Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Trends Biochem Sci ; 46(8): 630-639, 2021 08.
Article in English | MEDLINE | ID: mdl-33509650

ABSTRACT

Lysosomal degradation of endoplasmic reticulum (ER) fragments by autophagy, termed ER-phagy or reticulophagy, occurs under normal as well as stress conditions. The recent discovery of multiple ER-phagy receptors has stimulated studies on the roles of ER-phagy. We discuss how the ER-phagy receptors and the cellular components that work with these receptors mediate two important functions: ER homeostasis and ER quality control. We highlight that ER-phagy plays an important role in alleviating ER expansion induced by ER stress, and acts as an alternative disposal pathway for misfolded proteins. We suggest that the latter function explains the emerging connection between ER-phagy and disease. Additional ER-phagy-associated functions and important unanswered questions are also discussed.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Autophagy , Endoplasmic Reticulum Stress , Homeostasis
2.
Trends Biochem Sci ; 45(4): 347-364, 2020 04.
Article in English | MEDLINE | ID: mdl-32044127

ABSTRACT

Autophagy is an evolutionarily conserved process whereby damaged and redundant components of the cell are degraded in structures called autophagolysosomes. Currently, three main types of autophagy are recognized: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). However, we still know little about some specific types of autophagy that are linked to various intracellular compartments and their roles in the physiology of the whole organism and connections to various diseases. Here, we aim to shed light on the latest insights on and mechanisms of several selective forms of autophagy.


Subject(s)
Autophagy , Animals , Humans , Lysosomes/chemistry , Lysosomes/metabolism , Lysosomes/pathology
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769070

ABSTRACT

Female infertility is caused by premature ovarian failure (POF), which is triggered by the endoplasmic reticulum (ER) stress-mediated apoptosis of granulosa cells. The ER unfolded protein response (UPRer) is initiated to promote cell survival by alleviating excessive ER stress, but cellular apoptosis is induced by persistent or strong ER stress. Recent studies have reported that reticulophagy is initiated by ER stress. Whether reticulophagy is activated in the ER stress-mediated apoptosis of granulosa cells and which pathway is initiated to activate reticulophagy during the apoptosis of granulosa cells are unknown. Therefore, the role of reticulophagy in granulosa cell death and the relationship between ER stress and reticulophagy were investigated in this work. Our results suggest that the ER stress inducer tunicamycin causes POF in mice, which is attributed to the apoptosis of granulosa cells and is accompanied by the activation of UPRer and reticulophagy. Furthermore, granulosa cells were treated with tunicamycin, and granulosa cell apoptosis was triggered and increased the expression of UPRer and reticulophagy molecules. The expression of ATF4 was then downregulated by RNAi, which decreased the levels of autophagy and the reticulophagy receptor CCGP1. Furthermore, ATF4 targets MAP1LC3A, as revealed by the ChIP sequencing results, and co-IP results demonstrated that MAP1LC3A interacts with CCPG1. Therefore, reticulophagy was activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway to mitigate ER stress. Additionally, the role of reticulophagy in granulosa cells was investigated by the knockdown of CCPG1 with RNAi. Interestingly, only a small number of granulosa cells died by apoptosis, whereas the death of most granulosa cells occurred by necroptosis triggered by STAT1 and STAT3 to impair ER proteostasis and the ER protein quality control system UPRer. Taken together, the results indicate that the necroptosis of granulosa cells is triggered by up- and downregulating the reticulophagy receptor CCPG1 through STAT1/STAT3-(p)RIPK1-(p)RIPK3-(p)MLKL and that reticulophagy is activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway.


Subject(s)
Endoplasmic Reticulum Stress , Necroptosis , Female , Mice , Animals , Tunicamycin/pharmacology , Unfolded Protein Response , Autophagy/genetics , Apoptosis , Granulosa Cells
4.
J Cell Physiol ; 237(4): 2230-2248, 2022 04.
Article in English | MEDLINE | ID: mdl-35128666

ABSTRACT

Cardiac hypertrophy is a leading cause of cardiac morbidity and mortality worldwide. Apelin is the endogenous ligand for the G protein-coupled receptor, APJ. Previously, we have revealed that apelin-13 can induce cardiomyocyte hypertrophy by activating the autophagy pathway. However, the precise mechanism through which apelin-13 regulates reticulophagy to participate in cardiomyocyte hypertrophy remains unclear. Herein, we observed that apelin-13-induced cardiomyocyte hypertrophy by activating FAM134B-dependent reticulophagy via the Pannexin-1/P2X7 signal pathway. Furthermore, we found that apelin-13 stimulated the opening of Pannexin-1 hemichannel and increased extracellular ATP (eATP) levels, which activated the P2X7 purinergic receptor. Activation of the Pannexin-1/eATP/P2X7 axis subsequently led to FAM134B-dependent reticulophagy. Moreover, inhibition of the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy reversed apelin-13-induced cardiomyocyte hypertrophy. Based on our present findings, apelin-13/APJ induces cardiomyocyte hypertrophy by activating the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy.


Subject(s)
Intercellular Signaling Peptides and Proteins , Myocytes, Cardiac , Autophagy , Cardiomegaly/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Myocytes, Cardiac/metabolism
5.
Biochem Biophys Res Commun ; 589: 247-253, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34929448

ABSTRACT

Ferroptosis is a kind of cell death closely related to selective autophagy, such as ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy. However, the role of reticulophagy, which specifically degrades endoplasmic reticulum (ER) fragments (also known as ER-phagy), in ferroptosis regulation is still unclear. In this study, we found that sorafenib (ferroptosis inducer) can effectively activate the receptor protein FAM134B-mediated ER-phagy, and FAM134B knockdown not only blocked ER-phagy but also significantly strengthened cellular sensitivity to ferroptosis without affecting macroautophagy. In vivo experiments also yielded similar results. These evidences provided new clues for ferroptosis regulation. Subsequently, bioinformatic analysis combined with RNA binding protein immunoprecipitation and polyribosome fractionation preliminarily indicated that PABPC1 can interact with FAM134B mRNA and promote its translation. Taken together, this study revealed the role of the PABPC1-FAM134B-ER-phagy pathway on ferroptosis, providing important evidence for novel anti-cancer strategies.


Subject(s)
Autophagy , Carcinoma, Hepatocellular/metabolism , Ferroptosis , Intracellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/metabolism , Membrane Proteins/metabolism , Sorafenib/pharmacology , Animals , Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Down-Regulation/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Ferroptosis/drug effects , Humans , Liver Neoplasms/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Poly(A)-Binding Protein I/metabolism , Protein Biosynthesis/drug effects
6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408965

ABSTRACT

Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.


Subject(s)
Alzheimer Disease , Macroautophagy , Alzheimer Disease/pathology , Autophagy/physiology , Humans , Mitophagy/physiology
7.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32102874

ABSTRACT

Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), rely heavily on the availability of endoplasmic reticulum (ER) membranes throughout their life cycle, and degradation of ER membranes restricts flavivirus replication. Accordingly, DENV and ZIKV restrict ER turnover by protease-mediated cleavage of reticulophagy regulator 1 (RETREG1), also known as FAM134B, an autophagy receptor responsible for targeted ER sheet degradation. Given that the induction of autophagy may play an important role in flavivirus replication, the antiviral role of RETREG1 suggests that specialized autophagic pathways may have differential effects on the flavivirus life cycle. We previously identified BPI fold-containing family B member 3 (BPIFB3) as a regulator of autophagy that negatively controls enterovirus replication. Here, we show that in contrast to enteroviruses, BPIFB3 functions as a positive regulator of DENV and ZIKV infection and that its RNA interference-mediated silencing inhibits the formation of viral replication organelles. Mechanistically, we show that depletion of BPIFB3 enhances RETREG1-dependent reticulophagy, leading to enhanced ER turnover and the suppression of viral replication. Consistent with this, the antiviral effects of BPIFB3 depletion can be reversed by RETREG1 silencing, suggesting a specific role for BPIFB3 in regulating ER turnover. These studies define BPIFB3 as a required host factor for both DENV and ZIKV replication and further contribute to our understanding of the requirements for autophagy during flavivirus infection.IMPORTANCE Flaviviruses and other arthropod-transmitted viruses represent a widespread global health problem, with limited treatment options currently available. Thus, a better understanding of the cellular requirements for their infection is needed. Both DENV and ZIKV rely on expansion of the endoplasmic reticulum (ER) and the induction of autophagy to establish productive infections. However, little is known regarding the interplay between the requirements for autophagy initiation during infection and the mechanisms used by these viruses to avoid clearance through the autophagic pathway. Our study highlights the importance of the host factor BPIFB3 in regulating flavivirus replication and further confirms that the RETREG1-dependent reticulophagy pathway is antiviral to both DENV and ZIKV.


Subject(s)
Carrier Proteins/metabolism , Flavivirus/physiology , Virus Replication/physiology , Autophagy , Carrier Proteins/physiology , Cell Line , Dengue Virus/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/virology , Flavivirus/metabolism , Flavivirus Infections/virology , Host-Pathogen Interactions/genetics , Humans , RNA Interference , Zika Virus/physiology , Zika Virus Infection/virology
8.
J Biol Chem ; 294(52): 20009-20023, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31748416

ABSTRACT

Autophagy is typically a prosurvival cellular process that promotes the turnover of long-lived proteins and damaged organelles, but it can also induce cell death. We have previously reported that the small molecule Z36 induces autophagy along with autophagic cell death in HeLa cells. In this study, we analyzed differential gene expression in Z36-treated HeLa cells and found that Z36-induced endoplasmic reticulum-specific autophagy (ER-phagy) results in ER stress and the unfolded protein response (UPR). This result is in contrast to the common notion that autophagy is generally activated in response to ER stress and the UPR. We demonstrate that Z36 up-regulates the expression levels of FAM134B, LC3, and Atg9, which together mediate excessive ER-phagy, characterized by forming increased numbers of autophagosomes with larger sizes. We noted that the excessive ER-phagy accelerates ER degradation and impairs ER homeostasis and thereby triggers ER stress and the UPR as well as ER-phagy-dependent cell death. Interestingly, overexpression of FAM134B alone in HeLa cells is sufficient to impair ER homeostasis and cause ER stress and cell death. These findings suggest a mechanism involving FAM134B activity for ER-phagy to promote cell death.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Unfolded Protein Response , Adenine/analogs & derivatives , Adenine/pharmacology , Apoptosis/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , HeLa Cells , Humans , Indoles/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Unfolded Protein Response/drug effects , Up-Regulation/drug effects , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
9.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G733-G747, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33052704

ABSTRACT

Selective autophagy of the endoplasmic reticulum (ER), namely ER-phagy, is mediated by ER-localized receptors, which are recognized and sequestered by GABARAP/LC3B-decorated phagophores and transferred to lysosomes for degradation. Being one such receptor, FAM134B plays critical roles in cellular processes such as protein quality control and neuronal survival. FAM134B has also been associated with different cancers, although its exact role remains elusive. We report here that the FAM134B gene encodes not one but at least two different protein isoforms: the full-length and the NH2 terminally truncated forms. Their relative expression shows extreme variation, both within normal tissues and among cancer types. Expression of full-length FAM134B is restricted to the brain, testis, spleen, and prostate. In contrast, NH2 terminally truncated FAM134B is dominant in the heart, skeletal muscle, kidney, pancreas, and liver. We compared wild-type and knockout mice to study the role of the Fam134b gene in starvation. NH2 terminally truncated FAM134B-2 was induced in the liver, skeletal muscle, and heart but not in the pancreas and stomach following starvation. Upon starvation, Fam134b-/- mice differed from wild-type mice by less weight loss and less hyperaminoacidemic and hypocalcemic response but increased levels of serum albumin, total serum proteins, and α-amylase. Interestingly, either NH2 terminally truncated FAM134B or both isoforms were downregulated in liver, lung, and colon cancers. In contrast, upregulation was observed in stomach and chromophobe kidney cancers.NEW & NOTEWORTHY We reported tissues expressing FAM134B-2 such as the kidney, muscle, heart, and pancreas, some of which exhibit stimulated expression upon nutrient starvation. We also demonstrated the effect of Fam134b deletion during ad libitum and starvation conditions. Resistance to weight loss and hypocalcemia, accompanied by an increase in serum albumin and α-amylase levels, indicate critical roles of Fam134b in physiology. Furthermore, the differential expression of FAM134B isoforms was shown to be significantly dysregulated in human cancers.


Subject(s)
Intracellular Signaling Peptides and Proteins/biosynthesis , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Adult , Animals , Autophagy , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Isomerism , Male , Mice , Mice, Knockout , Starvation/metabolism , Tissue Distribution
10.
J Biomed Sci ; 27(1): 27, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31959174

ABSTRACT

Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKV-affected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/virology , Virus Replication/physiology , Zika Virus Infection/virology , Humans , Membrane Proteins/metabolism
11.
Cytometry A ; 95(6): 672-682, 2019 06.
Article in English | MEDLINE | ID: mdl-30451364

ABSTRACT

The mechanistic link between ER stress, autophagy, and resultant cell death was investigated by the use of drugs Thapsigargin (Tg) and Chloroquine (CQ) with prior induction and or blockade of autophagy and apoptosis which modulated the ER stress response and resultant form of cell death. All these biological processes can be measured flow cytometrically allowing the determination of the type of cell death, G1 cell cycle arrest, cell cycle dependent measurement of ER stress transducer PERK, misfolded proteins, reticulophagy, and autophagy marker LC3B. Jurkat cells after Tg or CQ treatment became necrotic and apoptotic, showed G1 cell cycle arrest, autophagy, and ER stress. Prior induction of autophagy before ER stress increased levels of necrotic and apoptotic cell death. Autophagy was further up-regulated, while PERK was reduced or abrogated. CQ showed reduced levels of misfolded proteins and reticulophagy, while Tg showed no change in misfolded protein levels but increased reticulophagy and thus displayed more ER stress. Prior blockade of apoptosis before induction of ER stress resulted in cell survival except with high Tg levels which induced necrosis. Autophagy was up-regulated with modulation of PERK and reticulophagy levels with an abrogation of the misfolded protein response. Blockade of apoptosis with induction of autophagy before ER stress showed death by necrosis with high dose drugs and cell survival with low doses of drugs. CQ induced reduced levels G1 cell cycle arrest while it was maintained with Tg. Autophagy was also maintained with reduced levels of ER stress. These data demonstrates a profound link between the processes of ER stress, autophagy, and the resultant form of cell death all of which can be modulated depending upon the sequence and concentration of drugs employed. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Unfolded Protein Response/drug effects , eIF-2 Kinase/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chloroquine/pharmacology , Endoplasmic Reticulum Stress/genetics , Flow Cytometry/methods , Fluorescent Antibody Technique , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/genetics , Humans , Jurkat Cells , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Necrosis/metabolism , Oligopeptides/pharmacology , Sirolimus/pharmacology , Thapsigargin/pharmacology , Unfolded Protein Response/genetics , eIF-2 Kinase/genetics
12.
Autophagy ; 20(1): 210-211, 2024 01.
Article in English | MEDLINE | ID: mdl-37651691

ABSTRACT

Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.Abbreviations: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.


Subject(s)
Autophagy , Endoplasmic Reticulum , Endoplasmic Reticulum/metabolism , Autophagosomes/metabolism , Endoplasmic Reticulum Stress , Carrier Proteins/metabolism , Microtubule-Associated Proteins/metabolism
13.
Autophagy ; 20(3): 712-713, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054642

ABSTRACT

Reticulophagy is a selective autophagy of the endoplasmic reticulum (ER) mediated by cargo receptors. It plays a crucial role in ER quality control, yet the mechanisms that initiate reticulophagy remain poorly understood. Our study identified the multifunctional protein UVRAG (UV radiation resistance associated gene) as a novel regulator of reticulophagy. UVRAG interacts with sheet and tubular reticulophagy receptors, regulates the oligomerization of receptors and facilitates their interaction with LC3/GABARAP, critical for ER fragmentation and autophagosome targeting. Remarkably, we found that UVRAG's function in reticulophagy initiation is independent of its traditional role in macroautophagy. Furthermore, UVRAG enhances the degradation of ER-associated mutant proteins linked to diseases like diabetes. Our findings offer insights into the mechanisms of reticulophagy initiation and highlight UVRAG's therapeutic potential in ER-related diseases.


Subject(s)
Autophagosomes , Autophagy , Autophagosomes/metabolism , Carrier Proteins/metabolism
14.
Autophagy ; 20(5): 1197-1198, 2024 May.
Article in English | MEDLINE | ID: mdl-38163952

ABSTRACT

Under stress conditions, the endoplasmic reticulum and nucleus undergo turnover through selective macroautophagy/autophagy processes termed reticulophagy and nucleophagy, respectively. Our recent study has identified the protein Hva22/Rop1/Yep1, a member of the REEP1-REEP4 subfamily of the REEP protein family, as an essential factor for both processes in the fission yeast Schizosaccharomyces pombe. In the absence of Hva22/Yep1, reticulophagy and nucleophagy cargos without surrounding autophagic membranes accumulate in the cytoplasm. Interestingly, human proteins in the REEP1-REEP4 subfamily can functionally substitute for Hva22/Yep1 to facilitate reticulophagy. Phylogenetic and synteny analyses further reveal that the budding yeast reticulophagy receptor Atg40 is also a REEP1-REEP4 subfamily member. Similar to human REEP1-REEP4 subfamily proteins, Atg40 can functionally replace Hva22/Yep1. Based on our findings, we propose that promoting reticulophagy is a conserved function of REEP1-REEP4 subfamily proteins.


Subject(s)
Autophagy , Schizosaccharomyces , Schizosaccharomyces/metabolism , Humans , Autophagy/physiology , Schizosaccharomyces pombe Proteins/metabolism , Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Macroautophagy/physiology
15.
Autophagy ; : 1-9, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818751

ABSTRACT

Reticulophagy is mediated by autophagy receptors that function in one of the two domains of the ER, tubules or flat sheets. Three different conserved mammalian receptors mediate autophagy in ER tubules: RTN3L, ATL3 and CALCOCO1. Previous studies have shown that RTN3L maintains proteostasis by targeting mutant aggregation-prone proteins for autophagy at distinct foci in ER tubules that we named ERPHS (ER-reticulophagy sites). The role for ATL3 and CALCOCO1 in proteostasis has not been addressed. Here we analyzed three different misfolded disease-causing RTN3L substrates and show that ATL3 and CALCOCO1 target the same cargoes for autophagy. Colocalization and knock down studies revealed that RTN3L and ATL3 are both required for the formation of RTN3L-containing ERPHS, while CALCOCO1 is not. We propose that RTN3L, ATL3 and CALCOCO1 work in parallel to maintain proteostasis within the ER network by targeting cargoes at different sites in the tubules.Abbreviation ATL3: atlastin GTPase 3; Baf: bafilomycin A1; CALCOCO1: calcium binding and coiled-coil domain 1; Epr1: ER-phagy receptor 1; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERPHS: ER-reticulophagy sites; LAMP1: lysosomal associated membrane protein 1; PGRMC1: progesterone receptor membrane component 1; POMC: proopiomelanocortin; Pro-AVP: pro-arginine vasopressin; RETREG1: reticulophagy regulator 1; reticulophagy: endoplasmic reticulum selective autophagy; RTN3L: reticulon 3 long isoform; VAPA: VAMP associated protein A.

16.
Autophagy ; : 1-2, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38963012

ABSTRACT

Reticulophagy, which directs the endoplasmic reticulum (ER) to the phagophore for sequestration within an autophagosome and subsequent lysosomal degradation via specific receptors, is essential for ER quality control and is implicated in various diseases. This study utilizes Drosophila to establish an in vivo model for reticulophagy. Starvation-induced reticulophagy is detected across multiple tissues in Drosophila. Whole-body upregulation or downregulation of the expression of reticulophagy receptors, atl and Rtnl1, negatively affects fly health. Notably, moderate upregulation of reticulophagy in neuronal tissues by overexpressing these receptors reduces age-related degeneration. In a Drosophila Alzheimer model expressing human APP (amyloid beta precursor protein), reticulophagy is compromised. Correcting reticulophagy by enhancing atl and Rtnl1 expression in the neurons promotes APP degradation, significantly reducing neurodegenerative symptoms. However, overexpression of mutated atl and Rtnl1, which disrupts the interaction of the corresponding proteins with Atg8, does not alleviate these symptoms, emphasizing the importance of receptor functionality. These findings support modulating reticulophagy as a therapeutic strategy for aging and neurodegenerative diseases associated with ER protein accumulation.

17.
Autophagy ; : 1-2, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38597191

ABSTRACT

Proteostasis of the endoplasmic reticulum (ER) is maintained by coordinated action of two major catabolic pathways: proteasome-dependent ER-associated degradation (ERAD) and less characterized lysosomal pathways. Recent studies on ER-specific autophagy (termed "reticulophagy") have highlighted the importance of lysosomes for ER proteostasis. Key to this process are proteins termed reticulophagy receptors that connect ER fragments and Atg8-family proteins, facilitating the lysosomal degradation of both native and aberrant ER proteins in a relatively nonselective manner. In contrast, our recent work identified TOLLIP as a novel type of cargo receptor specifically dedicated to the lysosomal degradation of aberrant ER membrane proteins. The clients of TOLLIP include an engineered model substrate, which mimics an ER-retained aberrant membrane protein, and motor neuron disease-linked misfolded mutants of VAPB and BSCL2/Seipin. TOLLIP acts as a receptor to connect these aberrant ER membrane proteins and phosphatidylinositol-3-phosphate (PtdIns3P) by recognizing the former through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain, and the latter through its C2 domain. These interactions enable PtdIns3P-dependent vesicular trafficking of aberrant membrane proteins to lysosomes without promoting reticulophagic turnover of bulk ER.

18.
Autophagy ; 20(6): 1457-1458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38348842

ABSTRACT

The lysosomal degradation of the endoplasmic reticulum (ER), known as "reticulophagy", is important for protein quality control and organelle turnover. Here we present a noncanonical reticulophagy occurring at ER exit sites (ERESs) induced by the misfolded SERPINA1/α1-antitrypsin (AAT) mutant, Z-AAT. The accumulation of Z-AAT arrests ER-to-Golgi transport, and recruits V-ATPase and ATG16L1 to mediate LC3C decoration of ERESs. Consequently, the receptor RETREG1/FAM134B-2 is recruited by lipidated LC3C to initiate reticulophagy. Furthermore, the blockade of ER export acts as a universal signal to activate reticulophagy mediated by the V-ATPase-ATG16L1-LC3C axis. This study sheds light on the mechanism of how ERESs switch from ER export to reticulophagy for quality control.


Subject(s)
Autophagy-Related Proteins , Endoplasmic Reticulum , Microtubule-Associated Proteins , Vacuolar Proton-Translocating ATPases , Endoplasmic Reticulum/metabolism , Humans , Autophagy-Related Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Golgi Apparatus/metabolism , Autophagy/physiology , alpha 1-Antitrypsin/metabolism , Animals , Membrane Proteins/metabolism , Lysosomes/metabolism , Macroautophagy/physiology , Signal Transduction , Intracellular Signaling Peptides and Proteins
19.
mBio ; 15(1): e0303023, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38078754

ABSTRACT

IMPORTANCE: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tragically claimed millions of lives through coronavirus disease 2019 (COVID-19), and there remains a critical gap in our understanding of the precise molecular mechanisms responsible for the associated fatality. One key viral factor of interest is the SARS-CoV-2 ORF3a protein, which has been identified as a potent inducer of host cellular proinflammatory responses capable of triggering the catastrophic cytokine storm, a primary contributor to COVID-19-related deaths. Moreover, ORF3a, much like the spike protein, exhibits a propensity for frequent mutations, with certain variants linked to the severity of COVID-19. Our previous research unveiled two distinct types of ORF3a mutant proteins, categorized by their subcellular localizations, setting the stage for a comparative investigation into the functional and mechanistic disparities between these two types of ORF3a variants. Given the clinical significance and functional implications of the natural ORF3a mutations, the findings of this study promise to provide invaluable insights into the potential roles undertaken by these mutant ORF3a proteins in the pathogenesis of COVID-19.


Subject(s)
COVID-19 , Endoplasmic Reticulum , SARS-CoV-2 , Viroporin Proteins , Humans , COVID-19/virology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Endoplasmic Reticulum-Associated Degradation , Mutant Proteins , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viroporin Proteins/genetics , Viroporin Proteins/metabolism
20.
Autophagy ; 19(7): 2015-2025, 2023 07.
Article in English | MEDLINE | ID: mdl-36625032

ABSTRACT

Macroautophagic/autophagic turnover of endoplasmic reticulum (reticulophagy) is critical for cell health. Herein we reported a sensitive fluorescence-on imaging of reticulophagy using a small molecule probe (ER-proRed) comprised of green-emissive fluorinated rhodol for ER targeting and nonfluorescent rhodamine-lactam prone to lysosome-triggered red fluorescence. Partitioned in ER to exhibit green fluorescence, ER-proRed gives intense red fluorescence upon co-delivery with ER into acidic lysosomes. Serving as the signal of reticulophagy, the turning on of red fluorescence enables discernment of reticulophagy induced by starvation, varied levels of reticulophagic receptors, and chemical agents such as etoposide and sodium butyrate. These results show ER probes optically activatable in lysosomes, such as ER-proRed, offer a sensitive and simplified tool for studying reticulophagy in biology and diseases.Abbreviations: Baf-A1, bafilomycin A1; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CQ, chloroquine diphosphate; ER, endoplasmic reticulum; FHR, fluorinated hydrophobic rhodol; GFP, green fluorescent protein; Reticulophagy, selective autophagy of ER; RFP, red fluorescent protein; ROX, X-rhodamine; UPR, unfolded protein response.


Subject(s)
Autophagy , Unfolded Protein Response , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Carrier Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL