Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Sci Technol ; 57(44): 16811-16822, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37880149

ABSTRACT

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant in the environment, which may evoke imperceptible effects in humans or wild animals. Hence in this study, zebrafish embryos were exposed to DBDPE (0, 0.1, 1, and 10 nM) until sexual maturity (F0), and F1 and F2 generations were cultured without further exposure to study the multi- and transgenerational toxicity and underlying mechanism. The growth showed sex-different changing profiles across three generations, and the social behavior confirmed transgenerational neurotoxicity in adult zebrafish upon life cycle exposure to DBDPE. Furthermore, maternal transfer of DBDPE was not detected, whereas parental transfer of neurotransmitters to zygotes was specifically disturbed in F1 and F2 offspring. A lack of changes in the F1 generation and opposite changing trends in the F0 and F2 generations were observed in a series of indicators for DNA damage, DNA methylation, and gene transcription. Taken together, life cycle exposure to DBDPE at environmentally relevant concentrations could induce transgenerational neurotoxicity in zebrafish. Our findings also highlighted potential impacts on wild gregarious fish, which would face higher risks from predators.


Subject(s)
Environmental Pollutants , Flame Retardants , Animals , Humans , Zebrafish/genetics , Bromobenzenes/toxicity , Life Cycle Stages , Flame Retardants/toxicity
2.
Environ Sci Technol ; 57(7): 2887-2897, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36779393

ABSTRACT

A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant; hence, the knowledge of its long-term toxic effects and underlying mechanism would be critical for further health risk assessment. In the present study, the multi- and transgenerational toxicity of DBDPE was investigated in zebrafish upon a life cycle exposure at environmentally relevant concentrations. The significantly increased malformation rate and declined survival rate specifically occurred in unexposed F2 larvae suggested transgenerational development toxicity by DBDPE. The changing profiles revealed by transcriptome and DNA methylome confirmed an increased susceptibility in F2 larvae and figured out potential disruptions of glycolipid metabolism, mitochondrial energy metabolism, and neurodevelopment. The changes of biochemical indicators such as ATP production confirmed a disturbance in the energy metabolism, whereas the alterations of neurotransmitter contents and light-dark stimulated behavior provided further evidence for multi- and transgenerational neurotoxicity in zebrafish. Our findings also highlighted the necessity for considering the long-term impacts when evaluating the health of wild animals as well as human beings by emerging pollutants.


Subject(s)
Environmental Pollutants , Flame Retardants , Humans , Animals , Zebrafish , Larva , Bromobenzenes/toxicity , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity
3.
Environ Sci Technol ; 57(30): 11043-11055, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37467077

ABSTRACT

Decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, is becoming increasingly prevalent in environmental and biota samples. While DBDPE has been shown to cause various biological adverse effects, the molecular mechanism behind these effects is still unclear. In this research, zebrafish embryos were exposed to DBDPE (50-400 µg/L) until 120 h post fertilization (hpf). The results confirmed the neurotoxicity by increased average swimming speed, interfered neurotransmitter contents, and transcription of neurodevelopment-related genes in zebrafish larvae. Metabolomics analysis revealed changes of metabolites primarily involved in glycolipid metabolism, oxidative phosphorylation, and oxidative stress, which were validated through the alterations of multiple biomarkers at various levels. We further evaluated the mitochondrial performance upon DBDPE exposure and found inhibited mitochondrial oxidative respiration accompanied by decreased mitochondrial respiratory chain complex activities, mitochondrial membrane potential, and ATP contents. However, addition of nicotinamide riboside could effectively restore DBDPE-induced mitochondrial impairments and resultant neurotoxicity, oxidative stress as well as glycolipid metabolism in zebrafish larvae. Taken together, our data suggest that mitochondrial dysfunction was involved in DBDPE-induced toxicity, providing novel insight into the toxic mechanisms of DBDPE as well as other emerging pollutants.


Subject(s)
Flame Retardants , Zebrafish , Animals , Larva , Bromobenzenes/pharmacology , Bromobenzenes/toxicity , Flame Retardants/toxicity , Mitochondria , Glycolipids/metabolism , Glycolipids/pharmacology
4.
Environ Sci Technol ; 57(48): 19419-19429, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37946494

ABSTRACT

Decabromodiphenyl ethane (DBDPE), a ubiquitous emerging pollutant, could be enriched in the liver of organisms, but its effects and mechanisms on liver development and regeneration remain largely unknown. In the present study, we first investigated the adverse effects on liver development and found decreased area and intensity of fluorescence in transgenic zebrafish larvae exposed to DBDPE; further results in wild-type zebrafish larvae revealed a possible mechanism involving disturbed MAPK/Fox O signaling pathways and cell cycle arrest as indicated by decreased transcription of growth arrest and DNA-damage-inducible beta a (gadd45ba). Subsequently, an obstructed recovery process of liver tissue after partial hepatectomy was characterized by the changing profiles of ventral lobe-to-intestine ratio in transgenic female adults upon DBDPE exposure; further results confirmed the adverse effects on liver regeneration by the alterations of the hepatic somatic index and proliferating cell nuclear antigen expression in wild-type female adults and also pointed out a potential role of a disturbed signaling pathway involving cell cycles and glycerolipid metabolism. Our results not only provided novel evidence for the hepatotoxicity and underlying mechanism of DBDPE but also were indicative of subsequent ecological and health risk assessment.


Subject(s)
Flame Retardants , Zebrafish , Animals , Female , Flame Retardants/toxicity , Bromobenzenes/metabolism , Bromobenzenes/toxicity , Liver/metabolism
5.
FASEB J ; 35(4): e21449, 2021 04.
Article in English | MEDLINE | ID: mdl-33724544

ABSTRACT

Decabromodiphenyl ethane (DBDPE) is a new brominated flame retardant and is widely added to flammable materials to prevent fire. Because it has been continuously detected in a variety of organisms and humans, it is important to reveal the biological toxicity of DBDPE. However, the influence of DBDPE for female reproduction is unclear. In this study, we investigated whether and how DBDPE exposure affects oocyte development. Female mice as a model were orally exposed to DBDPE by 0, 0.05, 0.5, 5, 50 µg/kg bw/day for 30 days (0.05 µg/kg bw/day is close to the environmental exposure concentration). We found that exposure of mice to DBDPE did not affect the first polar body extrusion (PBE) of oocytes. Strikingly, however, asymmetric division of oocytes was markedly impaired in 5 and 50 µg/kg bw/day DBDPE exposed group, which resulted in oocytes with larger polar bodies (PBs). Then, we further explored and found that DBDPE exposure inhibited the spindle migration and membrane protrusion in oocytes during anaphase of meiosis I (anaphase I), thereby impairing asymmetric division. Additionally, we found that DBDPE exposure suppressed the inactivation of cyclin-dependent kinase 1 (Cdk1), resulting in the decrease of cytoplasmic formin2 (FMN2)-mediated F-actin polymerization in oocytes at the onset of anaphase I. Simultaneously, DBDPE exposure damaged the structural integrity of the spindle and the perpendicular relationship between spindle and cortex. These together led to the failure of spindle migration and membrane protrusion required for oocytes asymmetric division. Finally, DBDPE exposure injured the development of blastocysts, leading to blastocyst apoptosis.


Subject(s)
Bromobenzenes/toxicity , CDC2 Protein Kinase/metabolism , Flame Retardants/toxicity , Meiosis/drug effects , Oocytes/drug effects , Animals , CDC2 Protein Kinase/genetics , Cell Cycle/drug effects , Female , Gene Expression Regulation/drug effects , Mice
6.
Environ Sci Technol ; 56(1): 470-479, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34919388

ABSTRACT

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a widespread environmental pollutant. However, the target tissue and toxicity of DBDPE are still not clear. In the current study, female zebrafish were exposed to 1 and 100 nM DBDPE for 28 days. Chemical analysis revealed that DBDPE tended to accumulate in the brain other than the liver and gonad. Subsequently, tandem mass tag-based quantitative proteomics and parallel reaction monitoring verification were performed to screen the differentially expressed proteins in the brain. Bioinformatics analysis revealed that DBDPE mainly affected the biological process related to muscle contraction and estrogenic response. Therefore, the neurotoxicity and reproductive disruptions were validated via multilevel toxicological endpoints. Specifically, locomotor behavioral changes proved the potency of neurotoxicity, which may be caused by disturbance of muscular proteins and calcium homeostasis; decreases of sex hormone levels and transcriptional changes of genes related to the hypothalamic-pituitary-gonad-liver axis confirmed reproductive disruptions upon DBDPE exposure. In summary, our results suggested that DBDPE primarily accumulated in the brain and evoked neurotoxicity and reproductive disruptions in female zebrafish. These findings can provide important clues for a further mechanism study and risk assessment of DBDPE.


Subject(s)
Flame Retardants , Zebrafish , Animals , Bromobenzenes/toxicity , Endocrine System , Environmental Monitoring , Female , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Muscle Contraction
7.
Biol Pharm Bull ; 44(1): 150-153, 2021.
Article in English | MEDLINE | ID: mdl-33390544

ABSTRACT

Bromobenzene (BB) is known to pose a serious threat to human health. We previously demonstrated that BB showed chronotoxicity, that is, daily fluctuations in the severity of hepatotoxicity induced in mice. Although BB showed mild nephrotoxicity, a daily fluctuation was not observed in this toxicity. This might be attributed to the fact that BB-induced chronotoxicity is observed only in the liver and not in the kidneys and that the damage caused by BB is prominent in the liver, masking the daily fluctuation in nephrotoxicity. To confirm these two possibilities, we examined the daily fluctuations in nephrotoxicity due to BB intermediate metabolites that target the kidneys: 3-bromophenol, bromohydroquinone, and 4-bromocatechol. Mice were injected with 3-bromophenol, bromohydroquinone, or 4-bromocatechol intraperitoneally at six different time points in a day (zeitgeber time (ZT): ZT2, ZT6, ZT10, ZT14, ZT18, or ZT22). Mortality was monitored for 7 d post-injection. Mice were more sensitive to the acute toxicity of these metabolites around at ZT14 (dark-phase) exposure than around at ZT2 (light-phase) exposure. Furthermore, mice administered with a non-lethal dose of 4-bromocatechol showed significant increases in the levels of plasma blood urea nitrogen and renal malondialdehyde at ZT14 exposure. Moreover, glutathione peroxidase-4, a ferroptosis indicator, was attenuated at ZT14 exposure. These results indicate the toxicity of BB metabolites was higher during the dark-phase exposure, and demonstrate the reason why the diurnal variation of nephrotoxicity by BB was not observed in our previous report is that renal damage was masked due to severe hepatic damage.


Subject(s)
Bromobenzenes/metabolism , Bromobenzenes/toxicity , Circadian Rhythm/drug effects , Kidney/drug effects , Kidney/metabolism , Animals , Chronobiology Phenomena/drug effects , Chronobiology Phenomena/physiology , Circadian Rhythm/physiology , Male , Mice , Mice, Inbred ICR
8.
Ecotoxicol Environ Saf ; 207: 111290, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32931969

ABSTRACT

Decabromodiphenyl ethane (DBDPE), a widely used new brominated flame retardant, is added into flammable materials to achieve fire retardation. As it is continuously detected in the environment, it has become an emerging environmental pollutant. However, the effects of DBDPE exposure on oocyte maturation and its underlying mechanisms remain unknown. This study found that DBDPE exposure inhibited the rate of germinal vesicle breakdown (GVBD), first polar body extrusion (PBE) and fertilization of mouse oocytes. After 14 h of exposure to DBDPE, metaphase II (MII) oocytes showed that the hardness of zona pellucida (ZP) markedly increased and that the spindle morphology was abnormal. Moreover, DBDPE exposure induced abnormal mitochondrial distribution, mitochondrial dysfunction, and ATP deficiency. Simultaneously, DBDPE exposure down-regulated the expression of antioxidant-related genes (Sod2, Gpx1) and increased the level of reactive oxygen species (ROS) in oocytes. The results of immunofluorescence and qRT-PCR revealed that autophagy occurred in DBDPE-treated oocytes with high expression of autophagy-related protein (LC3) and genes (Lc3, Beclin1). Meanwhile, DBDPE significantly up-regulated the protein (Bax) and mRNA (Bax, Caspase3) levels of pro-apoptosis genes. However, the protein and mRNA expression of anti-apoptosis genes Bcl-2 was dramatically down-regulated in DBDPE-exposed oocytes. Collectively, DBDPE exposure impaired mitochondrial function, causing oxidative damage, autophagy and apoptosis in oocytes.


Subject(s)
Bromobenzenes/toxicity , Flame Retardants/toxicity , Oocytes/drug effects , Oogenesis/drug effects , Oxidative Stress/drug effects , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Autophagy/drug effects , Female , In Vitro Techniques , Mice , Mitochondria/drug effects , Oocytes/metabolism , Oocytes/pathology , Oogenesis/genetics , Oxidation-Reduction , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
9.
Chem Res Toxicol ; 33(12): 3048-3053, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33283517

ABSTRACT

Bromobenzene is an industrial solvent that elicits toxicity predominantly in the liver. In this study, the hepatic concentrations of bromobenzene and its related compounds 1,2-dibromobenzene and 1,4-dibromobenzene in humanized-liver mice were predicted after single oral administrations by simplified physiologically based pharmacokinetic (PBPK) models that had been set up on experimental plasma concentrations after single oral doses of 100 mg/kg to rats and 100-250 mg/kg to control mice and humanized-liver mice. The output values by simplified PBPK models were consistent with measured blood substrate concentrations in rats, control mice, and humanized-liver mice with suitable input parameter values derived from in silico prediction and the literature or estimated by fitting the measured plasma substrate concentrations. The predicted time-dependent hepatic concentrations after virtual administrations in humanized-liver mice were partly confirmed with single measured hepatic concentrations of bromobenzene and 1,4-dibromobenzene 2 h after oral doses of 150-250 mg/kg to humanized-liver mice. Moreover, leaked human albumin mRNA, a marker of the extent of human hepatic injuries, in humanized-liver mouse plasma was detected after oral administration of bromobenzene, 1,2-dibromobenzene, and 1,4-dibromobenzene. These results suggest that dosimetry approaches for determining tissue and/or blood exposures of hepatic toxicants bromobenzene, 1,2-dibromobenzene, and 1,4-dibromobenzene in humanized-liver mice were useful after virtual oral doses using simplified PBPK models. Using simplified PBPK models and plasma data from humanized-liver mice has potential to predict and evaluate the hepatic toxicity of bromobenzenes and related compounds in humanized-liver mice and in humans.


Subject(s)
Bromobenzenes/pharmacokinetics , Disease Models, Animal , Models, Biological , Administration, Oral , Animals , Bromobenzenes/analysis , Bromobenzenes/toxicity , Male , Mice , Mice, Transgenic
10.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158035

ABSTRACT

Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity.


Subject(s)
Amino Acids/metabolism , Chemical and Drug Induced Liver Injury/diagnosis , Hazardous Substances/pharmacology , Lipid Metabolism/drug effects , Metabolome/drug effects , Acetaminophen/pharmacology , Acetaminophen/toxicity , Acute Disease , Animals , Biomarkers/analysis , Biomarkers/metabolism , Bromobenzenes/pharmacology , Bromobenzenes/toxicity , Carbon Tetrachloride/pharmacology , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Gene Expression Profiling , Hazardous Substances/toxicity , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Metabolomics , Prognosis , Rats , Rats, Sprague-Dawley , Transcriptome/drug effects
11.
J Appl Biomed ; 18(2-3): 87-95, 2020 Aug.
Article in English | MEDLINE | ID: mdl-34907730

ABSTRACT

Bromobenzene is a compound which has contributed much in understanding the mechanisms involved in xenobiotic hepatotoxicity induced by drugs and environment pollutants. In the present study, the protective and ameliorative effect of beta-carotene was investigated against bromobenzene-induced hepatotoxicity and compared with silymarin, a standard hepatoprotective reference drug. Beta-carotene (10 mg/kg b.w. p.o.) was administered to the rats for 9 days before intragastric intubation of bromobenzene (10 mmol/kg b.w.). Liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase), total protein content, bilirubin, total cholesterol, high-density lipoproteins, triglycerides, antioxidant status (reduced glutathione, superoxide dismutase, catalase, glutathione-S-transferase and glutathione peroxidase) were assessed along with histopathological analysis. ELISA was performed for analysing the levels of cytokines such as TNF-α, IL-1ß and IL-6 in serum and in the liver. Caspase-3, COX-2 and NF-κB were evaluated by Western blotting. Administration of bromobenzene resulted in elevated levels of liver marker enzymes, bilirubin, lipid peroxidation and cytokines but deterioration in total protein content, antioxidant levels and histopathological conditions. Pre-treatment with beta-carotene not only significantly decreased the levels of liver markers, lipid peroxidation and cytokines but also improved histo-architecture and increased antioxidant levels minimising oxidative stress, and reduced factors contributing to apoptosis. This significant reversal of the biochemical changes on pre-treatment with beta-carotene in comparison with rats administered with bromobenzene clearly demonstrates that beta-carotene possesses promising hepatoprotective effect through its antioxidant, anti-inflammatory and antiapoptotic activity and hence is suggested as a potential therapeutic agent for protection from bromobenzene.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , beta Carotene , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Bilirubin/pharmacology , Bromobenzenes/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Cytokines/metabolism , Female , Protective Agents/pharmacology , Rats , Rats, Wistar , beta Carotene/chemistry , beta Carotene/pharmacology
12.
Ecotoxicol Environ Saf ; 179: 151-159, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31035249

ABSTRACT

Tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTPBE) are both brominated flame retardants (BFRs) that have been detected in birds; however, their potential biological effects are largely unknown. We assessed the effects of embryonic exposure to TBBPA-BDBPE and BTBPE in a model avian predator, the American kestrel (Falco sparverius). Fertile eggs from a captive population of kestrels were injected on embryonic day 5 (ED5) with a vehicle control or one of three doses within the range of concentrations that have been detected in biota (nominal concentrations of 0, 10, 50 or 100 ng/g egg; measured concentrations 0, 3.0, 13.7 or 33.5 ng TBBPA-BDBPE/g egg and 0, 5.3, 26.8 or 58.1 ng BTBPE/g egg). Eggs were artificially incubated until hatching (ED28), at which point blood and tissues were collected to measure morphological and physiological endpoints, including organ somatic indices, circulating and glandular thyroid hormone concentrations, thyroid gland histology, hepatic deiodinase activity, and markers of oxidative stress. Neither compound had any effects on embryo survival through 90% of the incubation period or on hatching success, body mass, organ size, or oxidative stress of hatchlings. There was evidence of sex-specific effects in the thyroid system responses to the BTBPE exposures, with type 2 deiodinase (D2) activity decreasing at higher doses in female, but not in male hatchlings, suggesting that females may be more sensitive to BTBPE. However, there were no effects of TBBPA-BDBPE on the thyroid system in kestrels. For the BTPBE study, a subset of high-dose eggs was collected throughout the incubation period to measure changes in BTBPE concentrations. There was no decrease in BTBPE over the incubation period, suggesting that BTBPE is slowly metabolized by kestrel embryos throughout their ∼28-d development. These two compounds, therefore, do not appear to be particularly toxic to embryos of the American kestrel.


Subject(s)
Bromobenzenes/toxicity , Embryonic Development/drug effects , Environmental Pollutants/toxicity , Falconiformes/growth & development , Flame Retardants/toxicity , Ovum/drug effects , Polybrominated Biphenyls/toxicity , Animals , Dose-Response Relationship, Drug , Embryonic Development/physiology , Falconiformes/metabolism , Female , Iodide Peroxidase/metabolism , Liver/drug effects , Liver/enzymology , Male , Organ Size/drug effects , Ovum/metabolism , Oxidative Stress/drug effects , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyroid Hormones/metabolism
13.
Ecotoxicol Environ Saf ; 174: 224-235, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30844666

ABSTRACT

In recent years, decabromodiphenyl ethane (DBDPE), a new alternative flame retardant to the decabrominated diphenyl ethers (BDE-209), is widely used in a variety of products. Previous studies have indicated that DBDPE, like BDE-209, could disrupt thyroid function. However, compared with BDE-209, the degrees of thyrotoxicosis induced by DBDPE were not clear. In addition, the mechanism of thyrotoxicosis induced by DBDPE or BDE-209 was still under further investigation. In this study, male rats as a model were orally exposed to DBDPE or BDE-209 by 5, 50, 500 mg/kg bw/day for 28 days. Then, we assessed the thyrotoxicosis of DBDPE versus BDE-209 and explored the mechanisms of DBDPE and BDE-209-induced thyrotoxicosis. Results showed that decreased free triiodothyronine (FT3) and increased thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) in serum were observed in both 500 mg/kg bw/day BDE-209 and DBDPE group. Decreased total thyroxine (TT4), total T3 (TT3), and free T4 (FT4) were only observed in BDE-209 group but not in DBDPE group. Histological examination and transmission electron microscope examination showed that high level exposure to BDE-209 and DBDPE both caused significant changes in histological structure and ultrastructure of the thyroid gland. Additionally, oxidative damages of thyroid gland (decreased SOD and GSH activities, and increased MDA content) were also observed in both BDE-209 and DBDPE groups. TG contents in the thyroid gland was reduced in BDE-209 group but not in DBDPE group. Both BDE-209 and DBDPE affected the expression of hypothalamic-pituitary-thyroid (HPT) axis related genes. These findings suggested that both BDE-209 and DBDPE exposure could disrupt thyroid function in the direction of hypothyroidism and the underlying mechanism was likely to be oxidative stress and perturbations of HPT axis. However, DBDPE was found to be less toxic than BDE-209.


Subject(s)
Bromobenzenes/toxicity , Endocrine Disruptors/toxicity , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Thyroid Gland/drug effects , Animals , Dose-Response Relationship, Drug , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Male , Oxidative Stress/drug effects , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Pituitary Gland/pathology , Rats , Rats, Sprague-Dawley , Thyroid Gland/metabolism , Thyroid Gland/ultrastructure , Thyrotropin/blood , Thyrotropin-Releasing Hormone/blood , Triiodothyronine/blood
14.
Toxicol Pathol ; 46(2): 202-223, 2018 02.
Article in English | MEDLINE | ID: mdl-29378501

ABSTRACT

The past decade has seen an increase in the development and clinical use of biomarkers associated with histological features of liver disease. Here, we conduct a comparative histological and global proteomics analysis to identify coregulated modules of proteins in the progression of hepatic steatosis or fibrosis. We orally administered the reference chemicals bromobenzene (BB) or 4,4'-methylenedianiline (4,4'-MDA) to male Sprague-Dawley rats for either 1 single administration or 5 consecutive daily doses. Livers were preserved for histopathology and global proteomics assessment. Analysis of liver sections confirmed a dose- and time-dependent increase in frequency and severity of histopathological features indicative of lipid accumulation after BB or fibrosis after 4,4'-MDA. BB administration resulted in a dose-dependent increase in the frequency and severity of inflammation and vacuolation. 4,4'-MDA administration resulted in a dose-dependent increase in the frequency and severity of periportal collagen accumulation and inflammation. Pathway analysis identified a time-dependent enrichment of biological processes associated with steatogenic or fibrogenic initiating events, cellular functions, and toxicological states. Differentially expressed protein modules were consistent with the observed histology, placing physiologically linked protein networks into context of the disease process. This study demonstrates the potential for protein modules to provide mechanistic links between initiating events and histopathological outcomes.


Subject(s)
Biomarkers/analysis , Fatty Liver/metabolism , Liver Cirrhosis/metabolism , Proteomics/methods , Administration, Oral , Aniline Compounds/toxicity , Animals , Bromobenzenes/toxicity , Fatty Liver/chemically induced , Liver/drug effects , Liver/pathology , Liver Cirrhosis/chemically induced , Male , Rats , Rats, Sprague-Dawley
15.
Biomed Environ Sci ; 31(1): 12-22, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29409581

ABSTRACT

OBJECTIVE: This study aimed to evaluate the hepatotoxicity, metabolic disturbance activity and endocrine disrupting activity of mice treated by Decabromodiphenyl ethane (DBDPE). METHODS: In this study, Balb/C mice were treated orally by gavage with various doses of DBDPE. After 30 days of treatment, mice were sacrificed; blood, livers and thyroid glands were obtained, and hepatic microsomes were isolated. Biochemical parameters including 8 clinical chemistry parameters, blood glucose and hormone levels including insulin and thyroid hormone were assayed. The effects of DBDPE on hepatic cytochrome P450 (CYP) levels and activities and uridinediphosphate-glucuronosyltransferase (UDPGT) activities were investigated. Liver and thyroid glands were observed. RESULTS: There were no obvious signs of toxicity and no significant treatment effect on body weight, or liver-to-body weight ratios between treatment groups. The levels of ALT and AST of higher dose treatment groups were markedly increased. Blood glucose levels of treatment groups were higher than those of control group. There was also an induction in TSH, T3, and fT3. UDPGT, PROD, and EROD activities were found to have been increased significantly in the high dose group. Histopathologic liver changes were characterized by hepatocyte hypertrophy and cytoplasmic vacuolization. Our findings suggest that DBDPE can cause a certain degree of mouse liver damage and insufficiency. CONCLUSION: DBDPE has the activity of endocrine disruptors in Bal/C mice, which may induce drug-metabolizing enzymes including CYPs and UDPGT, and interfere with thyroid hormone levels mediated by AhR and CAR signaling pathways. Endocrine disrupting activity of DBDPE could also affect the glucose metabolism homeostasis.


Subject(s)
Bromobenzenes/toxicity , Diet , Endocrine Disruptors/toxicity , Administration, Oral , Animal Feed , Animals , Blood Glucose , Body Weight/drug effects , Bromobenzenes/administration & dosage , Dose-Response Relationship, Drug , Endocrine Disruptors/administration & dosage , Environmental Pollutants/administration & dosage , Environmental Pollutants/toxicity , Female , Flame Retardants , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Organ Size/drug effects
16.
Zhonghua Yu Fang Yi Xue Za Zhi ; 52(8): 855-861, 2018 Aug 06.
Article in Zh | MEDLINE | ID: mdl-30107722

ABSTRACT

Decabromodiphenyl ethane (DBDPE) is a kind of new brominated flame retardants, which is widely used as a replace of decabromodiphenyl ether in electronic appliances, textiles and other goods. This review summarizes environmental levels and body burden of human beings of DBDPE in recent years. The data shows that the concentration of DBDPE in the environment and human tissues shows an upward trend. According to limited experiments about its toxicity, DBDPE shows similar toxicity to decabromodiphenyl ether. DBDPE can interfere thyroid hormones balance, and cause damage to liver, reproductive development, kidney, et al, which implies that DBDPE might be another new persistent organic pollutant. Further researches are needed.


Subject(s)
Bromobenzenes/toxicity , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Flame Retardants , Humans
17.
Arch Toxicol ; 91(5): 2045-2065, 2017 May.
Article in English | MEDLINE | ID: mdl-27928627

ABSTRACT

There is increasing interest in the use of quantitative transcriptomic data to determine benchmark dose (BMD) and estimate a point of departure (POD) for human health risk assessment. Although studies have shown that transcriptional PODs correlate with those derived from apical endpoint changes, there is no consensus on the process used to derive a transcriptional POD. Specifically, the subsets of informative genes that produce BMDs that best approximate the doses at which adverse apical effects occur have not been defined. To determine the best way to select predictive groups of genes, we used published microarray data from dose-response studies on six chemicals in rats exposed orally for 5, 14, 28, and 90 days. We evaluated eight approaches for selecting genes for POD derivation and three previously proposed approaches (the lowest pathway BMD, and the mean and median BMD of all genes). The relationship between transcriptional BMDs derived using these 11 approaches and PODs derived from apical data that might be used in chemical risk assessment was examined. Transcriptional BMD values for all 11 approaches were remarkably aligned with corresponding apical PODs, with the vast majority of toxicogenomics PODs being within tenfold of those derived from apical endpoints. We identified at least four approaches that produce BMDs that are effective estimates of apical PODs across multiple sampling time points. Our results support that a variety of approaches can be used to derive reproducible transcriptional PODs that are consistent with PODs produced from traditional methods for chemical risk assessment.


Subject(s)
Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Risk Assessment/methods , Toxicogenetics/methods , Animals , Bromobenzenes/administration & dosage , Bromobenzenes/toxicity , Chlorophenols/administration & dosage , Chlorophenols/toxicity , Female , Humans , Male , Nitrosamines/administration & dosage , Nitrosamines/toxicity , Rats, Inbred F344 , Rats, Sprague-Dawley , Transcriptome
18.
J Environ Sci (China) ; 62: 11-21, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289282

ABSTRACT

Alternative brominated flame retardants (BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers (PBDEs). For risk assessment of these alternatives, knowledge of their metabolism via cytochrome P450 enzymes is needed. We have previously proved that density functional theory (DFT) is able to predict the metabolism of PBDEs by revealing the molecular mechanisms. In the current study, the reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane and structurally similar chemicals with the Compound I model representing the active site of P450 enzymes was investigated. The DFT calculations delineated reaction pathways which lead to reasonable explanations for products that were detected by wet experiments, meanwhile intermediates which cannot be determined were also proposed. Results showed that alkyl hydrogen abstraction will lead to bis(2,4,6-tribromophenoxy)ethanol, which may undergo hydrolysis yielding 2,4,6-tribromophenol, a neurotoxic compound. In addition, a general pattern of oxidation reactivity regarding the 2,4,6-tribromophenyl moiety was observed among several model compounds. Our study has provided insights for convenient evaluation of the metabolism of other structurally similar BFRs.


Subject(s)
Bromobenzenes/toxicity , Cytochrome P-450 Enzyme System/metabolism , Flame Retardants/toxicity , Toxicity Tests/methods , Models, Chemical , Oxidation-Reduction
19.
Cell Biol Toxicol ; 32(5): 373-90, 2016 10.
Article in English | MEDLINE | ID: mdl-27250656

ABSTRACT

Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1ß) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.


Subject(s)
Bromobenzenes/toxicity , Kidney/drug effects , Liver/drug effects , Mitochondria/drug effects , Withanolides/pharmacology , Animals , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Female , Inflammation/chemically induced , Inflammation/prevention & control , Interleukin-1beta/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Lipid Peroxidation/drug effects , Male , Mice , Mitochondria/physiology , Oxidants/pharmacology , Oxidative Stress/drug effects , Random Allocation , Tumor Necrosis Factor-alpha/metabolism
20.
J Environ Sci (China) ; 44: 69-75, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27266303

ABSTRACT

Grass carp (Ctenopharyngodon idella) is one of the most important species in China. Decabromodiphenyl ethane (DBDPE) is a brominated flame retardant that has been used widely in industry, and has been observed to accumulate in the tissues of fish from South China. Evidence has shown that DBDPE is toxic to aquatic animals, but the molecular response has been unclear. MicroRNAs (miRNAs) are small noncoding and negative regulatory RNAs that are 20-24 nucleotides in length, which are involved in a wide range of biological processes. We took advantage of deep-sequencing techniques to accurately and comprehensively profile the kidney miRNA expression of grass carp after 8weeks of oral exposure to DBDPE. After mapping sequencing data to the genome and Expressed Sequence Tags (ESTs) of grass carp, we identified 493 miRNAs in the sequenced grass carp samples, which included 51 new miRNAs. The results indicated that 5 miRNAs were significantly down-regulated and 36 miRNAs were significantly up-regulated (FDR<0.001, 1.5-fold change) after DBDPE exposure. Real-time quantitative PCR (RT-qPCR) was performed on 4 miRNAs from the two samples, and the sequencing and RT-qPCR data were consistent. This study provides the first comprehensive identification of grass carp miRNAs, and the first expression analysis of grass carp miRNAs following DBDPE exposure. The results indicated that miRNAs have potential for use as biomarkers.


Subject(s)
Bromobenzenes/toxicity , Kidney/metabolism , MicroRNAs/metabolism , Water Pollutants, Chemical/toxicity , Animals , Carps , China , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction , Toxicity Tests, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL