Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 690
Filter
Add more filters

Publication year range
1.
Mol Cell ; 79(5): 812-823.e4, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32668201

ABSTRACT

Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.


Subject(s)
DNA/chemistry , E1A-Associated p300 Protein/metabolism , Nuclear Receptor Coactivator 3/metabolism , Receptors, Androgen/metabolism , Cryoelectron Microscopy , DNA/metabolism , E1A-Associated p300 Protein/chemistry , HEK293 Cells , Humans , Nuclear Receptor Coactivator 3/chemistry , Nucleic Acid Conformation , Protein Conformation , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
2.
Mol Cell ; 70(4): 679-694.e7, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29775582

ABSTRACT

Enhancers are thought to activate transcription by physically contacting promoters via looping. However, direct assays demonstrating these contacts are required to mechanistically verify such cellular determinants of enhancer function. Here, we present versatile cell-free assays to further determine the role of enhancer-promoter contacts (EPCs). We demonstrate that EPC is linked to mutually stimulatory transcription at the enhancer and promoter in vitro. SRC-3 was identified as a critical looping determinant for the estradiol-(E2)-regulated GREB1 locus. Surprisingly, the GREB1 enhancer and promoter contact two internal gene body SRC-3 binding sites, GBS1 and GBS2, which stimulate their transcription. Utilizing time-course 3C assays, we uncovered SRC-3-dependent dynamic chromatin interactions involving the enhancer, promoter, GBS1, and GBS2. Collectively, these data suggest that the enhancer and promoter remain "poised" for transcription via their contacts with GBS1 and GBS2. Upon E2 induction, GBS1 and GBS2 disengage from the enhancer, allowing direct EPC for active transcription.


Subject(s)
Breast Neoplasms/genetics , Chromatin/metabolism , Estrogens/pharmacology , Gene Expression Regulation, Neoplastic , Nuclear Receptor Coactivator 3/metabolism , Transcription, Genetic , Binding Sites , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chromatin/genetics , Enhancer Elements, Genetic , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , Nuclear Receptor Coactivator 3/genetics , Promoter Regions, Genetic , Protein Binding , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 120(23): e2221707120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37253006

ABSTRACT

Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Nuclear Receptor Coactivator 3 , Animals , Female , Male , Mice , Ligands , Mice, Knockout , Nuclear Receptor Coactivator 3/genetics , T-Lymphocytes, Regulatory , Tamoxifen/pharmacology
4.
Mol Cell ; 67(5): 733-743.e4, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28844863

ABSTRACT

Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , E1A-Associated p300 Protein/metabolism , Estrogen Receptor alpha/metabolism , Guanylate Cyclase/metabolism , Nuclear Receptor Coactivator 3/metabolism , Transcription, Genetic , Acetylation , Binding Sites , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/genetics , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/genetics , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Guanylate Cyclase/chemistry , Guanylate Cyclase/genetics , HEK293 Cells , HeLa Cells , Histones/chemistry , Histones/metabolism , Humans , MCF-7 Cells , Methylation , Models, Molecular , Multiprotein Complexes , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Receptor Coactivator 3/chemistry , Nuclear Receptor Coactivator 3/genetics , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Time Factors , Transcription Factors , Transcriptional Activation , Transfection
5.
Genes Dev ; 31(15): 1535-1548, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28887413

ABSTRACT

Although many features of active transcriptional enhancers have been defined by genomic assays, we lack a clear understanding of the order of events leading to enhancer formation and activation as well as the dynamics of coregulator interactions within the enhancer complex. Here, we used selective loss- or gain-of-function mutants of estrogen receptor α (ERα) to define two distinct phases of ligand-dependent enhancer formation. In the first phase (0-20 min), p300 is recruited to ERα by Mediator as well as p300's acetylhistone-binding bromodomain to promote initial enhancer formation, which is not competent for sustained activation. In the second phase (20-45 min), p300 is recruited to ERα by steroid receptor coregulators (SRCs) for enhancer maturation and maintenance. Successful transition between these two phases ("coregulator switching") is required for proper enhancer function. Failure to recruit p300 during either phase leads to abortive enhancer formation and a lack of target gene expression. Our results reveal an ordered and cooperative assembly of ERα enhancers requiring functional interplay among p300, Mediator, and SRCs, which has implications for hormone-dependent gene regulation in breast cancers. More broadly, our results demonstrate the unexpectedly dynamic nature of coregulator interactions within enhancer complexes, which are likely to be a defining feature of all enhancers.


Subject(s)
Breast Neoplasms/genetics , E1A-Associated p300 Protein/metabolism , Enhancer Elements, Genetic , Estrogen Receptor alpha/genetics , Estrogens/metabolism , Nuclear Receptor Coactivator 2/metabolism , Nuclear Receptor Coactivator 3/metabolism , Chromatin/metabolism , E1A-Associated p300 Protein/genetics , Estradiol/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mediator Complex/metabolism , Nuclear Proteins/metabolism , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 3/genetics , Statistics, Nonparametric , Transcription, Genetic
6.
EMBO J ; 39(5): e102541, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31975428

ABSTRACT

UHMK1 is a nuclear serine/threonine kinase recently implicated in carcinogenesis. However, the functions and action mechanisms of UHMK1 in the pathogenesis of human gastric cancer (GC) are unclear. Here, we observed that UHMK1 was markedly upregulated in GC. UHMK1 silencing strongly inhibited GC aggressiveness. Interestingly, UHMK1-induced GC progression was mediated primarily via enhancing de novo purine synthesis because inhibiting purine synthesis reversed the effects of UHMK1 overexpression. Mechanistically, UHMK1 activated ATF4, an important transcription factor in nucleotide synthesis, by phosphorylating NCOA3 at Ser (S) 1062 and Thr (T) 1067. This event significantly enhanced the binding of NCOA3 to ATF4 and the expression of purine metabolism-associated target genes. Conversely, deficient phosphorylation of NCOA3 at S1062/T1067 significantly abrogated the function of UHMK1 in GC development. Clinically, Helicobacter pylori and GC-associated UHMK1 mutation induced NCOA3-S1062/T1067 phosphorylation and enhanced the activity of ATF4 and UHMK1. Importantly, the level of UHMK1 was significantly correlated with the level of phospho-NCOA3 (S1062/T1067) in human GC specimens. Collectively, these results show that the UHMK1-activated de novo purine synthesis pathway significantly promotes GC development.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Receptor Coactivator 3/metabolism , Nucleotides/metabolism , Protein Serine-Threonine Kinases/metabolism , Stomach Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred BALB C , Nuclear Receptor Coactivator 3/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Stomach/pathology , Stomach Neoplasms/pathology , Up-Regulation
7.
Nature ; 556(7700): 249-254, 2018 04.
Article in English | MEDLINE | ID: mdl-29615789

ABSTRACT

Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Nuclear Receptor Coactivator 3/metabolism , Phosphofructokinase-2/metabolism , Transcriptional Activation , Activating Transcription Factor 4/metabolism , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Glycolysis , Humans , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Neoplasm Metastasis , Pentose Phosphate Pathway , Phosphorylation , Phosphoserine/metabolism , Prognosis , Purines/biosynthesis , Purines/metabolism , RNA Interference , Receptors, Estrogen/metabolism , Transketolase/metabolism , Xenograft Model Antitumor Assays
8.
Hum Mol Genet ; 29(22): 3691-3705, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33326993

ABSTRACT

Hearing loss is a frequent sensory impairment in humans and genetic factors account for an elevated fraction of the cases. We have investigated a large family of five generations, with 15 reported individuals presenting non-syndromic, sensorineural, bilateral and progressive hearing loss, segregating as an autosomal dominant condition. Linkage analysis, using SNP-array and selected microsatellites, identified a region of near 13 cM in chromosome 20 as the best candidate to harbour the causative mutation. After exome sequencing and filtering of variants, only one predicted deleterious variant in the NCOA3 gene (NM_181659, c.2810C > G; p.Ser937Cys) fit in with our linkage data. RT-PCR, immunostaining and in situ hybridization showed expression of ncoa3 in the inner ear of mice and zebrafish. We generated a stable homozygous zebrafish mutant line using the CRISPR/Cas9 system. ncoa3-/- did not display any major morphological abnormalities in the ear, however, anterior macular hair cells showed altered orientation. Surprisingly, chondrocytes forming the ear cartilage showed abnormal behaviour in ncoa3-/-, detaching from their location, invading the ear canal and blocking the cristae. Adult mutants displayed accumulation of denser material wrapping the otoliths of ncoa3-/- and increased bone mineral density. Altered zebrafish swimming behaviour corroborates a potential role of ncoa3 in hearing loss. In conclusion, we identified a potential candidate gene to explain hereditary hearing loss, and our functional analyses suggest subtle and abnormal skeletal behaviour as mechanisms involved in the pathogenesis of progressive sensory function impairment.


Subject(s)
Deafness/genetics , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/genetics , Nuclear Receptor Coactivator 3/genetics , Adult , Animals , Deafness/pathology , Disease Models, Animal , Ear, Inner/metabolism , Ear, Inner/pathology , Exome/genetics , Gene Expression Regulation, Developmental/genetics , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/pathology , Humans , Male , Mice , Pedigree , Exome Sequencing , Zebrafish/genetics
9.
Cytokine ; 161: 156074, 2023 01.
Article in English | MEDLINE | ID: mdl-36323191

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disorder in which the immune system mistakenly attacks joints. The molecular mechanisms underlying RA pathology are still under investigation. In this study, we discovered overexpression of nuclear receptor coactivator 3 (NCOA3) in the joint tissues of type II collagen-induced arthritis (CIA) mice, an important autoimmune model of human RA. Administration of two NCOA3 inhibitors, gossypol (GSP) and SI-2 hydrochloride (SHC), significantly alleviated inflammation and improved the outcomes of CIA mice. In vivo and in vitro experiments revealed that NCOA3 assembled a transcriptional complex with a histone acetyltransferase p300 and two subunits of nuclear factor kappa B (NF-κB). This complex specifically controlled the expression of proinflammatory cytokine genes by binding to their promoters. Knockdown of NCOA3 or in vitro treatments with GSP and SHC impaired the assembly of NCOA3-p300-NF-κB complex and decreased the expression of proinflammatory cytokine genes. Taken together, our results demonstrated that NCOA3 acts as a mediator of proinflammatory cytokine genes in CIA mice and that inhibition of the NCOA3-p300-NF-κB complex may represent a new avenue for improving RA outcomes.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Nuclear Receptor Coactivator 3 , Animals , Humans , Mice , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Nuclear Receptor Coactivator 3/genetics , Nuclear Receptor Coactivator 3/metabolism
10.
Histopathology ; 83(1): 57-66, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36860189

ABSTRACT

AIMS: Angiofibroma of soft tissue (AFST) is a benign tumour characterised by prominent arborizing blood vessels throughout the lesion. Approximately two-thirds of AFST cases were reported to have AHRR::NCOA2 fusion, and only two cases have been reported to have other gene fusions: GTF2I::NCOA2 or GAB1::ABL1. Although AFST is included in fibroblastic and myofibroblastic tumours in the World Health Organization's 2020 classification, histiocytic markers, especially CD163, have been reported to be positive in almost all examined cases, and it still remains the possibility of a fibrohistiocytic nature of the tumour. Therefore, we aimed to clarify the genetic and pathological spectrum of AFST and identify whether histiocytic marker-positive cells were true neoplastic cells. METHODS AND RESULTS: We evaluated 12 AFST cases, which included 10 cases with AHRR::NCOA2 and two with AHRR::NCOA3 fusions. Pathologically, nuclear palisading, which has not been reported in AFST, was detected in two cases. Furthermore, one tumour resected by additional wide resection revealed severe infiltrative growth. Immunohistochemical analysis indicated varying levels of desmin-positive cells in nine cases, whereas CD163- and CD68-positive cells were diffusely distributed in all 12 cases. We also performed double immunofluorescence staining and immunofluorescence in situ hybridisation in four resected cases with >10% desmin-positive tumour cells. The results suggested that the CD163-positive cells differed from desmin-positive cells with AHRR::NCOA2 fusion in all four cases. CONCLUSION: Our findings suggested that AHRR::NCOA3 could be the second most frequent fusion gene, and histiocytic marker-positive cells are not genuine neoplastic cells in AFST.


Subject(s)
Angiofibroma , Head and Neck Neoplasms , Soft Tissue Neoplasms , Humans , Angiofibroma/genetics , Angiofibroma/pathology , Desmin , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , In Situ Hybridization , Gene Fusion , Nuclear Receptor Coactivator 3/genetics , Repressor Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors
11.
BMC Gastroenterol ; 23(1): 18, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658474

ABSTRACT

BACKGROUND: Increasing research indicates that circular RNAs (circRNAs) play critical roles in the development of ulcerative colitis (UC). This study aimed to determine the role of circRNA CCND1 in UC bio-progression, which has been shown to be downregulated in UC tissues. METHODS: Reverse transcription quantitative polymerase chain reaction was used to determine the levels of circRNA CCND1, miR-142-5p, and nuclear receptor coactivator-3 (NCOA3) in UC tissues and in lipopolysaccharide (LPS)-induced Caco-2 cells. Target sites of circRNA CCND1 and miR-142-5p were predicted using StarBase, and TargetScan to forecast potential linkage points of NCOA3 and miR-142-5p, which were confirmed by a double luciferase reporter-gene assay. Cell Counting Kit 8 and flow cytometry assays were performed to assess Caco-2 cell viability and apoptosis. TNF-α, IL-1ß, IL-6, and IL-8 were detected using Enzyme-Linked Immunosorbent Assay kits. RESULTS: CircRNA CCND1 was downregulated in UC clinical samples and LPS-induced Caco-2 cells. In addition, circRNA CCND1 overexpression suppressed LPS-induced apoptosis and inflammatory responses in Caco-2 cells. Dual-luciferase reporter-gene assays showed that miR-142-5p could be linked to circRNA CCND1. Moreover, miR-142-5p was found to be highly expressed in UC, and its silencing inhibited LPS-stimulated Caco-2 cell apoptosis and inflammatory responses. Importantly, NCOA3 was found downstream of miR-142-5p. Overexpression of miR-142-5p reversed the inhibitory effect of circRNA CCND1-plasmid on LPS-stimulated Caco-2 cells, and the effects of miR-142-5p inhibitor were reversed by si-NCOA3. CONCLUSION: CircRNA CCND1 is involved in UC development by dampening miR-142-5p function, and may represent a novel approach for treating UC patients.


Subject(s)
Colitis, Ulcerative , MicroRNAs , Humans , RNA, Circular/genetics , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Caco-2 Cells , Lipopolysaccharides , Nuclear Receptor Coactivator 3 , Apoptosis/genetics , Cyclin D1/genetics
12.
Mol Cell ; 57(6): 952-954, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25794613

ABSTRACT

In this issue of Molecular Cell, Yi et al. (2015) use biochemical assays and cryo-EM to determine the molecular architecture of an estrogen receptor (ERα) co-activator complex bound to DNA.


Subject(s)
E1A-Associated p300 Protein/chemistry , Estrogen Receptor alpha/chemistry , Nuclear Receptor Coactivator 3/chemistry , Humans
13.
Mol Cell ; 57(6): 1047-1058, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25728767

ABSTRACT

Estrogen receptor (ER/ESR1) is a transcription factor critical for development, reproduction, metabolism, and cancer. ER function hinges on its ability to recruit primary and secondary coactivators, yet structural information on the full-length receptor-coactivator complex to complement preexisting and sometimes controversial biochemical information is lacking. Here, we use cryoelectron microscopy (cryo-EM) to determine the quaternary structure of an active complex of DNA-bound ERα, steroid receptor coactivator 3 (SRC-3/NCOA3), and a secondary coactivator (p300/EP300). Our structural model suggests the following assembly mechanism for the complex: each of the two ligand-bound ERα monomers independently recruits one SRC-3 protein via the transactivation domain of ERα; the two SRC-3s in turn bind to different regions of one p300 protein through multiple contacts. We also present structural evidence for the location of activation function 1 (AF-1) in a full-length nuclear receptor, which supports a role for AF-1 in SRC-3 recruitment.


Subject(s)
E1A-Associated p300 Protein/chemistry , Estrogen Receptor alpha/chemistry , Nuclear Receptor Coactivator 3/chemistry , Binding Sites , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , E1A-Associated p300 Protein/metabolism , Estrogen Receptor alpha/metabolism , Histone Acetyltransferases/metabolism , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Receptor Coactivator 3/metabolism , Protein Conformation , Protein Structure, Tertiary , Response Elements
14.
Genes Chromosomes Cancer ; 61(11): 645-652, 2022 11.
Article in English | MEDLINE | ID: mdl-35521817

ABSTRACT

Spindle cell rhabdomyosarcoma represents a rare neoplasm characterized by monomorphic spindle cells with a fascicular architecture and variable skeletal muscle differentiation. Following incidental identification of a ZFP64::NCOA3 gene fusion in an unclassified spindle cell sarcoma resembling adult-type fibrosarcoma, we performed a retrospective archival review and identified four additional cases with a similar histology and identical gene fusion. All tumors arose in adult males (28-71 years). The neoplasms were found in the deep soft tissues, two were gluteal, and one each arose in the thigh, abdominal wall, and chest wall. Morphologically, the tumors were characterized by spindle cells with a distinctive herringbone pattern and variable collagenous to myxoid stroma. The nuclei were relatively monomorphic with variable mitotic activity. Three tumors had immunoreactivity for MyoD1, and four contained variable expression of desmin and smooth muscle actin. All cases tested for myogenin, CD34, S100, pankeratin, and epithelial membrane antigen were negative. Targeted RNA sequencing revealed a ZFP64::NCOA3 fusion product in all five tumors. Three patients developed distant metastases, and two ultimately succumbed to their disease within 2 years of initial diagnosis. This study suggests ZFP64::NCOA3 fusions define a novel subtype of rhabdomyosarcoma with a spindle cell morphology and aggressive clinical behavior. The potential for morphologic and immunohistochemical overlap with several other sarcoma types underscores the value of molecular testing as a diagnostic adjunct to ensure accurate classification and management of these neoplasms.


Subject(s)
Fibrosarcoma , Rhabdomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Adult , Biomarkers, Tumor/genetics , Child , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Fusion , Humans , Male , Nuclear Receptor Coactivator 3/genetics , Nuclear Receptor Coactivator 3/metabolism , Retrospective Studies , Rhabdomyosarcoma/chemistry , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Sarcoma/genetics , Soft Tissue Neoplasms/pathology , Transcription Factors/genetics
15.
Zhonghua Yi Xue Za Zhi ; 103(20): 1553-1559, 2023 May 30.
Article in Zh | MEDLINE | ID: mdl-37246005

ABSTRACT

Objective: To discuss the value of amplified in breast cancer 1(AIB1) and androgen receptor (AR) for the resistance of adjuvant tamoxifen in estradiol receptor (ER) positive breast cancer. Methods: A total of 188 cases with breast cancer after receiving tamoxifen treatment in the Tianjin Medical University Cancer Institute and Hospital from June 2008 to July 2013 were enrolled in this study.Using immunohistochemical SP method to detect AIB1and AR expression in breast cancer tissue, analyzing the relationship of AIB1 and AR expression and the effect of tamoxifen.And verify the results of the experiment through the GEPIA database. Results: The response of tamoxifen was 80.3%. The response rate in AR positive group and AR negative group was 79.6% and 82.4%, with no significant difference (P=0.669). The response rate in AIB1 High expression group and AIB1 Low expression group was 68.4% and 93.3%, respectively, with a significant difference (P<0.001).The response rate in AR negative and AIB1 Low expression group, AR negative and AIB1 High expression group, AR positive and AIB1 Low expression group, AR positive and AIB1High expression group was 89.7%, 71.4%, 96.7%, 66.2%respectively, with a significant difference (P<0.001). Conclusions: The expression level of AIB1 is correlated with the therapeutic effect of tamoxifen in breast cancer. Its high expression can cause tamoxifen resistance, while AR positive and High expression of AIB1 are more likely to cause tamoxifen resistance, and AIB1 can be used as an independent influencing factor for breast cancer tamoxifentreatment.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/therapeutic use , Nuclear Receptor Coactivator 3/metabolism , Receptors, Estrogen/metabolism
16.
J Biol Chem ; 297(3): 101044, 2021 09.
Article in English | MEDLINE | ID: mdl-34358562

ABSTRACT

Protein acetylation is a reversible posttranslational modification, which is regulated by lysine acetyltransferase (KAT) and lysine deacetyltransferase (KDAC). Although protein acetylation has been shown to regulate synaptic plasticity, this was mainly for histone protein acetylation. The function and regulation of nonhistone protein acetylation in synaptic plasticity and learning remain largely unknown. Calmodulin (CaM), a ubiquitous Ca2+ sensor, plays critical roles in synaptic plasticity such as long-term potentiation (LTP). During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). In our previous study, we demonstrated that acetylation of CaM was important for synaptic plasticity and fear learning in mice. However, the KAT responsible for CaM acetylation is currently unknown. Here, following an HEK293 cell-based screen of candidate KATs, steroid receptor coactivator 3 (SRC3) is identified as the most active KAT for CaM. We further demonstrate that SRC3 interacts with and acetylates CaM in a Ca2+ and NMDA receptor-dependent manner. We also show that pharmacological inhibition or genetic downregulation of SRC3 impairs CaM acetylation, synaptic plasticity, and contextual fear learning in mice. Moreover, the effects of SRC3 inhibition on synaptic plasticity and fear learning could be rescued by 3KQ-CaM, a mutant form of CaM, which mimics acetylation. Together, these observations demonstrate that SRC3 acetylates CaM and regulates synaptic plasticity and learning in mice.


Subject(s)
Brain/metabolism , Calmodulin/metabolism , Fear , Learning , Nuclear Receptor Coactivator 3/metabolism , Acetylation , Animals , Calcium/metabolism , Calmodulin/genetics , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Nuclear Receptor Coactivator 3/genetics
17.
J Biol Chem ; 297(6): 101389, 2021 12.
Article in English | MEDLINE | ID: mdl-34762910

ABSTRACT

SRY-box 2 (Sox2) is a transcription factor with critical roles in maintaining embryonic stem (ES) cell and adult stem cell functions and in tumorigenesis. However, how Sox2 exerts its transcriptional function remains unclear. Here, we used an in vitro protein-protein interaction assay to discover transcriptional regulators for ES cell core transcription factors (Oct4, Sox2, Klf4, and c-Myc) and identified members of the steroid receptor coactivators (SRCs) as Sox2-specific interacting proteins. The SRC family coactivators have broad roles in transcriptional regulation, but it is unknown whether they also serve as Sox2 coactivators. We demonstrated that these proteins facilitate Sox2 transcriptional activity and act synergistically with p300. Furthermore, we uncovered an acetylation-enhanced interaction between Sox2 and SRC-2/3, but not SRC-1, demonstrating it is Sox2 acetylation that promotes the interaction. We identified putative Sox2 acetylation sites required for acetylation-enhanced interaction between Sox2 and SRC-3 and demonstrated that acetylation on these sites contributes to Sox2 transcriptional activity and recruitment of SRC-3. We showed that activation domains 1 and 2 of SRC-3 both display a preferential binding to acetylated Sox2. Finally, functional analyses in mouse ES cells demonstrated that knockdown of SRC-2/3 but not SRC-1 in mouse ES cells significantly downregulates the transcriptional activities of various Sox2 target genes and impairs ES cell stemness. Taken together, we identify specific SRC family proteins as novel Sox2 coactivators and uncover the role of Sox2 acetylation in promoting coactivator recruitment and Sox2 transcriptional function.


Subject(s)
Nuclear Receptor Coactivator 1/metabolism , Nuclear Receptor Coactivator 2/metabolism , Nuclear Receptor Coactivator 3/metabolism , SOXB1 Transcription Factors/metabolism , Transcription, Genetic , Acetylation , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , Nuclear Receptor Coactivator 1/genetics , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 3/genetics , SOXB1 Transcription Factors/genetics
18.
Breast Cancer Res ; 24(1): 73, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316775

ABSTRACT

BACKGROUND: The tumor immune microenvironment (TIME) generated by cancer-infiltrating immune cells has a crucial role in promoting or suppressing breast cancer progression. However, whether the steroid receptor coactivator-3 (SRC-3) modulates TIME to progress breast cancer is unclear. Therefore, the present study evaluates whether SRC-3 generates a tumor-promoting TIME in breast tumors using a syngeneic immune-intact mouse model of breast cancer. METHODS: We employed E0771 and 4T1 breast cancer in immune-intact syngeneic female C57BL/6 and BALB/c mice, respectively. SI-2, a specific small-molecule inhibitor of SRC-3, was administered daily (2.5 mg/kg) to E0771 and 4T1 breast tumor-bearing immune-intact mice. In addition, SRC-3 knockdown (KD)-E0771 and SRC-3 KD-4T1 cells and their parental breast cancer cells were injected into their syngeneic immune-intact female mice versus immune-deficiency mice to validate that the host immune system is required for breast tumor suppression by SRC-3 KD in immune-intact mice. Furthermore, tumor-infiltrating immune cells (such as CD4+, CD8+, CD56+, and Foxp3+ cells) in E0771 and 4T1 breast cancers treated with SI-2 and in SRC-3 KD E0771 and 4T1 breast cancers were determined by immunohistochemistry. Additionally, cytokine levels in SI-2-treated and SRC-3 KD E0771 breast tumors and their control cancers were defined with a Mouse Cytokine Array. RESULTS: SRC-3 inhibition by SI-2 significantly suppressed the progression of breast cancer cells (E0771 and 4T1) into breast cancers in immune-intact syngeneic female mice. SRC-3 KD-E0771 and -4T1 breast cancer cells did not produce well-developed tumors in immune-intact syngeneic female mice compared to their parental cells, but SRC-3 KD breast cancers were well developed in immune-defective host mice. SRC-3 inhibition by SI-2 and SRC-3 KD effectively increased the numbers of cytotoxic immune cells, such as CD4+ and CD8+ T cells and CD56+ NK cells, and Interferon γ (Ifng) in breast cancers compared to vehicle. However, SI-2 treatment reduced the number of tumor-infiltrating CD4+/Foxp3+ regulatory T (Treg) cells compared to vehicle treatment. In addition, SRC-3 inhibition by SI-2 and SRC-3 KD increased C-X-C motif chemokine ligand 9 (Cxcl9) expression in breast cancer to recruit C-X-C motif chemokine receptor 3 (Cxcr3)-expressing cytotoxic immune cells into breast tumors. CONCLUSIONS: SRC-3 is a critical immunomodulator in breast cancer, generating a protumor immune microenvironment. SRC-3 inhibition by SI-2 or SRC-3 KD activates the Cxcl9/Cxcr3 axis in breast tumors and enhances the antitumor immune microenvironment to suppress breast cancer progression.


Subject(s)
Neoplasms , Nuclear Receptor Coactivator 3 , Tumor Microenvironment , Animals , Female , Mice , Cell Line, Tumor , Cytokines/metabolism , Forkhead Transcription Factors , Mice, Inbred BALB C , Mice, Inbred C57BL , Nuclear Receptor Coactivator 3/metabolism
19.
EMBO Rep ; 21(1): e49647, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31788927

ABSTRACT

The transcriptional co-activators YAP and AIB1 individually promote breast cancer progression, but are not known to be mechanistically linked. A study published in this issue of EMBO Reports [1] now shows that YAP-AIB1 form a physical complex in breast epithelial cells that cooperates in both activation and, unexpectedly, repression of key breast cancer genes. The repressive effect is due to the recruitment of ANCO1, a previously defined AIB1 interactor [2] that binds and inhibits the YAP-AIB1 complex. These data identify ANCO1 as a candidate tumor suppressor through YAP-AIB1 inhibition and could hint at a broader crosstalk between pathways that utilize YAP and AIB1 to control epithelial homeostasis.


Subject(s)
Oncogenes , Disease Progression , Humans , Nuclear Receptor Coactivator 3/genetics
20.
EMBO Rep ; 21(1): e48741, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31788936

ABSTRACT

Transcription factors critical for the transition of normal breast epithelium to ductal carcinoma in situ (DCIS) and invasive breast cancer are not clearly defined. Here, we report that the expression of a subset of YAP-activated and YAP-repressed genes in normal mammary and early-stage breast cancer cells is dependent on the nuclear co-activator AIB1. Gene expression, sequential ChIP, and ChIP-seq analyses show that AIB1 and YAP converge upon TEAD for transcriptional activation and repression. We find that AIB1-YAP repression of genes at the 1q21.3 locus is mediated by AIB1-dependent recruitment of ANCO1, a tumor suppressor whose expression is progressively lost during breast cancer progression. Reducing ANCO1 reverts AIB1-YAP-dependent repression, increases cell size, and enhances YAP-driven aberrant 3D growth. Loss of endogenous ANCO1 occurs during DCIS xenograft progression, a pattern associated with poor prognosis in human breast cancer. We conclude that increased expression of AIB1-YAP co-activated targets coupled with a loss of normal ANCO1 repression is critical to patterns of gene expression that mediate malignant progression of early-stage breast cancer.


Subject(s)
Breast Neoplasms , Nuclear Receptor Coactivator 3/genetics , Repressor Proteins/genetics , Breast , Breast Neoplasms/genetics , Humans , Nuclear Receptor Coactivator 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL