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Doses de Radiação
20.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38221726

RESUMO

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Eficiência Biológica Relativa , Nêutrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA