Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 17(7): e1009649, 2021 07.
Article in English | MEDLINE | ID: mdl-34228720

ABSTRACT

The differentiation efficiency of adult stem cells undergoes a significant decline in aged animals, which is closely related to the decline in organ function and age-associated diseases. However, the underlying mechanisms that ultimately lead to this observed decline of the differentiation efficiency of stem cells remain largely unclear. This study investigated Drosophila midguts and identified an obvious upregulation of caudal (cad), which encodes a homeobox transcription factor. This factor is traditionally known as a central regulator of embryonic anterior-posterior body axis patterning. This study reports that depletion of cad in intestinal stem/progenitor cells promotes quiescent intestinal stem cells (ISCs) to become activate and produce enterocytes in the midgut under normal gut homeostasis conditions. However, overexpression of cad results in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, this study suggests that cad prevents intestinal stem/progenitor cell differentiation by modulating the Janus kinase/signal transducers and activators of the transcription pathway and Sox21a-GATAe signaling cascade. Importantly, the reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. This study identified a function of the homeobox gene cad in the modulation of adult stem cell differentiation and suggested a potential gene target for the treatment of age-related diseases induced by age-related stem cell dysfunction.


Subject(s)
Adult Stem Cells/metabolism , Cell Differentiation/genetics , Drosophila Proteins/metabolism , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Adult Stem Cells/physiology , Age Factors , Aging/genetics , Aging/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Gene Expression/genetics , Gene Expression Regulation/genetics , Genes, Homeobox/genetics , Homeodomain Proteins/genetics , Intestinal Mucosa/metabolism , Intestines/cytology , Janus Kinases/genetics , Signal Transduction/genetics , Transcription Factors/genetics
2.
J Environ Manage ; 354: 120406, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38373376

ABSTRACT

Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.


Subject(s)
Iron , Nanostructures , Antioxidants , Agriculture , Crops, Agricultural
3.
Proteins ; 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36841957

ABSTRACT

The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43321-340 peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/ß-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long ß-sheet formation, albeit with a minor impact on the average probability of both helix structure and ß-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.

4.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34237133

ABSTRACT

Increasing evidences show the clinical significance of the interaction between hypoxia and immune in clear cell renal cell carcinoma (ccRCC) microenvironment. However, reliable prognostic signatures based on a combination of hypoxia and immune have not been well established. Moreover, many studies have only used RNA-seq profiles to screen the prognosis feature of ccRCC. Presently, there is no comprehensive analysis of multiomics data to mine a better one. Thus, we try and get it. First, t-SNE and ssGSEA analysis were used to establish tumor subtypes related to hypoxia-immune, and we investigated the hypoxia-immune-related differences in three types of genetic or epigenetic characteristics (gene expression profiles, somatic mutation, and DNA methylation) by analyzing the multiomics data from The Cancer Genome Atlas (TCGA) portal. Additionally, a four-step strategy based on lasso regression and Cox regression was used to construct a satisfying prognostic model, with average 1-year, 3-year and 5-year areas under the curve (AUCs) equal to 0.806, 0.776 and 0.837. Comparing it with other nine known prognostic biomarkers and clinical prognostic scoring algorithms, the multiomics-based signature performs better. Then, we verified the gene expression differences in two external databases (ICGC and SYSU cohorts). Next, eight hub genes were singled out and seven hub genes were validated as prognostic genes in SYSU cohort. Furthermore, it was indicated high-risk patients have a better response for immunotherapy in immunophenoscore (IPS) analysis and TIDE algorithm. Meanwhile, estimated by GDSC and cMAP database, the high-risk patients showed sensitive responses to six chemotherapy drugs and six candidate small-molecule drugs. In summary, the signature can accurately predict the prognosis of ccRCC and may shed light on the development of novel hypoxia-immune biomarkers and target therapy of ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell/etiology , Carcinoma, Renal Cell/metabolism , Disease Susceptibility , Kidney Neoplasms/etiology , Kidney Neoplasms/metabolism , Aged , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/therapy , DNA Methylation , Disease Susceptibility/immunology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomics , Humans , Hypoxia/genetics , Hypoxia/metabolism , Immunophenotyping , Kaplan-Meier Estimate , Kidney Neoplasms/diagnosis , Kidney Neoplasms/therapy , Male , Middle Aged , Molecular Targeted Therapy , Neoplasm Staging , Precision Medicine , Prognosis , ROC Curve , Transcriptome , Tumor Microenvironment
5.
J Chem Inf Model ; 63(11): 3579-3590, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37218694

ABSTRACT

The aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) into fibrillary deposits is associated with amyotrophic lateral sclerosis (ALS). The 311-360 fragment of TDP-43 (TDP-43311-360), the amyloidogenic core region, can spontaneously aggregate into fibrils, and the ALS-associated mutation G335D has an enhanced effect on TDP-43311-360 fibrillization. However, the molecular mechanism underlying G335D-enhanced aggregation at atomic level remains largely unknown. By utilizing all-atom molecular dynamics (MD) and replica exchange with solute tempering 2 (REST2) simulations, we investigated influences of G335D on the dimerization (the first step of aggregation) and conformational ensemble of the TDP-43311-360 peptide. Our simulations show that G335D mutation increases inter-peptide interactions, especially inter-peptide hydrogen-bonding interactions in which the mutant site has a relatively large contribution, and enhances the dimerization of TDP-43311-360 peptides. The α-helix regions in the NMR-resolved conformation of the TDP-43311-360 monomer (321-330 and 335-343) play an essential role in the formation of the dimer. G335D mutation induces helix unfolding and promotes α-to-ß conversion. G335D mutation alters the conformational distribution of TDP-43311-360 dimers and causes population shift from helix-rich to ß-sheet-rich conformations, which facilitates the fibrillization of the TDP-43311-360 peptide. Our MD and REST2 simulation results suggest that the 321-330 region is of paramount importance to α-to-ß transition and could be the initiation site for TDP-43311-360 fibrillization. Our work reveals the mechanism underlying the enhanced aggregation propensity of the G335D TDP-43311-360 peptide, which provides atomistic insights into the G335D mutation-caused pathogenicity of TDP-43 protein.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/chemistry , Mutation , Peptides/genetics , Protein Conformation, beta-Strand
6.
Phys Chem Chem Phys ; 25(20): 14471-14483, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37190853

ABSTRACT

α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the ß-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.


Subject(s)
Naphthoquinones , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Dopamine/chemistry , Parkinson Disease/metabolism , Amyloid/chemistry
7.
Biomed Eng Online ; 22(1): 64, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370077

ABSTRACT

BACKGROUND: Coronary computed tomography-derived fractional flow reserve (CT-FFR) and intravascular ultrasound-derived fractional flow reserve (IVUS-FFR) are two functional assessment methods for coronary stenoses. However, the calculation algorithms for these methods differ significantly. This study aimed to compare the diagnostic performance of CT-FFR and IVUS-FFR using invasive fractional flow reserve (FFR) as the reference standard. METHODS: Six hundred and seventy patients (698 lesions) with known or suspected coronary artery disease were screened for this retrospective analysis between January 2020 and July 2021. A total of 40 patients (41 lesions) underwent intravascular ultrasound (IVUS) and FFR evaluations within six months after completing coronary CT angiography were included. Two novel CFD-based models (AccuFFRct and AccuFFRivus) were used to compute the CT-FFR and IVUS-FFR values, respectively. The invasive FFR ≤ 0.80 was used as the reference standard for evaluating the diagnostic performance of CT-FFR and IVUS-FFR. RESULTS: Both AccuFFRivus and AccuFFRct demonstrated a strong correlation with invasive FFR (R = 0.7913, P < 0.0001; and R = 0.6296, P < 0.0001), and both methods showed good agreement with FFR. The area under the receiver operating characteristic curve was 0.960 (P < 0.001) for AccuFFRivus and 0.897 (P < 0.001) for AccuFFRct in predicting FFR ≤ 0.80. FFR ≤ 0.80 were predicted with high sensitivity (96.6%), specificity (85.7%), and the Youden index (0.823) using the same cutoff value of 0.80 for AccuFFRivus. A good diagnostic performance (sensitivity 89.7%, specificity 85.7%, and Youden index 0.754) was also demonstrated by AccuFFRct. CONCLUSIONS: AccuFFRivus, computed from IVUS images, exhibited a high diagnostic performance for detecting myocardial ischemia. It demonstrated better diagnostic power than AccuFFRct, and could serve as an accurate computational tool for ischemia diagnosis and assist in clinical decision-making.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Coronary Artery Disease/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed , Coronary Angiography/methods , Ultrasonography, Interventional/methods , Computed Tomography Angiography , Predictive Value of Tests
8.
Int Braz J Urol ; 49(3): 393-394, 2023.
Article in English | MEDLINE | ID: mdl-36638150

ABSTRACT

INTRODUCTION: Main renal artery clamping and selective arterial clamping are two conventional devascularization methods for robot-assisted partial nephrectomy (RAPN) (1, 2). Decreasing warm ischemic (WI) time (3, 4) and improving clear surgical visualization (5) are the main surgically modifiable factors for RAPN, especially in large complex renal cancer (6). In this study, we described our surgical technique, focusing on gradual segmental artery unclamping on patients with large renal tumors. MATERIAL AND METHODS: Two patients (R.E.N.A.L score 10 and 11) underwent RAPN with gradual segmental artery unclamping (Figures 1 and 2). The unclamping included five key steps. First, all renal segmental arteries were identified as tumor feeding vessel(s) and the vessels for normal kidney parenchyma under the guidance of CT angiography (CTA) 3-division (3D) reconstruction. Second, all segmental arteries were isolated, and the feeding one(s) should be blocked before other arteries were blocked. Third, the tumor was resected outside the pseudocapsule, and the deep resection bed was sutured for initial hemostasis. Fourth, the segmental arteries were reopened except for the tumor feeding one(s), and normal kidney parenchyma restored blood supply. And fifth, the resection bed was completely sutured, and the feeding vessel supplying the tumor was opened after the suture. Warm ischemia time (WIT) was defined as the time measured between clamping and unclamping of the renal artery. WIT1 was the time for normal kidney parenchyma and WIT2 was the time for resection area. Patient demographics, perioperative variables, and warm ischemic time were included in our study. And we presented the details of gradual segmental artery unclamping in the video. RESULTS: In both cases, the total operation times were 215 and 130 mins for patient 1 and patient 2, respectively. WIT1 and WIT2 for patient 1 were 15 min and 33 min., and WIT1 and WIT2 for patient 2 were 21 min and 32 min, respectivelly. The maximum diameters of the masses resected were 10.8 and 7.3 cm, and surgical margins were negative. No patient had complications after operation. Preoperative and postoperative eGFR did not change significantly. Pre- and postoperative eGFR were 111 and 108 mL/min for patient 1, 91 and 83 mL/min for patient 2, respectively. Key hints for outcomes optimization during RAPN on patients with large complex renal tumors: 1) Each segmental renal artery is precised clamped before we excise the tumor, and an excellent surgical vision is essential for precising excision and shortening clamping time, 2) Other segmental renal arteries are unclamped except tumor feeding branch after suturing deep layer of parenchyma, and most normal parenchyma restores blood supply, 3) Preoperative high-resolution computed tomography angiography (CTA) and 3D reconstructive renal structure serve as a guide to clear the approach to find the tumor and segmental arteries (7, 8). CONCLUSIONS: Gradual segmental artery unclamping is feasible and efficient to excise large complex renal cancer. Compared with main renal artery clamping, it can shorten the warm ischemic time of normal parenchyma; On the other hand, compared with selective segmental arterial clamping, the technique can reduce bleeding from the deep resection bed, keep a clear surgical vision, and decrease the incidence of positive margin.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Robotic Surgical Procedures , Robotics , Humans , Retrospective Studies , Nephrectomy/methods , Kidney Neoplasms/surgery , Carcinoma, Renal Cell/surgery , Robotic Surgical Procedures/methods , Renal Artery/surgery , Treatment Outcome , Constriction
9.
Biophys J ; 121(9): 1704-1714, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35364103

ABSTRACT

In epithelial tumors, oncoprotein E6 binds with the ubiquitin ligase E6AP to form E6/E6AP heterodimer; then this heterodimer recruits p53 to form E6/E6AP/p53 heterotrimer and induces p53 degradation. Recent experiments demonstrated that three E6 single-site mutants (F47R, R102A, and L50E) can inhibit the E6/E6AP/p53 heterotrimer formation and rescue p53 from the degradation pathway. However, the molecular mechanism underlying mutation-induced heterotrimer inhibition remains largely elusive. Herein, we performed extensive molecular dynamics simulations (totally ∼13 µs) on both heterodimer and heterotrimer to elucidate at an atomic level how each p53-degradation-defective HPV16 E6 mutant reduces the structural stabilities of the two complexes. Our simulations reveal that the three E6 mutations destabilize the structure of E6/E6AP/p53 complex through distinct mechanisms. Although F47RE6 mutation has no effect on the structure of E6/E6AP heterodimer, it results in an electrostatic repulsion between R47E6 and R290p53, which is unfavorable for E6-p53 binding. R102AE6 mutation destabilizes the structure of E6/E6AP heterodimer and significantly disrupts hydrophobic and cation-π interactions between F47E6 and E286p53/L298p53/R290p53. L50EE6 mutation impairs both E6 interdomain interactions (especially F47-K108 cation-π interaction) and E6-E6AP intermolecular interactions important for the stabilization of E6/E6AP heterodimer. This study identifies the intra- and intermolecular interactions crucial for the complex stability, which may provide mechanistic insights into the inhibition of complex formation by the three HPV16 E6 mutations.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Mutation , Oncogene Proteins, Viral/chemistry , Protein Binding , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
J Chem Inf Model ; 62(13): 3227-3238, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35709363

ABSTRACT

Fused in sarcoma (FUS), a nuclear RNA binding protein, can not only undergo liquid-liquid phase separation (LLPS) to form dynamic biomolecular condensates but also aggregate into solid amyloid fibrils which are associated with the pathology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration diseases. Phosphorylation in the FUS low-complexity domain (FUS-LC) inhibits FUS LLPS and aggregation. However, it remains largely elusive what are the underlying atomistic mechanisms of this inhibitory effect and whether phosphorylation can disrupt preformed FUS fibrils, reversing the FUS gel/solid phase toward the liquid phase. Herein, we systematically investigate the impacts of phosphorylation on the conformational ensemble of the FUS37-97 monomer and dimer and the structure of the FUS37-97 fibril by performing extensive all-atom molecular dynamics simulations. Our simulations reveal three key findings: (1) phosphorylation shifts the conformations of FUS37-97 from the ß-rich, fibril-competent state toward a helix-rich, fibril-incompetent state; (2) phosphorylation significantly weakens protein-protein interactions and enhances protein-water interactions, which disfavor FUS-LC LLPS as well as aggregation and facilitate the dissolution of the preformed FUS-LC fibril; and (3) the FUS37-97 peptide displays a high ß-strand probability in the region spanning residues 52-67, and phosphorylation at S54 and S61 residues located in this region is crucial for the disruption of LLPS and aggregation of FUS-LC. This study may pave the way for ameliorating phase-separation-related pathologies via site-specific phosphorylation.


Subject(s)
Amyloid , RNA-Binding Protein FUS , Amyloid/chemistry , Magnetic Resonance Spectroscopy , Phosphorylation , Protein Domains , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
11.
Macromol Rapid Commun ; 43(19): e2200223, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35920234

ABSTRACT

Ordered supramolecular hydrogels assembled by modified aromatic amino acids often exhibit low mechanical rigidity. Aiming to stabilize the hydrogel and understand the impact of conformational freedom and hydrophobicity on the self-assembly process, two building blocks based on 9-fluorenyl-methoxycarbonyl-phenylalanine (Fmoc-Phe) gelator which contain two extra methylene units in the backbone, generating Fmoc-γPhe and Fmoc-(3-hydroxy)-γPhe are designed. Fmoc-γPhe spontaneously assembled in aqueous media forming a hydrogel with exceptional mechanical and thermal stability. Moreover, Fmoc-(3-hydroxy)-γPhe, with an extra backbone hydroxyl group decreasing its hydrophobicity while maintaining some molecular flexibility, self-assembled into a transient fibrillar hydrogel, that later formed microcrystalline aggregates through a phase transition. Molecular dynamics simulations and single crystal X-ray analyses reveal the mechanism underlying the two residues' distinct self-assembly behaviors. Finally, Fmoc-γPhe and Fmoc-(3-OH)-γPhe co-assembly to form a supramolecular hydrogel with notable mechanical properties are demonstrated. It has been believed that the understanding of the structure-assembly relationship will enable the design of new functional amino acid-based hydrogels.


Subject(s)
Fluorenes , Phenylalanine , Amino Acids/chemistry , Fluorenes/chemistry , Hydrogels/chemistry , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Polymers
12.
Phys Chem Chem Phys ; 24(8): 5199-5210, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35166747

ABSTRACT

The p53 protein is a tumor suppressor crucial for cell cycle and genome integrity. In a very large proportion of human cancers, p53 is frequently inactivated by mutations located in its DNA-binding domain (DBD). Some experimental studies reported that the inherited R337H mutation located in the p53 tetramerization domain (p53TD) can also result in destabilization of the p53 protein, and consequently lead to an organism prone to cancer setup. However, the underlying R337H mutation-induced structural destabilization mechanism is not well understood. Herein, we investigate the structural stability and dynamic property of the wild type p53TD tetramer and its cancer-related R337H mutant by performing multiple microsecond molecular dynamics simulations. It is found that R337H mutation destroys the R337-D352 hydrogen bonds, weakens the F341-F341 π-π stacking interaction and the hydrophobic interaction between aliphatic hydrocarbons of R337 and M340, leading to more solvent exposure of all the hydrophobic cores, and thus disrupting the structural integrity of the tetramer. Importantly, our simulations show for the first time that R337H mutation results in unfolding of the α-helix starting from the N-terminal region (residues 335RER(H)FEM340). Consistently, community network analyses reveal that R337H mutation reduces dynamical correlation and global connectivity of p53TD tetramer, which destabilizes the structure of the p53TD tetramer. This study provides the atomistic mechanism of R337H mutation-induced destabilization of p53TD tetramer, which might be helpful for in-depth understanding of the p53 loss-of-function mechanism.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53/chemistry , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Mutation , Neoplasms/genetics
13.
BMC Cardiovasc Disord ; 22(1): 33, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35120463

ABSTRACT

BACKGROUND AND OBJECTIVES: Both fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are widely used to evaluate ischemia-causing coronary lesions. A new method of CT-iFR, namely AccuiFRct, for calculating iFR based on deep learning and computational fluid dynamics (CFD) using coronary computed tomography angiography (CCTA) has been proposed. In this study, the diagnostic performance of AccuiFRct was thoroughly assessed using iFR as the reference standard. METHODS: Data of a total of 36 consecutive patients with 36 vessels from a single-center who underwent CCTA, invasive FFR, and iFR were retrospectively analyzed. The CT-derived iFR values were computed using a novel deep learning and CFD-based model. RESULTS: Mean values of FFR and iFR were 0.80 ± 0.10 and 0.91 ± 0.06, respectively. AccuiFRct was well correlated with FFR and iFR (correlation coefficients, 0.67 and 0.68, respectively). The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of AccuiFRct ≤ 0.89 for predicting FFR ≤ 0.80 were 78%, 73%, 81%, 73%, and 81%, respectively. Those of AccuiFRct ≤ 0.89 for predicting iFR ≤ 0.89 were 81%, 73%, 86%, 79%, and 82%, respectively. AccuiFRct showed a similar discriminant function when FFR or iFR were used as reference standards. CONCLUSION: AccuiFRct could be a promising noninvasive tool for detection of ischemia-causing coronary stenosis, as well as facilitating in making reliable clinical decisions.


Subject(s)
Computed Tomography Angiography/methods , Coronary Stenosis/diagnosis , Coronary Vessels/physiopathology , Deep Learning , Fractional Flow Reserve, Myocardial/physiology , Aged , Coronary Angiography/methods , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Female , Humans , Hydrodynamics , Male , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index
14.
Genomics ; 113(2): 740-754, 2021 03.
Article in English | MEDLINE | ID: mdl-33516849

ABSTRACT

Clear-cell renal cell carcinoma (ccRCC) carries a variable prognosis. Prognostic biomarkers can stratify patients according to risk, and can provide crucial information for clinical decision-making. We screened for an autophagy-related long non-coding lncRNA (lncRNA) signature to improve postoperative risk stratification in The Cancer Genome Atlas (TCGA) database. We confirmed this model in ICGC and SYSU cohorts as a significant and independent prognostic signature. Western blotting, autophagic-flux assay and transmission electron microscopy were used to verify that regulation of expression of 8 lncRNAs related to autophagy affected changes in autophagic flow in vitro. Our data suggest that 8-lncRNA signature related to autophagy is a promising prognostic tool in predicting the survival of patients with ccRCC. Combination of this signature with clinical and pathologic parameters could aid accurate risk assessment to guide clinical management, and this 8-lncRNAs signature related to autophagy may serve as a therapeutic target.


Subject(s)
Autophagy/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , RNA, Long Noncoding/metabolism
15.
J Am Chem Soc ; 143(42): 17633-17645, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34647727

ABSTRACT

Modulation of the structural diversity of diphenylalanine-based assemblies by molecular modification and solvent alteration has been extensively explored for bio- and nanotechnology. However, regulation of the structural transition of assemblies based on this minimal building block into tunable supramolecular nanostructures and further construction of smart supramolecular materials with multiple responsiveness are still an unmet need. Coassembly, the tactic employed by natural systems to expand the architectural space, has been rarely explored. Herein, we present a coassembly approach to investigate the morphology manipulation of assemblies formed by N-terminally capped diphenylalanine by mixing with various bipyridine derivatives through intermolecular hydrogen bonding. The coassembly-induced structural diversity is fully studied by a set of biophysical techniques and computational simulations. Moreover, multiple-responsive two-component supramolecular gels are constructed through the incorporation of functional bipyridine molecules into the coassemblies. This study not only depicts the coassembly strategy to manipulate the hierarchical nanoarchitecture and morphology transition of diphenylalanine-based assemblies by supramolecular interactions but also promotes the rational design and development of smart hydrogel-based biomaterials responsive to various external stimuli.


Subject(s)
Dipeptides , Macromolecular Substances , Pyridines , Hydrogels/chemistry , Macromolecular Substances/chemistry , Nanostructures/chemistry , Phenylalanine/chemistry , Pyridines/chemistry , Dipeptides/chemistry
16.
Mol Cancer ; 20(1): 169, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922539

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been indicated as potentially critical mediators in various types of tumor progression, generally acting as microRNA (miRNA) sponges to regulate downstream gene expression. However, the aberrant expression profile and dysfunction of circRNAs in human clear cell renal cell carcinoma (ccRCC) need to be further investigated. This study mined key prognostic circRNAs and elucidates the potential role and molecular mechanism of circRNAs in regulating the proliferation and metastasis of ccRCC. METHODS: circCHST15 (hsa_circ_0020303) was identified by mining two circRNA microarrays from the Gene Expression Omnibus database and comparing matched tumor versus adjacent normal epithelial tissue pairs or matched primary versus metastatic tumor tissue pairs. These results were validated by quantitative real-time polymerase chain reaction and agarose gel electrophoresis. We demonstrated the biological effect of circCHST15 in ccRCC both in vitro and in vivo. To test the interaction between circCHST15 and miRNAs, we conducted a number of experiments, including RNA pull down assay, dual-luciferase reporter assay and fluorescence in situ hybridization. RESULTS: The expression of circCHST15 was higher in ccRCC tissues compared to healthy adjacent kidney tissue and higher in RCC cell lines compared to normal kidney cell lines. The level of circCHST15 was positively correlated with aggressive clinicopathological characteristics, and circCHST15 served as an independent prognostic indicator for overall survival and progression-free survival in patients with ccRCC after surgical resection. Our in vivo and in vitro data indicate that circCHST15 promotes the proliferation, migration, and invasion of ccRCC cells. Mechanistically, we found that circCHST15 directly interacts with miR-125a-5p and acts as a microRNA sponge to regulate EIF4EBP1 expression. CONCLUSIONS: We found that sponging of miR-125a-5p to promote EIF4EBP1 expression is the underlying mechanism of hsa_circ_0020303-induced ccRCC progression. This prompts further investigation of circCHST15 as a potential prognostic biomarker and therapeutic target for ccRCC.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers, Tumor , Carcinoma, Renal Cell/genetics , Cell Cycle Proteins/genetics , Kidney Neoplasms/genetics , Membrane Glycoproteins/genetics , MicroRNAs/genetics , RNA, Circular , Sulfotransferases/genetics , Adult , Aged , Animals , Carcinoma, Renal Cell/diagnosis , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Kidney Neoplasms/diagnosis , Male , Mice , Middle Aged , Models, Biological , Neoplasm Grading , Neoplasm Staging , Prognosis , RNA Interference
17.
BMC Urol ; 21(1): 149, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34736451

ABSTRACT

BACKGROUND: To explore whether opening the external urethral orifice in the coronal sulcus can reduce the incidence of epididymitis after operating on hypospadias with prostatic utricle cyst (PUC) connecting to the vas deferens. Group A consisted of 3 patients with severe hypospadias and PUC undergoing cystostomy, hypospadias correction and urethroplasty, along with the relocation of the external orifice of the urethra to the coronal sulcus. Group B consisted of 4 patients having initial hypospadias repaired with meatus in the orthotopic position in the glans, presenting with multiple epididymitis after hypospadias surgery and unsuccessful conservative treatment. MR confirmed that all the Group B patients had PUC connecting to the vas deferens. Group B patients underwent urethral dilatation along with urethral catheterization, cutting of the original corpus cavernosum that encapsulated the urethra, and extension of the position of the external urethral orifice to the coronal sulcus. RESULTS: In group A, 3 children underwent bladder fistula removal 2 weeks after the operation. The penis developed normally without any complications. Four children in group B underwent stent removal 12 weeks after operation, and one patient was still stenosed and dilated again. All patients in group B were followed without epididymitis recurrence. CONCLUSIONS: For patients with hypospadias complicating with a PUC, connecting to one side of the vas deferens, the positioning of the external urethral orifice in the coronary sulcus would be helpful to reduce the occurrence of epididymitis.


Subject(s)
Cysts/surgery , Hypospadias/surgery , Plastic Surgery Procedures/methods , Prostatic Diseases/surgery , Urologic Surgical Procedures, Male/methods , Catheterization , Child, Preschool , Cystostomy , Cysts/complications , Cysts/diagnostic imaging , Dilatation , Epididymitis/etiology , Epididymitis/prevention & control , Humans , Hypospadias/complications , Hypospadias/diagnostic imaging , Male , Postoperative Complications , Prostatic Diseases/complications , Prostatic Diseases/diagnostic imaging , Plastic Surgery Procedures/adverse effects , Stents , Urologic Surgical Procedures, Male/adverse effects
18.
Phys Chem Chem Phys ; 22(17): 9225-9232, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32307496

ABSTRACT

The p53 protein is a tumor suppressor and the most often mutated protein in human cancers. Recent studies reported that p53 mutants, including two of the common cancer mutants (R175H and R273H), are more prone to aggregation than wild type (WT) p53 and their pathological aggregation can lead to diverse cancers. However, the underlying molecular mechanism is poorly understood. Herein, we investigated the structural and dynamic properties of R175H and R273H mutants of the p53 core domain (p53C) by performing extensive all-atom molecular dynamics simulations. We found that both R175H and R273H mutants exhibit a well preserved ß-sheet structure, but a larger hydrophobic surface area and higher loop flexibility than WT p53C. These conformational properties are consistent with the structural features of aggregation-prone molten-globule states. Our data also provide the details on how the two mutations lead to an increased flexibility of loop2. Moreover, using dynamic network analysis, we identified the allosteric path through which the R273H mutation induces an increased flexibility of the distant N-terminal region of loop2. These results provide mechanistic insights into the high aggregation propensities of R175H and R273H mutants.


Subject(s)
Models, Molecular , Mutation/genetics , Neoplasms/genetics , Protein Aggregation, Pathological/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Domains/genetics , Protein Structure, Tertiary
19.
Angew Chem Int Ed Engl ; 59(52): 23731-23739, 2020 12 21.
Article in English | MEDLINE | ID: mdl-32894630

ABSTRACT

Supramolecular polymer co-assembly is a useful approach to modulate peptide nanostructures. However, the co-assembly scenario where one of the peptide building blocks simultaneously forms a hydrogel is yet to be studied. Herein, we investigate the co-assembly formation of diphenylalanine (FF), and Fmoc-diphenylalanine (FmocFF) within the 3D network of FmocFF hydrogel. The overlapping peptide sequence between the two building blocks leads to their co-assembly within the gel state modulating the nature of the FF crystals. We observe the formation of branched microcrystalline aggregates with an atypical curvature, in contrast to the FF assemblies obtained from aqueous solution. Optical microscopy reveal the sigmoidal kinetic growth profile of these aggregates. Microfluidics and ToF-SIMS experiments exhibit the presence of co-assembled structures of FF and FmocFF in the crystalline aggregates. Molecular dynamics simulation was used to decipher the mechanism of co-assembly formation.

20.
Angew Chem Int Ed Engl ; 59(43): 19037-19041, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32691899

ABSTRACT

Bottom-up self-assembled bioinspired materials have attracted increasing interest in a variety fields. The use of peptide supramolecular semiconductors for optoelectronic applications is especially intriguing. However, the characteristic thermal unsustainability limits their practical application. Here, we report the thermal sustainability of cyclo-ditryptophan assemblies up to 680 K. Non-covalent interactions underlie the stability mechanism, generating a low exciton-binding energy of only 0.29 eV and a high thermal-quenching-activation energy of up to 0.11 eV. The contributing forces comprise predominantly of aromatic interactions, followed by hydrogen bonding between peptide molecules, and, to a lesser extent, water-mediated associations. This thermal sustainability results in a temperature-dependent conductivity of the supramolecular semiconductors, showing 93 % reduction of the resistance from 320 K to 440 K. Our results establish thermo-sustainable peptide self-assembly for heat-sensitive applications.


Subject(s)
Temperature , Crystallization , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure , Peptides/chemistry , Semiconductors , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL