Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
Add more filters

Publication year range
1.
Fish Physiol Biochem ; 50(4): 1341-1352, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38647979

ABSTRACT

Semi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS). In this work, we studied the involvement of the cAMP/PKA pathway in mediating catecholamine-dependent effects on osmoregulatory responses, intracellular production of ROS, and mitochondrial membrane potential of the river lamprey (Lampetra fluviatilis, Linnaeus, 1758) red blood cells (RBCs). We also investigated the role of hypoosmotic shock in the process of ROS production and mitochondrial respiration of RBCs. For this, osmotic stability and the dynamics of the regulatory volume decrease (RVD) following hypoosmotic swelling, intracellular ROS levels, and changes in mitochondrial membrane potential were assessed in RBCs treated with epinephrine (Epi, 25 µM) and forskolin (Forsk, 20 µM). Epi and Forsk markedly reduced the osmotic stability of the lamprey RBCs whereas did not affect the dynamics of the RVD response in a hypoosmotic environment. Activation of PKA with Epi and Forsk increased ROS levels and decreased mitochondrial membrane potential of the lamprey RBCs. In contrast, upon hypoosmotic shock enhanced ROS production in RBCs was accompanied by increased mitochondrial membrane potential. Overall, a decrease in RBC osmotic stability and the enhancement of ROS formation induced by ß-adrenergic stimulation raises concerns about stress-associated changes in RBC functions in agnathans. Increased ROS production in RBCs under hypoosmotic shock indicates that a decrease in blood osmolarity may be associated with oxidative damage of RBCs during lamprey migration.


Subject(s)
Epinephrine , Erythrocytes , Lampreys , Membrane Potential, Mitochondrial , Osmotic Pressure , Reactive Oxygen Species , Animals , Erythrocytes/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Osmotic Pressure/drug effects , Lampreys/physiology , Epinephrine/pharmacology , Colforsin/pharmacology , Osmoregulation/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism
2.
FASEB J ; 36(1): e22067, 2022 01.
Article in English | MEDLINE | ID: mdl-34914140

ABSTRACT

The objective of the current study was to examine the drug-induced effects of the EP2 agonist, omidenapag (OMD), on human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs). The drug-induced effects on 2D monolayers and 3D spheroids were characterized by examining the ultrastructures by scanning electron microscope (SEM), transendothelial electrical resistance (TEER) measurements, and fluorescein isothiocyanate (FITC)-dextran permeability. The physical properties of 3D spheroids with respect to size and stiffness were also examined. In addition, the gene expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9, and 14, aquaporin1 (AQP1), and several endoplasmic reticulum (ER) stress-related factors were evaluated. In the 2D HCSFs, OMD induced (1) a significant increase in ECM deposits, as evidenced by SEM, the mRNA expression of COL4 and FN, and (2) a decrease in TEER values and a concentration-dependent increase in FITC-dextran permeability. In the case of 3D spheroids, OMD had no effect on size but a substantial increase in stiffness was observed. Furthermore, such OMD-induced effects on stiffness were dramatically modulated by the osmotic pressure of the system. In contrast to the above 2D cultures, among the ECM molecules and the modulators of 3D spheroids, namely, TIMPS and MMPs, the down-regulation of COL1, TIMP1 and 2 and the up-regulation of MMP9 were observed. Interestingly, such diversity in terms of OMD-induced gene expressions between 2D and 3D cultures was also recognized in AQP1 (2D; no significant change, 3D; significant up-regulation) and ER stress-related genes. The findings presented herein suggest that the EP2 agonist, OMD, alters the physical stiffness of 3D spheroids obtained from human corneal stroma fibroblasts and this alteration is dependent on the osmotic pressures. 2D and 3D cell cultures may be useful for evaluating the drug induced effects of OMD toward human corneal stroma.


Subject(s)
Cornea/metabolism , Fibroblasts/metabolism , Osmotic Pressure/drug effects , Receptors, Prostaglandin E, EP2 Subtype , Spheroids, Cellular/metabolism , Cornea/ultrastructure , Endoplasmic Reticulum Stress , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Eye Proteins/metabolism , Female , Fibroblasts/ultrastructure , Humans , Male , Receptors, Prostaglandin E, EP2 Subtype/agonists , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Spheroids, Cellular/ultrastructure
3.
Development ; 146(2)2019 01 23.
Article in English | MEDLINE | ID: mdl-30630824

ABSTRACT

The enrichment of intermediate filaments in the apical cytoplasm of intestinal cells is evolutionarily conserved, forming a sheath that is anchored to apical junctions and positioned below the microvillar brush border, which suggests a protective intracellular barrier function. To test this, we used Caenorhabditiselegans, the intestinal cells of which are endowed with a particularly dense intermediate filament-rich layer that is referred to as the endotube. We found alterations in endotube structure and intermediate filament expression upon infection with nematicidal B.thuringiensis or treatment with its major pore-forming toxin crystal protein Cry5B. Endotube impairment due to defined genetic mutations of intermediate filaments and their regulators results in increased Cry5B sensitivity as evidenced by elevated larval arrest, prolonged time of larval development and reduced survival. Phenotype severity reflects the extent of endotube alterations and correlates with reduced rescue upon toxin removal. The results provide in vivo evidence for a major protective role of a properly configured intermediate filament network as an intracellular barrier in intestinal cells. This notion is further supported by increased sensitivity of endotube mutants to oxidative and osmotic stress.


Subject(s)
Bacillus thuringiensis/physiology , Bacterial Proteins/toxicity , Caenorhabditis elegans/microbiology , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Intermediate Filaments/metabolism , Intestines/microbiology , Intestines/pathology , Animals , Bacillus thuringiensis Toxins , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/metabolism , Immunity, Innate/drug effects , Immunity, Innate/genetics , Intermediate Filaments/drug effects , Intestines/drug effects , Larva/drug effects , Larva/ultrastructure , Mutation/genetics , Osmotic Pressure/drug effects , Oxidative Stress/drug effects , Protein Isoforms/metabolism , Transcription, Genetic/drug effects
4.
BMC Plant Biol ; 22(1): 41, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057736

ABSTRACT

BACKGROUND: We previously identified six drought-inducible CC-type glutaredoxins in cassava cultivars, however, less is known about their potential role in the molecular mechanism by which cassava adapted to abiotic stress. RESULTS: Herein, we investigate one of cassava drought-responsive CC-type glutaredoxins, namely MeGRXC3, that involved in regulation of mannitol-induced inhibition on seed germination and seedling growth in transgenic Arabidopsis. MeGRXC3 overexpression up-regulates several stress-related transcription factor genes, such as PDF1.2, ERF6, ORA59, DREB2A, WRKY40, and WRKY53 in Arabidopsis. Protein interaction assays show that MeGRXC3 interacts with Arabidopsis TGA2 and TGA5 in the nucleus. Eliminated nuclear localization of MeGRXC3 failed to result mannitol-induced inhibition of seed germination and seedling growth in transgenic Arabidopsis. Mutation analysis of MeGRXC3 indicates the importance of conserved motifs for its transactivation activity in yeast. Additionally, these motifs are also indispensable for its functionality in regulating mannitol-induced inhibition of seed germination and enhancement of the stress-related transcription factors in transgenic Arabidopsis. CONCLUSIONS: MeGRXC3 overexpression confers mannitol sensitivity in transgenic Arabidopsis possibly through interaction with TGA2/5 in the nucleus, and nuclear activity of MeGRXC3 is required for its function.


Subject(s)
Glutaredoxins/genetics , Manihot/genetics , Osmotic Pressure/physiology , Plant Proteins/genetics , Amino Acid Motifs , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Droughts , Gene Expression Regulation, Plant , Germination/drug effects , Glutaredoxins/metabolism , Mannitol/pharmacology , Osmotic Pressure/drug effects , Plant Proteins/metabolism , Plants, Genetically Modified , Seedlings/genetics , Seedlings/growth & development , Seeds/drug effects , Seeds/genetics , Seeds/growth & development , Two-Hybrid System Techniques
5.
Am J Physiol Cell Physiol ; 320(2): C225-C239, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33206547

ABSTRACT

There is growing evidence that microRNAs (miRNAs) are implicated in cellular adaptation to osmotic stress, but the underlying osmosignaling pathways are still not completely understood. In this study, we found that a passenger strand miRNA, miR-23a-5p, was significantly downregulated in response to high NaCl treatment in mouse inner medullary collecting duct cells (mIMCD3) through an miRNA profiling assay. The decrease of miR-23a-5p is hypertonicity-dependent and osmotolerant cell type-specific. Knockdown of miR-23a-5p increased cellular survival and proliferation in mIMCD3. In contrast, miR-23a-5p overexpression repressed cell viability and proliferation under hypertonic stress. RNA deep-sequencing revealed that a heat shock protein 70 (HSP70) isoform, HSP70 member 1B (HSPA1B), was significantly increased under hypertonic treatment. Based on the prediction analysis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TargetScan, and a further validation via a dual-luciferase assay, HSPA1B was identified as a potential target of miR-23a-5p. Overexpressed miR-23a-5p suppressed HSPA1B, whereas downregulated miR-23a-5p promoted HSPA1B expression in mIMCD3. In addition, an in vivo study demonstrated that there is a reverse correlation between the levels of miR-23a-5p and HSPA1B in mouse renal inner medulla (papilla) that is exposed to extremely high osmolality. In summary, this study elucidates that passenger strand miR-23a-5p is a novel tonicity-responsive miRNA. The downregulation of miR-23a-5p facilitates cellular adaptation to hypertonic stress in mammalian renal cells through modulating HSPA1B.


Subject(s)
Drug Delivery Systems/methods , HSP70 Heat-Shock Proteins/metabolism , Hypertonic Solutions/toxicity , MicroRNAs/metabolism , Osmotic Pressure/physiology , Animals , Cell Survival/drug effects , Cell Survival/physiology , HEK293 Cells , Humans , Male , Mice , MicroRNAs/antagonists & inhibitors , Osmotic Pressure/drug effects
6.
J Biol Chem ; 295(7): 2043-2056, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31848224

ABSTRACT

The environmental stress response (ESR) is critical for cell survival. Yeast cells unable to synthesize inositol pyrophosphates (PP-InsPs) are unable to induce the ESR. We recently discovered a diphosphoinositol pentakisphosphate (PP-InsP5) phosphatase in Saccharomyces cerevisiae encoded by SIW14 Yeast strains deleted for SIW14 have increased levels of PP-InsPs. We hypothesized that strains with high inositol pyrophosphate levels will have an increased stress response. We examined the response of the siw14Δ mutant to heat shock, nutrient limitation, osmotic stress, and oxidative treatment using cell growth assays and found increased resistance to each. Transcriptional responses to oxidative and osmotic stresses were assessed using microarray and reverse transcriptase quantitative PCR. The ESR was partially induced in the siw14Δ mutant strain, consistent with the increased stress resistance, and the mutant strain further induced the ESR in response to oxidative and osmotic stresses. The levels of PP-InsPs increased in WT cells under oxidative stress but not under hyperosmotic stress, and they were high and unchanging in the mutant. Phosphatase activity of Siw14 was inhibited by oxidation that was reversible. To determine how altered PP-InsP levels affect the ESR, we performed epistasis experiments with mutations in rpd3 and msn2/4 combined with siw14Δ. We show that mutations in msn2Δ and msn4Δ, but not rpd3, are epistatic to siw14Δ by assessing growth under oxidative stress conditions and expression of CTT1 Msn2-GFP nuclear localization was increased in the siw14Δ. These data support a model in which the modulation of PP-InsPs influence the ESR through general stress response transcription factors Msn2/4.


Subject(s)
DNA-Binding Proteins/genetics , Oxidative Stress/genetics , Protein Tyrosine Phosphatases/genetics , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Cell Cycle/genetics , Cell Survival/genetics , DNA-Binding Proteins/metabolism , Diphosphates/metabolism , Gene Expression Regulation, Fungal/genetics , Inositol/metabolism , Osmotic Pressure/drug effects , Oxidation-Reduction , Peptides, Cyclic/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism
7.
J Biol Chem ; 295(3): 673-689, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31780563

ABSTRACT

Insoluble, hyperubiquitylated TAR DNA-binding protein of 43 kDa (TDP-43) in the central nervous system characterizes frontotemporal dementia and ALS in many individuals with these neurodegenerative diseases. The causes for neuropathological TDP-43 aggregation are unknown, but it has been suggested that stress granule (SG) formation is important in this process. Indeed, in human embryonic kidney HEK293E cells, various SG-forming conditions induced very strong TDP-43 ubiquitylation, insolubility, and reduced splicing activity. Osmotic stress-induced SG formation and TDP-43 ubiquitylation occurred rapidly and coincided with colocalization of TDP-43 and SG markers. Washout experiments confirmed the rapid dissolution of SGs, accompanied by normalization of TDP-43 ubiquitylation and solubility. Surprisingly, interference with the SG process using a protein kinase R-like endoplasmic reticulum kinase inhibitor (GSK2606414) or the translation blocker emetine did not prevent TDP-43 ubiquitylation and insolubility. Thus, parallel pathways may lead to pathological TDP-43 modifications independent of SG formation. Using a panel of kinase inhibitors targeting signaling pathways of the osmotic shock inducer sorbitol, we could largely rule out the stress-activated and extracellular signal-regulated protein kinase modules and glycogen synthase kinase 3ß. For arsenite, but not for sorbitol, quenching oxidative stress with N-acetylcysteine did suppress both SG formation and TDP-43 ubiquitylation and insolubility. Thus, sodium arsenite appears to promote SG formation and TDP-43 modifications via oxidative stress, but sorbitol stimulates TDP-43 ubiquitylation and insolubility via a novel pathway(s) independent of SG formation. In conclusion, pathological TDP-43 modifications can be mediated via multiple distinct pathways for which SGs are not essential.


Subject(s)
DNA-Binding Proteins/genetics , Heat-Shock Proteins/genetics , Oxidative Stress/genetics , Ubiquitination/genetics , Acetylcysteine/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/chemistry , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Glycogen Synthase Kinase 3 beta/genetics , HEK293 Cells , Heat-Shock Proteins/chemistry , Humans , Indoles/pharmacology , Mutation/drug effects , Osmotic Pressure/drug effects , Protein Aggregation, Pathological/genetics , Protein Transport/genetics , Signal Transduction/drug effects , Solubility/drug effects , Sorbitol/pharmacology
8.
Nucleic Acids Res ; 47(4): 1740-1758, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30551143

ABSTRACT

Toxin-antitoxin (TA) systems are ubiquitous among bacteria, frequently expressed in multiple copies, and important for functions such as antibiotic resistance and persistence. Type I TA systems are composed of a stable toxic peptide whose expression is repressed by an unstable RNA antitoxin. Here, we investigated the functionalities, regulation, and possible cross-talk between three core genome copies of the pathogenicity island-encoded 'sprG1/sprF1' type I TA system in the human pathogen Staphylococcus aureus. Except for SprG4, all RNA from these pairs, sprG2/sprF2, sprG3/sprF3, sprG4/sprF4, are expressed in the HG003 strain. SprG2 and SprG3 RNAs encode toxic peptides whose overexpression triggers bacteriostasis, which is counteracted at the RNA level by the overexpression of SprF2 and SprF3 antitoxins. Complex formation between each toxin and its cognate antitoxin involves their overlapping 3' ends, and each SprF antitoxin specifically neutralizes the toxicity of its cognate SprG toxin without cross-talk. However, overexpression studies suggest cross-regulations occur at the RNA level between the SprG/SprF TA systems during growth. When subjected to H2O2-induced oxidative stress, almost all antitoxin levels dropped, while only SprG1 and SprF1 were reduced during phagocytosis-induced oxidative stress. SprG1, SprF1, SprF2, SprG3 and SprF3 levels also decrease during hyperosmotic stress. This suggests that novel SprG/SprF TA systems are involved in S. aureus persistence.


Subject(s)
Bacterial Proteins/genetics , Staphylococcal Infections/genetics , Staphylococcus aureus/genetics , Toxin-Antitoxin Systems/genetics , Drug Resistance, Microbial/genetics , Gene Expression Regulation, Bacterial/drug effects , Genomic Islands/genetics , Humans , Hydrogen Peroxide/pharmacology , Osmotic Pressure/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity
9.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884463

ABSTRACT

Lens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy. Decreases in zonular tension caused the removal of TRPV4 from the membrane of peripheral fiber cells. Hypotonic challenge had no effect on TRPV1, but increased the membrane localization of TRPV4. Hypertonic challenge caused the insertion of TRPV1 and the removal of TRPV4 from the membranes of peripheral fiber cells. Capsaicin caused an increase in TRPV4 membrane localization, but had no effect on TRPV1; while GSK101 decreased the membrane localization of TRPV4 and increased the membrane localization of TRPV1. These reciprocal changes in TRPV1/4 membrane localization are consistent with the channels acting as mechanosensitive transducers of a dual-feedback pathway that regulates lens water transport.


Subject(s)
Cell Membrane/metabolism , Lens, Crystalline/metabolism , TRPV Cation Channels/metabolism , Animals , Biological Transport/drug effects , Capsaicin/pharmacology , Gene Expression Regulation/drug effects , Hydrostatic Pressure/adverse effects , Mice , Osmotic Pressure/drug effects
10.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576037

ABSTRACT

Their high adaptability to difficult coastal conditions makes mangrove trees a valuable resource and an interesting model system for understanding the molecular mechanisms underlying stress tolerance and adaptation of plants to the stressful environmental conditions. In this study, we used RNA sequencing (RNA-Seq) for de novo assembling and characterizing the Bruguiera gymnorhiza (L.) Lamk leaf transcriptome. B. gymnorhiza is one of the most widely distributed mangrove species from the biggest family of mangroves; Rhizophoraceae. The de novo assembly was followed by functional annotations and identification of individual transcripts and gene families that are involved in abiotic stress response. We then compared the genome-wide expression profiles between two populations of B. gymnorhiza, growing under different levels of stress, in their natural habitats. One population living in high salinity environment, in the shore of the Pacific Ocean- Japan, and the other population living about one kilometre farther from the ocean, and next to the estuary of a river; in less saline and more brackish condition. Many genes involved in response to salt and osmotic stress, showed elevated expression levels in trees growing next to the ocean in high salinity condition. Validation of these genes may contribute to future salt-resistance research in mangroves and other woody plants. Furthermore, the sequences and transcriptome data provided in this study are valuable scientific resources for future comparative transcriptome research in plants growing under stressful conditions.


Subject(s)
Osmotic Pressure/drug effects , Rhizophoraceae/genetics , Stress, Physiological/genetics , Transcriptome/genetics , Adaptation, Physiological/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Molecular Sequence Annotation , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Rhizophoraceae/growth & development , Salinity , Salt Tolerance/genetics , Sodium Chloride/adverse effects , Trees
11.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429984

ABSTRACT

Aquaporins are channel proteins that facilitate the transmembrane transport of water and other small neutral molecules, thereby playing vital roles in maintaining water and nutrition homeostasis in the life activities of all organisms. Canavalia rosea, a seashore and mangrove-accompanied halophyte with strong adaptability to adversity in tropical and subtropical regions, is a good model for studying the molecular mechanisms underlying extreme saline-alkaline and drought stress tolerance in leguminous plants. In this study, a PIP2 gene (CrPIP2;3) was cloned from C. rosea, and its expression patterns and physiological roles in yeast and Arabidopsis thaliana heterologous expression systems under high salt-alkali and high osmotic stress conditions were examined. The expression of CrPIP2;3 at the transcriptional level in C. rosea was affected by high salinity and alkali, high osmotic stress, and abscisic acid treatment. In yeast, the expression of CrPIP2;3 enhanced salt/osmotic and oxidative sensitivity under high salt/osmotic and H2O2 stress. The overexpression of CrPIP2;3 in A. thaliana could enhance the survival and recovery of transgenic plants under drought stress, and the seed germination and seedling growth of the CrPIP2;3 OX (over-expression) lines showed slightly stronger tolerance to high salt/alkali than the wild-type. The transgenic plants also showed a higher response level to high-salinity and dehydration than the wild-type, mostly based on the up-regulated expression of salt/dehydration marker genes in A. thaliana plants. The reactive oxygen species (ROS) staining results indicated that the transgenic lines did not possess stronger ROS scavenging ability and stress tolerance than the wild-type under multiple stresses. The results confirmed that CrPIP2;3 is involved in the response of C. rosea to salt and drought, and primarily acts by mediating water homeostasis rather than by acting as an ROS transporter, thereby influencing physiological processes under various abiotic stresses in plants.


Subject(s)
Arabidopsis/genetics , Canavalia/genetics , Salt-Tolerant Plants/genetics , Stress, Physiological/genetics , Alkalies/toxicity , Arabidopsis/growth & development , Canavalia/growth & development , Droughts , Gene Expression Regulation, Plant , Germination/drug effects , Hydrogen Peroxide/chemistry , Osmotic Pressure/drug effects , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Salinity , Salt Tolerance/genetics , Seedlings/drug effects , Sodium Chloride/toxicity
12.
Int J Mol Sci ; 22(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208226

ABSTRACT

We investigated the role of nuclear factor of activated T cells 5 (NFAT5) under hyperosmotic conditions in human lens epithelial cells (HLECs). Hyperosmotic stress decreased the viability of human lens epithelial B-3 cells and significantly increased NFAT5 expression. Hyperosmotic stress-induced cell death occurred to a greater extent in NFAT5-knockout (KO) cells than in NFAT5 wild-type (NFAT5 WT) cells. Bcl-2 and Bcl-xl expression was down-regulated in NFAT5 WT cells and NFAT5 KO cells under hyperosmotic stress. Pre-treatment with a necroptosis inhibitor (necrostatin-1) significantly blocked hyperosmotic stress-induced death of NFAT5 KO cells, but not of NFAT5 WT cells. The phosphorylation levels of receptor-interacting protein kinase 1 (RIP1) and RIP3, which indicate the occurrence of necroptosis, were up-regulated in NFAT5 KO cells, suggesting that death of these cells is predominantly related to the necroptosis pathway. This finding is the first to report that necroptosis occurs when lens epithelial cells are exposed to hyperosmolar conditions, and that NFAT5 is involved in this process.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/pathology , Lens, Crystalline/pathology , Osmotic Pressure , Stress, Physiological , Transcription Factors/metabolism , Cell Cycle/drug effects , Cell Death/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Epithelial Cells/drug effects , Humans , Hypertonic Solutions/toxicity , Inflammation/pathology , Nuclear Pore Complex Proteins/metabolism , Osmotic Pressure/drug effects , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Stress, Physiological/drug effects
13.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805024

ABSTRACT

Depression and anxiety disorders are widespread diseases, and they belong to the leading causes of disability and greatest burdens on healthcare systems worldwide. It is expected that the numbers will dramatically rise during the COVID-19 pandemic. Established medications are not sufficient to adequately treat depression and are not available for everyone. Plants from traditional medicine may be promising alternatives to treat depressive symptoms. The model organism Chaenorhabditis elegans was used to assess the stress reducing effects of methanol/dichlormethane extracts from plants used in traditional medicine. After initial screening for antioxidant activity, nine extracts were selected for in vivo testing in oxidative stress, heat stress, and osmotic stress assays. Additionally, anti-aging properties were evaluated in lifespan assay. The extracts from Acanthopanax senticosus, Campsis grandiflora, Centella asiatica, Corydalis yanhusuo, Dan Zhi, Houttuynia cordata, Psoralea corylifolia, Valeriana officinalis, and Withaniasomnifera showed antioxidant activity of more than 15 Trolox equivalents per mg extract. The extracts significantly lowered ROS in mutants, increased resistance to heat stress and osmotic stress, and the extended lifespan of the nematodes. The plant extracts tested showed promising results in increasing stress resistance in the nematode model. Further analyses are needed, in order to unravel underlying mechanisms and transfer results to humans.


Subject(s)
Antidepressive Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Aging/drug effects , Aging/physiology , Animals , Antioxidants/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gene Knockout Techniques , Heat-Shock Response/drug effects , Longevity/drug effects , Longevity/genetics , Longevity/physiology , Mutation , Osmotic Pressure/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
14.
Cell Physiol Biochem ; 54(4): 605-614, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32543797

ABSTRACT

BACKGROUND/AIMS: Suicidal erythrocyte death (eryptosis) is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface following a Ca2+ entry in the cell. Eryptosis is stimulated by increased cytosolic Ca2+ ([Ca2+]i), oxidative stress, energy depletion, or high osmotic shock. Eryptosis signaling includes p38 mitogen-activated protein kinase (MAPK), caspases, casein kinase 1 (CK1), janus kinase 3 (JAK3), and protein kinase C (PKC). Dog and human erythrocytes have different characteristics, for example, dog erythrocytes lack Na+/K+- ATPase activity. Whether eryptosis occurs in dog erythrocytes in an analogous way as that in humans remains unclear. Eryptosis in dogs has not been investigated. This study aimed to explore which stimulator and signaling molecules are involved in eryptosis in healthy dog erythrocytes. METHODS: Erythrocytes were isolated from 10 dogs, and eryptosis was stimulated by oxidative stress with tert-butyl hydroperoxide (tBOOH), high osmotic shock with excessive sucrose condition, energy depletion with minus glucose condition, and high [Ca2+]i with ionomycin. Phosphatidylserine exposure was estimated using annexin V binding. Erythrocyte volume and [Ca2+]i were measured by forward scatter and Fluo3-fluorescence, respectively. In addition, the role of certain mediators was assessed using the following inhibitors to determine the detailed mechanisms of eryptosis in dog erythrocytes: p38MAPK, caspase family, CK1, JAK3, and PKC inhibitors. RESULTS: All eryptosis-inducing factors resulted in phosphatidylserine exposures, except for ionomycin. In addition, the erythrocyte volume increased with ionomycin and tBOOH but decreased with excessive sucrose and minus glucose condition. All treatments increased [Ca2+]i. Furthermore, WH1-P154 and chelerythrine significantly blunted the increase of annexin V binding erythrocytes following the tBOOH treatment. CONCLUSION: Eryptosis in dogs is triggered by oxidative stress, hyperosmotic shock, and energy depletion. It is suggested that JAK3 and PKC play an important role in eryptosis following an oxidative stress in dog erythrocytes.


Subject(s)
Calcium/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Phosphatidylserines/metabolism , tert-Butylhydroperoxide/pharmacology , Animals , Annexin A5/metabolism , Benzophenanthridines/pharmacology , Casein Kinase I/antagonists & inhibitors , Caspase Inhibitors , Caspases/metabolism , Cell Size/drug effects , Dogs , Eryptosis , Glucose/metabolism , Ionomycin/pharmacology , Janus Kinase 3/antagonists & inhibitors , Osmotic Pressure/drug effects , Oxidative Stress/drug effects , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Sucrose/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
15.
Biochem Biophys Res Commun ; 528(2): 292-298, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32499110

ABSTRACT

Abscisic acid (ABA) is an important plant hormone that mediates abiotic stresses in plant growth and development. A number of E3 ligases have been reported to be involved in ABA signaling pathway. In this study, we identified a C3H2C3 RING-type E3 ligase, Arabidopsis thaliana Tόxicos en Levadura 61 (ATL61), which regulated drought stress in planta. Enzyme assay in vitro demonstrated that ATL61 had E3 ubiquitin ligase activity, while point mutation of ATL61H109A, H122A (mATL61) abolished its E3 ubiquitin ligase activity. ATL61 overexpression plants exhibited ABA hypersensitivity and were more tolerant to drought, while the atl61 mutant plants were insensitive to ABA. Moreover, mATL61 overexpression lines exhibited similar ABA-related phenotypes with wild type (WT) plants. The transcript abundances of ABA-mediated drought stress-related genes RD20 and RD22 were higher in ATL61 overexpression plants than those in WT, atl61, and mATL61 plants. Our results indicated that ATL61 acted as a positive regulator in the ABA-mediated drought stress response.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Droughts , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Osmotic Pressure/drug effects , Phenotype , Plants, Genetically Modified , Stress, Physiological/drug effects , Stress, Physiological/genetics , Ubiquitination/drug effects
16.
New Phytol ; 225(2): 835-847, 2020 01.
Article in English | MEDLINE | ID: mdl-31491809

ABSTRACT

Seed germination is a crucial transition point in plant life and is tightly regulated by environmental conditions through the coordination of two phytohormones, gibberellin and abscisic acid (ABA). To avoid unfavorable conditions, plants have evolved safeguard mechanisms for seed germination. The present contribution reports a novel function of the Arabidopsis MCM1/AGAMOUS/DEFICIENS/SRF(MADS)-box transcription factor ARABIDOPSIS NITRATE REGULATED 1 (ANR1) in seed germination. ANR1 knockout mutant is insensitive to ABA, salt and osmotic stress during the seed germination and early seedling development stages, whereas ANR1-overexpressing lines are hypersensitive. ANR1 is responsive to ABA and abiotic stresses and upregulates the expression of ABA Intolerant (ABI)3 to suppress seed germination. ANR1 and ABI3 have similar expression pattern during seed germination. Genetically, ABI3 acts downstream of ANR1. Chromatin immunoprecipitation and yeast-one-hybrid assays showed that ANR1 could bind to the ABI3 promoter to regulate its expression. In addition, ANR1 acts synergistically with AGL21 to suppress seed germination in response to ABA as evidenced by anr1 agl21 double mutant. Taken together, the results herein demonstrate that the ANR1 plays an important role in regulating seed germination and early postgermination growth. ANR1 and AGL21 together constitutes a safeguard mechanism for seed germination to avoid unfavorable conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Gene Expression Regulation, Plant , Germination/genetics , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Abscisic Acid/pharmacology , Base Sequence , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Gibberellins/metabolism , MADS Domain Proteins/metabolism , Mutation/genetics , Osmotic Pressure/drug effects , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Binding/drug effects , Seedlings/drug effects , Seedlings/genetics , Seeds/drug effects , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/genetics
17.
Mol Vis ; 26: 188-203, 2020.
Article in English | MEDLINE | ID: mdl-32214785

ABSTRACT

Purpose: Osteopontin (OPN) is a neuroprotective factor in the retina that improves photoreceptor survival. The aim of the present study was to investigate whether human RPE cells express and respond to OPN. Methods: Hypoxia and chemical hypoxia were induced by cell culture in 0.25% O2 and the addition of CoCl2, respectively. Hyperosmolarity was produced by the addition of 100 mM NaCl or 200 mM sucrose. Gene expression was quantified with real-time reverse transcription (RT)-PCR, and protein secretion was investigated with enzyme-linked immunosorbent assay (ELISA). Nuclear factor of activated T cell 5 (NFAT5) was depleted with siRNA. Results: The acutely isolated RPE cells and the cultured RPE cells expressed OPN. OPN gene expression was induced by hypoxia and hyperosmotic media, as well as by exogenous bFGF. High extracellular NaCl and hypoxia induced secretion of OPN. Hyperosmotic expression of the OPN gene was mediated by the p38 MAPK and ERK1/2 signal transduction pathways, and the transcriptional activities of CREB and NFAT5. The hypoxic expression of the OPN gene was mediated by the PI3K signal transduction pathway and caspase-mediated, necrosis-related pathways. Phospholipases A2 were involved in mediating hyperosmotic and hypoxic OPN gene expression. Autocrine or paracrine P2Y2 receptor signaling induced by extracellular ATP contributed to hyperosmotic expression of the OPN gene whereas activation of A1 receptors by extracellularly formed adenosine contributed to thypoxic OPN gene expression. Autocrine or paracrine VEGF signaling exerted an inhibitory effect on expression of the OPN gene. Exogenous OPN induced expression and secretion of bFGF, but not of VEGF. Conclusions: The data indicated that RPE cells produce and respond to OPN; OPN expression is, in part, induced by the cellular danger signal ATP. RPE-derived neuroprotective factors such as bFGF may contribute to the prosurvival effect of OPN on photoreceptor cells.


Subject(s)
Cell Hypoxia/drug effects , Epithelial Cells/metabolism , Osmotic Pressure/drug effects , Osteopontin/metabolism , Purinergic Agonists/pharmacology , Receptors, Purinergic/metabolism , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Adenosine Triphosphate/pharmacology , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Hypoxia/genetics , Cells, Cultured , Epithelial Cells/drug effects , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Osteopontin/genetics , Osteopontin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phospholipases A2/metabolism , RNA, Small Interfering , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Sodium Chloride/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Plant Cell Environ ; 43(2): 344-357, 2020 02.
Article in English | MEDLINE | ID: mdl-31762057

ABSTRACT

Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Hordeum/metabolism , Lipids/pharmacology , Osmotic Pressure/drug effects , Osmotic Pressure/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Aquaporins/metabolism , Biological Transport , Hordeum/genetics , Plant Roots/anatomy & histology , Plant Roots/genetics , Proline/metabolism , Transcriptome , Water/metabolism
19.
Toxicol Appl Pharmacol ; 391: 114914, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32032643

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.


Subject(s)
Environmental Pollutants/toxicity , Halogenated Diphenyl Ethers/toxicity , Vasopressins/drug effects , Animals , Animals, Newborn , Female , Hypothalamus/metabolism , Hypothalamus, Anterior/metabolism , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I , Osmoregulation/drug effects , Osmotic Pressure/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Pregnancy , Rats , Rats, Wistar
20.
Biotechnol Bioeng ; 117(12): 3727-3738, 2020 12.
Article in English | MEDLINE | ID: mdl-32749671

ABSTRACT

Microalgae can accumulate a large fraction of reduced carbon as lipids under NaCl stress. This study investigated the mechanism of carbon allocation and reduction and triacylglycerol (TAG) accumulation in microalgae under NaCl-induced stress. Micractinium sp. XJ-2 was exposed to NaCl stress and cells were subjected to physiological, biochemical, and metabolic analyses to elucidate the stress-responsive mechanism. Lipid increased with NaCl concentration after 0-12 hr, then stabilized after 12-48 hr, and finally decreased after 48-72 hr, whereas TAG increased (0-48 hr) and then decreased (48-72 hr). Under NaCl-induced stress at lower concentrations, TAG accumulation, at first, mainly shown to rely on the carbon fixation through photosynthetic fixation, carbohydrate degradation, and membrane lipids remodeling. Moreover, carbon compounds generated by the degradation of some amino acids were reallocated and enhanced fatty acid synthesis. The remodeling of the membrane lipids of NaCl-induced microalgae relied on the following processes: (a) Increase in the amount of phospholipids and reduction in the amount of glycolipids and (b) extension of long-chain fatty acids. This study enhances our understanding of TAG production under NaCl stress and thus will provide a theoretical basis for the industrial application of NaCl-induced in the microalgal biodiesel industry.


Subject(s)
Biofuels , Biomass , Chlorophyta/growth & development , Membrane Lipids/biosynthesis , Microalgae/growth & development , Osmotic Pressure/drug effects , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL