Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Planta ; 260(2): 41, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954109

ABSTRACT

MAIN CONCLUSION: In this study, six ZaBZRs were identified in Zanthoxylum armatum DC, and all the ZaBZRs were upregulated by abscisic acid (ABA) and drought. Overexpression of ZaBZR1 enhanced the drought tolerance of transgenic Nicotiana benthamian. Brassinosteroids (BRs) are a pivotal class of sterol hormones in plants that play a crucial role in plant growth and development. BZR (brassinazole resistant) is a crucial transcription factor in the signal transduction pathway of BRs. However, the BZR gene family members have not yet been identified in Zanthoxylum armatum DC. In this study, six members of the ZaBZR family were identified by bioinformatic methods. All six ZaBZRs exhibited multiple phosphorylation sites. Phylogenetic and collinearity analyses revealed a closest relationship between ZaBZRs and ZbBZRs located on the B subgenomes. Expression analysis revealed tissue-specific expression patterns of ZaBZRs in Z. armatum, and their promoter regions contained cis-acting elements associated with hormone response and stress induction. Additionally, all six ZaBZRs showed upregulation upon treatment after abscisic acid (ABA) and polyethylene glycol (PEG), indicating their participation in drought response. Subsequently, we conducted an extensive investigation of ZaBZR1. ZaBZR1 showed the highest expression in the root, followed by the stem and terminal bud. Subcellular localization analysis revealed that ZaBZR1 is present in the cytoplasm and nucleus. Overexpression of ZaBZR1 in transgenic Nicotiana benthamiana improved seed germination rate and root growth under drought conditions, reducing water loss rates compared to wild-type plants. Furthermore, ZaBZR1 increased proline content (PRO) and decreased malondialdehyde content (MDA), indicating improved tolerance to drought-induced oxidative stress. The transgenic plants also showed a reduced accumulation of reactive oxygen species. Importantly, ZaBZR1 up-regulated the expression of drought-related genes such as NbP5CS1, NbDREB2A, and NbWRKY44. These findings highlight the potential of ZaBZR1 as a candidate gene for enhancing drought resistance in transgenic N. benthamiana and provide insight into the function of ZaBZRs in Z. armatum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Plants, Genetically Modified , Zanthoxylum , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Zanthoxylum/genetics , Zanthoxylum/physiology , Zanthoxylum/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Multigene Family , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Drought Resistance
2.
BMC Plant Biol ; 23(1): 7, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36600201

ABSTRACT

BACKGROUND: Heat stress has adverse effects on the growth and reproduction of plants. Zygophyllum xanthoxylum, a typical xerophyte, is a dominant species in the desert where summer temperatures are around 40 °C. However, the mechanism underlying the thermotolerance of Z. xanthoxylum remained unclear. RESULTS: Here, we characterized the acclimation of Z. xanthoxylum to heat using a combination of physiological measurements and transcriptional profiles under treatments at 40 °C and 45 °C, respectively. Strikingly, moderate high temperature (40 °C) led to an increase in photosynthetic capacity and superior plant performance, whereas severe high temperature (45 °C) was accompanied by reduced photosynthetic capacity and inhibited growth. Transcriptome profiling indicated that the differentially expressed genes (DEGs) were related to transcription factor activity, protein folding and photosynthesis under heat conditions. Furthermore, numerous genes encoding heat transcription shock factors (HSFs) and heat shock proteins (HSPs) were significantly up-regulated under heat treatments, which were correlated with thermotolerance of Z. xanthoxylum. Interestingly, the up-regulation of PSI and PSII genes and the down-regulation of chlorophyll catabolism genes likely contribute to improving plant performance of Z. xanthoxylum under moderate high temperature. CONCLUSIONS: We identified key genes associated with of thermotolerance and growth in Z. xanthoxylum, which provide significant insights into the regulatory mechanisms of thermotolerance and growth regulation in Z. xanthoxylum under high temperature conditions.


Subject(s)
Thermotolerance , Zanthoxylum , Zygophyllum , Thermotolerance/genetics , Sodium/metabolism , Zygophyllum/genetics , Zygophyllum/metabolism , Zanthoxylum/genetics , Transcriptome , Gene Expression Profiling , Heat-Shock Response/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Hot Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Plant Biotechnol J ; 21(1): 78-96, 2023 01.
Article in English | MEDLINE | ID: mdl-36117410

ABSTRACT

Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.


Subject(s)
Zanthoxylum , Genomics , Zanthoxylum/genetics , Zanthoxylum/metabolism , Genome, Plant , Evolution, Molecular
4.
Physiol Plant ; 175(5): e14031, 2023.
Article in English | MEDLINE | ID: mdl-37882301

ABSTRACT

Zanthoxylum bungeanum is an important condiment with high economic value and its peel color is one of the main quality indexes. However, the key pigment compounds and related genes are still unclear affecting the quality control of the plants. In this study, the contents of four types of pigments were measured in Z. bungeanum and flavonoids were identified as the most important pigments. Based on the targeted flavonoid metabolomics of Z. bungeanum peels, 14 key pigment compounds were screened out from 152 flavonoids, among which cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside were the most critical compounds for peel color. They were further verified to be present in nine varieties of Z. bungeanum by HPLC fingerprints. The 14 compounds were all associated with flavonoid and anthocyanin biosynthesis pathways and the 39 differentially expressed genes related to these pathways were annotated and screened based on transcriptomics. The genes ZbDFR, ZbANS, and ZbUFGT were identified as three key genes for anthocyanin synthesis in Z. bungeanum peels. Further qRT-PCR results confirmed the reliability of transcriptomics and the accuracy of gene screening. Subsequent protein induced expression demonstrated that ZbANS and ZbUFGT were expressed after 12 h induced by IPTG while ZbDFR was expressed after 15 h. Further transient and stable transformation analysis confirmed that both anthocyanin content and the expression of ZbDFR were significantly increased in overexpression Z. bungeanum leaves and Nicotiana benthamiana. The functional effect of stable transformation of ZbDFR was more significant than that of transient transformation with a 7.67-fold/1.49-fold difference in total anthocyanin content and a 42.37-fold/12.32-fold difference in the expression of ZbDFR. This study provides new insights into the chemical composition and the molecular mechanisms of Z. bungeanum peel color and lays an effective foundation for the color quality control, multi-purpose utilization of Z. bungeanum and the creation of new germplasm.


Subject(s)
Zanthoxylum , Zanthoxylum/genetics , Zanthoxylum/chemistry , Transcriptome/genetics , Anthocyanins , Reproducibility of Results , Flavonoids
5.
Genomics ; 114(3): 110374, 2022 05.
Article in English | MEDLINE | ID: mdl-35489616

ABSTRACT

Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.


Subject(s)
Arabidopsis , Zanthoxylum , Transcriptome , Zanthoxylum/genetics , Arabidopsis/genetics , Phylogeny , Transcription Factors/genetics
6.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834210

ABSTRACT

Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.


Subject(s)
Transcriptome , Zanthoxylum , Zanthoxylum/genetics , Zanthoxylum/metabolism , Plant Breeding , Metabolome , Flavonoids/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
7.
BMC Genomics ; 23(1): 652, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104767

ABSTRACT

BACKGROUND: Multiprotein bridging factor 1 (MBF1) is a crucial transcriptional coactivator in animals, plants, and some microorganisms, that plays a necessary role in growth development and stress tolerance. Zanthoxylum armatum is an important perennial plant for the condiments and pharmaceutical industries, whereas the potential information in the genes related to stress resistance remains poorly understood in Z. armatum.  RESULTS: Herein, six representative species were selected for use in a genome-wide investigation of the MBF1 family, including Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Citrus sinensis, Ginkgo biloba, and Z. armatum. The results showed that the MBF1 genes could be divided into two groups: Group I contained the MBF1a and MBF1b subfamilies, and group II was independent of the MBF1c subfamily.. Most species have at least two different MBF1 genes, and MBF1c is usually an essential member. The three ZaMBF1 genes were respectively located on ZaChr26, ZaChr32, and ZaChr4 of Zanthoxylum chromosomes. The collinearity were occurred between three ZaMBF1 genes, and ZaMBF1c showed the collinearity between Z. armatum and both P. trichocarpa and C. sinensis. Moreover, many cis-elements associated with abiotic stress and phytohormone pathways were detected in the promoter regions of MBF1 of six representative species. The ERF binding sites were the most abundant targets in the sequences of the ZaMBF1 family, and some transcription factor sites related to floral differentiation were also identified in ZaMBF1c, such as MADS, LFY, Dof, and AP2. ZaMBF1a was observed to be very highly expressed in 25 different samples except in the seeds, and ZaMBF1c may be associated with the male and female floral initiation processes. In addition, expression in all the ZaMBF1 genes could be significantly induced by water-logging, cold stress, ethephon, methyl jasmonate, and salicylic acid treatments, especially in ZaMBF1c. CONCLUSION: The present study carried out a comprehensive bioinformatic investigation related to the MBF1 family in six representative species, and the responsiveness of ZaMBF1 genes to various abiotic stresses and phytohormone inductions was also revealed. This work not only lays a solid foundation to uncover the biological roles of the ZaMBF1 family in Z. armatum, but also provides some broad references for conducting the MBF1 research in other plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Zanthoxylum , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zanthoxylum/genetics , Zanthoxylum/metabolism
8.
BMC Plant Biol ; 22(1): 251, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35596133

ABSTRACT

BACKGROUND: Flavonoids have strong free radical scavenging and antioxidant capacity. The high abundance of flavonoids in Chinese prickly ash peels have many benefits to human health. In this study, 'Hancheng Dahongpao', a main cultivar, was taken as materials to investigate the flavonoids biosynthesis mechanism of Zanthoxylum bungeanum Maxim at three key development stages by integration of metabolomics and transcriptomics analysis. RESULTS: A total of 19 differentially accumulated metabolites were identified, the key flavonoids compounds were kaempferol, quercetin and their glycoside derivatives, and two major anthocyanins (peonidin O-hexoside and peonidin 3-O-glucoside). 5 gene networks/modules including 15 important candidate genes were identified, which was highly correlated with flavonoids. Among these genes, ZM-163828 and ZM-184209 were strongly correlated with kaempferol and quercetin, and ZM-125833 and ZM-97481 were controlled the anthocyanins biosynthesis. Moreover, it was shown that MYB-ZM1, MYB-ZM3, MYB-ZM5, MYB-ZM6 and MYB-ZM7 coordinately controlled flavonoids accumulation through regulating the structural genes. CONCLUSIONS: Generally, this study systematically revealed the flavonoids metabolic pathways and candidate genes involved in flavonoids biosynthesis and laid a foundation for the potential targets for the breeding of new valuable Chinese prickly ash cultivars.


Subject(s)
Anthocyanins , Zanthoxylum , Anthocyanins/metabolism , Flavonoids/metabolism , Kaempferols/metabolism , Metabolomics , Plant Breeding , Quercetin/metabolism , Transcriptome , Zanthoxylum/genetics
9.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216434

ABSTRACT

Zanthoxylum bungeanum is one of the most important medicinal and edible homologous plants because of its potential health benefits and unique flavors. The chemical components in compositions and contents vary with plant genotype variations and various environmental stress conditions. Fatty acids participate in various important metabolic pathways in organisms to resist biotic and abiotic stresses. To determine the variations in metabolic profiling and genotypes, the fatty acid profiling and key differential genes under low temperature stress in two Z. bungeanum varieties, cold-tolerant (FG) and sensitive (FX), were investigated. Twelve main fatty acids were found in two Z. bungeanum varieties under cold stress. Results showed that the contents of total fatty acids and unsaturated fatty acids in FG were higher than those in FX, which made FG more resistant to low temperature. Based on the result of orthogonal partial least squares discriminant analysis, palmitic acid, isostearic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FG under cold stress, while isomyristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FX. Furthermore, fatty acid synthesis pathway genes fatty acyl-ACP thioesterase A (FATA), Delta (8)-fatty-acid desaturase 2 (SLD2), protein ECERIFERUM 3 (CER3), fatty acid desaturase 3 (FAD3) and fatty acid desaturase 5 (FAD5) played key roles in FG, and SLD2, FAD5, 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS I), fatty acyl-ACP thioesterase B (FATB) and acetyl-CoA carboxylase (ACC) were the key genes responding to low temperature in FX. The variation and strategies of fatty acids in two varieties of Z. bungeanum were revealed at the metabolic and molecular level. This work provides a reference for the study of chemical components in plant stress resistance.


Subject(s)
Fatty Acids/genetics , Genes, Plant/genetics , Zanthoxylum/genetics , Gene Expression/genetics , Temperature
10.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012309

ABSTRACT

Growth-regulating factors (GRFs) are plant-specific transcription factors that play an important role in plant growth and development. In this study, fifteen GRF gene members containing QLQ and WRC domains were identified in Zanthoxylum armatum. Phylogenetic and collinearity analysis showed that ZaGRFs were closely related to CsGRFs and AtGRFs, and distantly related to OsGRFs. There are a large number of cis-acting elements related to hormone response and stress induction in the GRF gene promoter region of Z. armatum. Tissue-specific expression analysis showed that except for ZaGRF7, all the ZaGRFs were highly expressed in young parts with active growth and development, including terminal buds, seeds, and young flowers, suggesting their key roles in Z. armatum growth and development. Eight ZaGRFs were selected to investigate the transcriptional response to auxin, gibberellin and drought treatments. A total of six ZaGRFs in the NAA treatment, four ZaGRFs in the GA3 treatment, and six ZaGRFs in the PEG treatment were induced and significantly up-regulated. Overexpression of ZaGRF6 increased branching and chlorophyll content and delayed senescence of transgenic Nicotiana benthamiana. ZaGRF6 increased the expression of CRF2 and suppressed the expression of ARR4 and CKX1, indicating that ZaGRF6 is involved in cytokinin metabolism and signal transduction. These research results lay a foundation for further analysis of the GRF gene function of Z. armatum and provide candidate genes for growth, development, and stress resistance breeding of Z. armatum.


Subject(s)
Zanthoxylum , Longevity , Phylogeny , Plant Breeding , Plant Extracts/pharmacology , Plant Leaves , Zanthoxylum/genetics
11.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563160

ABSTRACT

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.


Subject(s)
Droughts , Zanthoxylum , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Zanthoxylum/genetics , Zanthoxylum/metabolism
12.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269793

ABSTRACT

Pericarp color is an important economic characteristic of Zanthoxylum bungeanum. Anthocyanins are the main reason for the pericarp's red appearance in Z. bungeanum. In this study, through the combined analysis of the metabolome and transcriptome, HY5, whose expression is highly correlated to changes in the anthocyanin content, was screened and identified. Under natural ripening conditions, the Z. bungeanum fruit gradually changed in color from green to red, while bagging resulted in the fruit maintaining its green color. After unbagging, the fruit gradually turned red, and the ZbHY5 expression and anthocyanin content increased. In addition, the leaves changed from green to red after exposure to UV-B radiation, and the ZbHY5 expression and anthocyanin content increased. The transient overexpression of ZbHY5 deepened the redness of the Z. bungeanum leaves and promoted the expression of ZbHY5 and ZbMYB113 as well as anthocyanin accumulation. Bimolecular fluorescence complementation (BIFC) showed that there was an interaction between ZbHY5 and ZbMYB113. These results revealed that under UV-B irradiation, ZbHY5 might regulate the expression levels of the structural genes related to anthocyanin biosynthesis through combination with ZbMYB113, thereby affecting anthocyanin accumulation. This finding provides useful insights for further studies focusing on UV-B-induced anthocyanin accumulation in Z. bungeanum.


Subject(s)
Anthocyanins , Zanthoxylum , Anthocyanins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Zanthoxylum/genetics , Zanthoxylum/metabolism
13.
BMC Plant Biol ; 21(1): 178, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33849456

ABSTRACT

BACKGROUND: Apomixis is a form of asexual reproduction that produces offspring without the need for combining male and female gametes, and the offspring have the same genetic makeup as the mother. Therefore, apomixis technology has great application potential in plant breeding. To identify the apomixis types and critical period, embryonic development at different flower development stages of Zanthoxylum bungeanum was observed by cytology. RESULTS: The results show that the S3 stage is the critical period of apomixis, during which the nucellar cells develop into an adventitious primordial embryo. Cytological observations showed that the type of apomixis in Z. bungeanum is sporophytic apomixis. Furthermore, miRNA sequencing, miRNA-target gene interaction, dual luciferase reporter assay, and RT-qPCR verification were used to reveal the dynamic regulation of miRNA-target pairs in Z. bungeanum apomixis. The miRNA sequencing identified 96 mature miRNAs, of which 40 were known and 56 were novel. Additionally, 29 differentially expressed miRNAs were screened according to the miRNAs expression levels at the different developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that the target genes of the differentially expressed miRNAs were mainly enriched in plant hormone signal transduction, RNA biosynthetic process, and response to hormone pathways. CONCLUSIONS: During the critical period of apomictic embryonic development, miR172c significantly reduces the expression levels of TOE3 and APETALA 2 (AP2) genes, thereby upregulating the expression of the AGAMOUS gene. A molecular regulation model of miRNA-target pairs was constructed based on their interactions and expression patterns to further understand the role of miRNA-target pairs in apomixis. Our data suggest that miR172c may regulates AGAMOUS expression by inhibiting TOE3 in the critical period of apomixis.


Subject(s)
Apomixis/genetics , Flowers/growth & development , MicroRNAs/genetics , RNA, Plant/genetics , Seeds/embryology , Zanthoxylum/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Breeding , Sequence Analysis, RNA , Zanthoxylum/embryology , Zanthoxylum/genetics
14.
Ann Bot ; 128(4): 497-510, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34250543

ABSTRACT

BACKGROUND AND AIMS: Zanthoxylum is the only pantropical genus within Rutaceae, with a few species native to temperate eastern Asia and North America. Efforts using Sanger sequencing failed to resolve the backbone phylogeny of Zanthoxylum. In this study, we employed target-enrichment high-throughput sequencing to improve resolution. Gene trees were examined for concordance and sectional classifications of Zanthoxylum were evaluated. Off-target reads were investigated to identify putative single-copy markers for bait refinement, and low-copy markers for evidence of putative hybridization events. METHODS: A custom bait set targeting 354 genes, with a median of 321 bp, was designed for Zanthoxylum and applied to 44 Zanthoxylum species and one Tetradium species as the outgroup. Illumina reads were processed via the HybPhyloMaker pipeline. Phylogenetic inferences were conducted using coalescent and maximum likelihood methods based on concatenated datasets. Concordance was assessed using quartet sampling. Additional phylogenetic analyses were performed on putative single and low-copy genes extracted from off-target reads. KEY RESULTS: Four major clades are supported within Zanthoxylum: the African clade, the Z. asiaticum clade, the Asian-Pacific-Australian clade and the American-eastern Asian clade. While overall support has improved, regions of conflict are similar to those previously observed. Gene tree discordances indicate a hybridization event in the ancestor of the Hawaiian lineage, and incomplete lineage sorting in the American backbone. Off-target putative single-copy genes largely confirm on-target results, and putative low-copy genes provide additional evidence for hybridization in the Hawaiian lineage. Only two of the five sections of Zanthoxylum are resolved as monophyletic. CONCLUSIONS: Target enrichment is suitable for assessing phylogenetic relationships in Zanthoxylum. Our phylogenetic analyses reveal that current sectional classifications need revision. Quartet tree concordance indicates several instances of reticulate evolution. Off-target reads are proven useful to identify additional phylogenetically informative regions for bait refinement or gene tree based approaches.


Subject(s)
Rutaceae , Zanthoxylum , Australia , Hybridization, Genetic , Phylogeny , Zanthoxylum/genetics
15.
BMC Genomics ; 21(1): 81, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992199

ABSTRACT

BACKGROUND: Zanthoxylum armatum (Z. armatum) is a highly economically important tree that presents a special numbing taste. However, the underlying regulatory mechanism of the numbing taste remains poorly understood. Thus, the elucidation of the key genes associated with numbing taste biosynthesis pathways is critical for providing genetic information on Z. armatumand the breeding of high-quality germplasms of this species. RESULTS: Here, de novo transcriptome assembly was performed for the five major organs of Z. armatum, including the roots, stems, leaf buds, mature leaves and fruits. A total of 111,318 unigenes were generated with an average length of 1014 bp. Additionally, a large number of SSRs were obtained to improve our understanding of the phylogeny and genetics of Z. armatum. The organ-specific unigenes of the five major samples were screened and annotated via GO and KEGG enrichment analysis. A total of 53 and 34 unigenes that were exclusively upregulated in fruit samples were identified as candidate unigenes for terpenoid biosynthesis or fatty acid biosynthesis, elongation and degradation pathways, respectively. Moreover, 40 days after fertilization (Fr4 stage) could be an important period for the accumulation of terpenoid compounds during the fruit development and maturation of Z. armatum. The Fr4 stage could be a key point at which the first few steps of the fatty acid biosynthesis process are promoted, and the catalysis of subsequent reactions could be significantly induced at 62 days after fertilization (Fr6 stage). CONCLUSIONS: The present study realized de novo transcriptome assembly for the five major organs of Z. armatum. To the best of our knowledge, this study provides the first comprehensive analysis revealing the genes underlying the special numbing taste of Z. armatum. The assembled transcriptome profiles expand the available genetic information on this species and will contribute to gene functional studies, which will aid in the engineering of high-quality cultivars of Z. armatum.


Subject(s)
Fatty Acids/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism , Terpenes/metabolism , Transcriptome , Zanthoxylum/genetics , Zanthoxylum/metabolism , Biosynthetic Pathways , Computational Biology/methods , Microsatellite Repeats , Molecular Sequence Annotation , Organ Specificity
16.
Genomics ; 111(4): 973-979, 2019 07.
Article in English | MEDLINE | ID: mdl-30003944

ABSTRACT

High-throughput RNA sequencing has revolutionized transcriptome-based studies of candidate genes, key pathways and gene regulation in non-model organisms. We analyzed full-length cDNA sequences in Zanthoxylum planispinum (Z. planispinum), a medicinal herb in major parts of East Asia. The full-length mRNA derived from tissues of leaf, early fruit and maturing fruit stage were sequenced using PacBio RSII platform to identify isoform transcriptome. We obtained 51,402 unigenes, with average 1781 bp per gene in 82.473 Mb gene lengths. Among 51,402, 3963 unigenes showed variety of isoform. By selection of one representative gene among each of the various isoforms, we finalized 46,306 unique gene set for this herb. We identified 76 cytochrome P450 (CYP450) and related isoforms that are of the wide diversity in the molecular function and biological process. These transcriptome data of Z. planispinum will provide a good resource to study metabolic engineering for the production of valuable medicinal drugs and phytochemicals.


Subject(s)
Plants, Medicinal/genetics , Sequence Analysis, RNA/methods , Transcriptome , Zanthoxylum/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal/metabolism , Zanthoxylum/metabolism
17.
J Sci Food Agric ; 99(4): 2021-2029, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30370936

ABSTRACT

BACKGROUND: To ensure the safety, quality and therapeutic efficacy of processed foods and herbal medicines, it is important to identify and discriminate economically motivated adulterants. Zanthoxylum schinifolium is sold at a higher price than other Zanthoxylum species and is frequently adulterated with closely related Zanthoxylum species because of its high demand as a Korean food ingredient and medicinal material in markets. In addition, the pericarps of three Zanthoxylum species (Z. schinifolium, Z. bungeanum and Z. piperitum) are defined as herbal medicine Zanthoxyli Pericarpium in Korean pharmacopoeias, but not Z. piperitum in Chinese pharmacopoeias. Further confusion arises in the morphological similarity between Z. armatum (adulterant) and Z. bungeanum. Therefore, the aim of this study was to develop a sequence characterized amplified region (SCAR) marker for discrimination of four Zanthoxylum species. RESULTS: With the goal of developing rapid and reliable tools for genetic discrimination of authentic Zanthoxyli Pericarpium, we designed species-specific SCAR markers, based on ITS2 sequences, that generate amplicons of less than 200 bp. Using these markers, we established both conventional and real-time PCR assay methods capable of differentiating samples at the species level. We validated the ability of SCAR markers to authenticate edible oil and herbal medicine, and confirmed that some herbal medicines contaminated with Z. armatum are being distributed as Zanthoxyli Pericarpium in Korean and Chinese markets. CONCLUSIONS: The SCAR markers and PCR methods described represent powerful tools for protecting against adulteration and ensuring standardization of processed foods and herbal medicine. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Plant Oils/analysis , Plants, Medicinal/genetics , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Zanthoxylum/genetics , Discriminant Analysis , Drug Contamination , Genetic Markers/genetics , Plants, Medicinal/chemistry , Plants, Medicinal/classification , Zanthoxylum/chemistry , Zanthoxylum/classification
18.
Genome ; 61(9): 699-702, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30067086

ABSTRACT

Fluorescence in situ hybridization (FISH) using oligonucleotide probes for (GAA)6 (18 bp) and ribosomal DNA (rDNA) (5S rDNA, 41 bp) was applied to analyse Zanthoxylum armatum. (GAA)6 loci were detected on the pericentromeric regions of five chromosome pairs, and 5S rDNA loci were also detected on the pericentromeric regions of another two chromosome pairs. The densities and locations of (GAA)6 and 5S rDNA signals varied between individual chromosomes. High-intensity (GAA)6 signals were detected at the centromeres of two large and two smaller metacentric chromosomes. Relatively strong (GAA)6 signals were detected at the centromeres of two relatively small metacentric chromosomes, although strong 5S rDNA signals were detected at the centromeres of two additional smaller metacentric chromosomes. Weak (GAA)6 signals were detected at the centromeres of four large metacentric chromosomes, whereas weak 5S rDNA signals were detected at the centromeres of two smaller metacentric chromosomes. The remaining chromosomes exhibited no signals. Zanthoxylum armatum had 2n = ∼128. The lengths of the mitotic metaphase chromosomes ranged from 1.22 to 2.34 µm. Our results provide information that may be beneficial for future cytogenetic studies and could contribute to the physical assembly of the Zanthoxylum genome.


Subject(s)
Chromosomes, Plant/genetics , RNA, Ribosomal, 5S/genetics , Trinucleotide Repeats , Zanthoxylum/genetics , Centromere/genetics , In Situ Hybridization, Fluorescence
19.
Chem Biodivers ; 15(10): e1800251, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30092617

ABSTRACT

The authentication and traceability of spices is a major concern for industrials and consumers. We focused on species from Zanthoxylum genera which are used for many different applications by local populations and also for trading as spices (dried pericarps or whole fruits). In this case, literature gives contradictory data about botanical names, and commercial labelling is often confusing. We studied commercial fruits pericarps extracts obtained by supercritical CO2 and analyzed them by GC/MS. The very complex volatile and semi volatile fractions composition of each extract is described. The barcoding method including molecular biology and phylogenetic analyses was also developed in order to check the commercial botanical identification of the raw material. This is a robust method to identify species in berries samples. We used one genetic marker to identify two Rutaceae clusters, including several species of Zanthoxylum genus. These results indicate that Fagara and Zanthoxylum groups could be considered as two different genera. Combination of chemical analysis and DNA analysis provides an original approach to increase chemical and botanical Zanthoxylum genus knowledge.


Subject(s)
DNA, Plant/genetics , Phylogeny , Zanthoxylum/chemistry , Zanthoxylum/genetics , DNA, Plant/analysis , DNA, Plant/classification , Fruit/chemistry , Fruit/classification , Fruit/genetics , Gas Chromatography-Mass Spectrometry , Plant Extracts/chemistry , Plant Extracts/classification , Plant Extracts/genetics , Rutaceae/chemistry , Rutaceae/classification , Rutaceae/genetics , Zanthoxylum/classification
20.
Int J Mol Sci ; 20(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586928

ABSTRACT

The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Zanthoxylum bungeanum, a total of 38 ZbWRKY were identified and these were then classified and identified with Arabidopsis WRKY. Using bioinformatics analyses based on the structural characteristics of the conservative domain, 38 WRKY transcription factors were identified and categorized into three groups: Groups I, II, and III. Of these, Group II can be divided into four subgroups: subgroups IIb, IIc, IId, and IIe. No ZbWRKY members of subgroup IIa were found in the sequencing data. In addition, 38 ZbWRKY were identified by real-time PCR to determine the behavior of this family of genes under drought stress. Twelve ZbWRKY transcription factors were found to be significantly upregulated under drought stress and these were identified by relative quantification. As predicted by the STRING website, the results show that the WRKYs are involved in four signaling pathways-the jasmonic acid (JA), the salicylic acid (SA), the mitogen-activated protein kinase (MAPK), and the ethylene signaling pathways. ZbWRKY33 is the most intense transcription factor in response to drought stress. We predict that WRKY33 binds directly to the ethylene synthesis precursor gene ACS6, to promote ethylene synthesis. Ethylene then binds to the ethylene activator release signal to activate a series of downstream genes for cold stress and osmotic responses. The roles of ZbWRKY transcription factors in drought stress rely on a regulatory network center on the JA signaling pathway.


Subject(s)
Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Zanthoxylum/metabolism , Amino Acid Sequence , Computational Biology , Cyclopentanes/metabolism , Droughts , Ethylenes/metabolism , Lyases/genetics , Mitogen-Activated Protein Kinases/metabolism , Oxylipins/metabolism , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Salicylic Acid/metabolism , Sequence Alignment , Signal Transduction , Transcription Factors/classification , Transcription Factors/genetics , Zanthoxylum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL