Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 337: 117706, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933533

RESUMEN

The present study was done to investigate and compare the photocatalytic and antibacterial activity of two in situ Manganese doped ternary nanocomposites. The dual ternary hybrid systems comprised Mn-doped Ag2WO4 coupled with MoS2-GO and Mn-doped MoS2 coupled with Ag2WO4-GO. Both hierarchical alternate Mn-doped ternary heterojunctions formed efficient plasmonic catalysts for wastewater treatment. The novel nanocomposites were well-characterized using XRD, FTIR, SEM-EDS, HR-TEM, XPS, UV-VIS DRS, and PL techniques confirming the successful insertion of Mn+2 ions in respective host substrates. The bandgap of the ternary nanocomposites evaluated by the tauc plot showed them visible light-active nanocomposites. The photocatalytic ability of both Mn-doped coupled nanocomposites was investigated against the dye methylene blue. Both ternary nanocomposites showed excellent sunlight harvesting ability for dye degradation in 60 min. The maximum catalytic efficiency of both photocatalysts was obtained at a solution pH value of 8, photocatalyst dose and oxidant dose of 30 mg/100 mL and 1 mM for Mn-Ag2WO4/MoS2-GO, 50 mg/100 mL, 3 mM for Mn-MoS2/Ag2WO4-GO keeping IDC of 10 ppm for all photocatalysts. The nanocomposites showed excellent photocatalytic stability after five successive cycles. The response surface methodology was used as a statistical tool for the evaluation of the photocatalytic response of several interacting parameters for dye degradation by ternary composites. The antibacterial activity was determined by the inactivation of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria by support-based doped ternary hybrids.


Asunto(s)
Molibdeno , Nanocompuestos , Luz , Antibacterianos/farmacología , Luz Solar , Nanocompuestos/química , Catálisis
2.
Med Chem Res ; 32(6): 1077-1086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305207

RESUMEN

Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.

3.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502215

RESUMEN

Metaheuristic algorithms are effectively used in searching some optical solution space. for optical solution. It is basically the type of local search generalization that can provide useful solutions for issues related to optimization. Several benefits are associated with this type of algorithms due to that such algorithms can be better to solve many issues in an effective way. To provide fast and accurate solutions to huge range of complex issues is one main benefit metaheuristic algorithms. Some metaheuristic algorithms are effectively used to classify the problems and BAT Algorithm (BA) is one of them is more popular in use to sort out issues related to optimization of theoretical and realistic. Sometimes BA fails to find global optima and gets stuck in local optima because of the absence of investigation and manipulation. We have improved the BA to boost its local searching ability and diminish the premature problem. An improved equation of search with more necessary information through the search is set for the generation of the solution. Test set of benchmark functions are utilized to verify the proposed method's performance. The results of simulation showed that proposed methods are best optimal solution as compare to others.


Asunto(s)
Algoritmos , Benchmarking , Simulación por Computador , Frecuencia Cardíaca
4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232944

RESUMEN

Urease is an amidohydrolase enzyme that is responsible for fatal morbidities in the human body, such as catheter encrustation, encephalopathy, peptic ulcers, hepatic coma, kidney stone formation, and many others. In recent years, scientists have devoted considerable efforts to the quest for efficient urease inhibitors. In the pharmaceutical chemistry, the thiourea skeleton plays a vital role. Thus, the present work focused on the development and discovery of novel urease inhibitors and reported the synthesis of a set of 1-aroyl-3-[3-chloro-2-methylphenyl] thiourea hybrids with aliphatic and aromatic side chains 4a-j. The compounds were characterized by different analytical techniques including FT-IR, 1H-NMR, and 13C-NMR, and were evaluated for in-vitro enzyme inhibitory activity against jack bean urease (JBU), where they were found to be potent anti-urease inhibitors and the inhibitory activity IC50 was found in the range of 0.0019 ± 0.0011 to 0.0532 ± 0.9951 µM as compared to the standard thiourea (IC50 = 4.7455 ± 0.0545 µM). Other studies included density functional theory (DFT), antioxidant radical scavenging assay, physicochemical properties (ADMET properties), molecular docking and molecular dynamics simulations. All compounds were found to be more active than the standard, with compound 4i exhibiting the greatest JBU enzyme inhibition (IC50 value of 0.0019 ± 0.0011 µM). The kinetics of enzyme inhibition revealed that compound 4i exhibited non-competitive inhibition with a Ki value of 0.0003 µM. The correlation between DFT experiments with a modest HOMO-LUMO energy gap and biological data was optimal. These recently identified urease enzyme inhibitors may serve as a starting point for future research and development.


Asunto(s)
Antioxidantes , Tiourea , Antioxidantes/farmacología , Canavalia/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Tiourea/química , Tiourea/farmacología , Ureasa/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361953

RESUMEN

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Asunto(s)
Monofenol Monooxigenasa , Ribonucleótido Reductasas , Tionas/farmacología , Simulación del Acoplamiento Molecular , Acetofenonas/farmacología , ADN
6.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235300

RESUMEN

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Asunto(s)
Fosfatasa Alcalina , Bromo , Fosfatasa Alcalina/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
7.
Mol Divers ; 25(3): 1701-1715, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32862361

RESUMEN

The work presented in this paper aims toward the synthesis of aryl thiourea derivatives 4a-l of pyrazole based nonsteroidal anti-inflammatory drug named 4-aminophenazone, as potential inhibitors of intestinal alkaline phosphatase enzyme. The screening of synthesized target compounds 4a-l for unraveling the anti-inflammatory potential against calf intestinal alkaline phosphatase gives rise to lead member 4c possessing IC50 value 0.420 ± 0.012 µM, many folds better than reference standard used (KH2PO4 IC50 = 2.8 ± 0.06 µM and L-phenylalanine IC50 = 100 ± 3.1 µM). SAR for unfolding the active site binding pocket interaction along with the mode of enzyme inhibition based on kinetic studies is carried out which showed non-competitive binding mode. The enzyme inhibition studies were further supplemented by molecular dynamic simulations for predicting the protein behavior against active inhibitors 4c and 4g during docking analysis. The preliminary toxicity of the synthesized compounds was determined by using brine shrimp assay. This work also includes detailed biochemical analysis along with RO5 parameters for all the newly synthesized drug derivatives 4a-l.


Asunto(s)
Fosfatasa Alcalina/química , Aminopirina/química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tiourea/química , Aminopirina/análogos & derivados , Sitios de Unión , Fenómenos Químicos , Técnicas de Química Sintética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Cinética , Estructura Molecular , Unión Proteica , Solventes , Análisis Espectral , Relación Estructura-Actividad , Tiourea/síntesis química , Tiourea/farmacología
8.
Molecules ; 26(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922836

RESUMEN

Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver-Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Relación Estructura-Actividad
9.
Bioorg Chem ; 94: 103445, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826809

RESUMEN

In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Melaninas/antagonistas & inhibidores , Monofenol Monooxigenasa/antagonistas & inhibidores , Piperazina/farmacología , Amidas/síntesis química , Amidas/química , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Melaninas/metabolismo , Modelos Moleculares , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Piperazina/síntesis química , Piperazina/química , Relación Estructura-Actividad , Pez Cebra
10.
Bioorg Chem ; 90: 103108, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31284102

RESUMEN

Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides 9a-j were synthesized as alkaline phosphatase inhibitors. Phenyl acetic acid 1 through a series of reactions was converted into 5-benzyl-1,3,4-oxadiazole-2-thione 4. The intermediate oxadiazole 4 was then reacted with chloroacetyl derivatives of phenols 6a-f and anilines derivatives 8a-d to afford the title oxadiazole derivatives 9a-j. All of the title compounds 9a-j were evaluated for their inhibitory activity against human alkaline phosphatise (ALP). It was found that compounds 9a-j exhibited good to excellent alkaline phosphatase inhibitory activity especially 9h displayed potent activity with IC50 value 0.420 ±â€¯0.012 µM while IC50 value of standard (KH2PO4) was 2.80 µM. The enzyme inhibitory kinetics of most potent inhibitor 9h was determined by Line-weaever Burk plots showing non-competitive mode of binding with enzyme. Molecular docking studies were performed against alkaline phosphatase enzyme (1EW2) to check the binding affinity of the synthesized compounds 9a-j against target protein. The compound 9h exhibited excellent binding affinity having binding energy value (-7.90 kcal/mol) compared to other derivatives. The brine shrimp viability assay results proved that derivative 9h was non-toxic at concentration used for enzyme assay. The lead compound 9h showed LD50 106.71 µM while the standard potassium dichromate showed LD50 0.891 µM. The DNA binding interactions of the synthesized compound 9h was also determined experimentally by spectrophotometric and electrochemical methods. The compound 9h was found to bind with grooves of DNA as depicted by both UV-Vis spectroscopy and cyclic voltammetry with binding constant values 7.83 × 103 and 7.95 × 103 M-1 respectively revealing significant strength of 9h-DNA complex. As dry lab and wet lab results concise each other it was concluded that synthesized compounds, especially compound 9h may serve as lead compound to design most potent inhibitors of human ALP.


Asunto(s)
Acetamidas/química , Fosfatasa Alcalina/antagonistas & inhibidores , Artemia/crecimiento & desarrollo , ADN/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Oxadiazoles/química , Animales , Artemia/efectos de los fármacos , Artemia/enzimología , Supervivencia Celular , Biología Computacional , ADN/química , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
11.
Bioorg Chem ; 90: 103063, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220666

RESUMEN

The enzyme tyrosinase plays a vital role in melanin biosynthesis and enzymatic browning of vegetables and fruits. A series of novel quinolinyl thiourea analogues (11a-j) were synthesized by reaction of 3-aminoquinoline and corresponding isothiocyanates, in moderate to excellent yields with different substitutions and their inhibitory effect on mushroom tyrosinase and free radical scavenging activity were evaluated. The compound N-(quinolin-3-ylcarbamothioyl)hexanamide (11c) exhibited the maximum tyrosinase inhibitory effect (IC50 = 0.0070 ±â€¯0.0098 µM) compared to other derivatives and the reference Kojic acid (IC50 = 16.8320 ±â€¯0.0621 µM). The docking studies were carried out and the compound (11c) showed most negative estimated free energy of -7.2 kcal/mol in mushroom tyrosinase active site. The kinetic analysis revealed that the compound (11c) inhibits the enzyme tyrosinase non-competitively to form the complex of enzyme and inhibitor. The results revealed that 11c could be identified as putative lead compound for the design of efficient tyrosinase inhibitors.


Asunto(s)
Agaricales/enzimología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Tiourea/química , Humanos , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/química , Conformación Proteica , Relación Estructura-Actividad
12.
Bioorg Chem ; 86: 624-630, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30807935

RESUMEN

Selective inhibition of carbonic anhydrase (CA) enzyme is an active area of research for medicinal chemists. In the current account, a hybrid pharmacophore approach was employed to design sulfonamide, amide and amine containing new series of potent carbonic anhydrase II inhibitors. The aromatic fragment associated with pharmacophore was altered suitably in order to find effective inhibitors of CA-II. All the derivatives 4a-4m showed better inhibition compared to the standard acetazolamide. In particular, compound 4l exhibited significant inhibition with IC50 value of 0.01796 ±â€¯0.00036 µM. The chemo-informatics analysis justified that all the designed compounds possess <10 HBA and <5 HBD. The ligands-protein binding analyses showed that 4l confined in the active binding pocket with three hydrogen bonds observed with His63, Asn66 and Thr197 residues.


Asunto(s)
Amidas/farmacología , Aminas/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Quimioinformática , Sulfonamidas/farmacología , Amidas/síntesis química , Amidas/química , Aminas/síntesis química , Aminas/química , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
13.
Bioorg Chem ; 84: 518-528, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30610971

RESUMEN

An efficient one-pot four-component strategy involving aldehydes, amines, alkynes and isothiocyanates has been developed to access a novel series of thiazolidine-2-imines (5a-x). This process operates under the action of a cooperative catalysis composed of Cu(I) and Zn(II) delivering the desired five-membered heterocyclic compounds in good to excellent yields. Notably, this transformation avoids the use of pre-formed imines or propargylamines and proceeds via an intramolecular 5-exo-dig hydrothiolation reaction of the in situ formed propargyl thiourea. Furthermore, the biological application of these motifs was demonstrated in terms of their strong acetylcholinesterase (AChE) inhibitory activity where compound 5s was identified as the lead AChE inhibitor with an IC50 value of 0.0023 ±â€¯0.0002 µM, 88-folds stronger inhibition than standard drug (neostigmine methyl sulphate; IC50 = 0.203 ±â€¯0.004 µM). Molecular docking analysis reinforced the in vitro biological activity results revealing the formation of several useful interactions of the potent lead with amino acid residues in the active site of the enzyme.


Asunto(s)
Inhibidores de la Colinesterasa/síntesis química , Iminas/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Sitios de Unión , Catálisis , Inhibidores de la Colinesterasa/metabolismo , Cobre/química , Humanos , Iminas/metabolismo , Concentración 50 Inhibidora , Conformación Molecular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Termodinámica , Tiazoles/química , Zinc/química
14.
Bioorg Chem ; 84: 170-176, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30502628

RESUMEN

A novel series of silyl-yne containing chalcone derivatives 5a-5j was synthesized by exploiting Sonogashira coupling reaction and Claisen-Schimdt condensation reaction. The synthesized derivative were characterized by spectroscopic and elemental analysis. The selective inhibition of carbonic anhydrases is considered critical in the field of medicinal chemistry because carbonic anhydrases exits in several isoforms. Synthesized compounds were subjected to carbonic anhydrase -II assay. Except 5j, the other derivatives exhibited better potential than standard acetazolamide. Compound 5e was found to be potent derivative in the series with IC50 value 0.054 ±â€¯0.001 µM. Binding analysis revealed that most potent derivative 5e binds in the active site of CA-II and single π-π stacking interaction was observed between ring structure of ligand and Phe129 having bond length 4.90 Å. Pharmacokinetics elicited that compounds obey Lipinski's rule and show significant drug score.


Asunto(s)
Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Picratos/antagonistas & inhibidores , Relación Estructura-Actividad
15.
Bioorg Chem ; 86: 473-481, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30772648

RESUMEN

The increasing resistance of pathogens to common antibiotics, as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications, has stimulated the development of novel classes of molecules that target urease as an enzyme. In this context, the newly developed compounds on the basis of 1-heptanoyl-3-arylthiourea family were evaluated for Jack bean urease enzyme inhibition activity to validate their role as potent inhibitors of this enzyme. 1-Heptanoyl-3-arylthioureas were obtained in excellent yield and characterized through spectral and elemental analysis. All the compounds displayed remarkable potency against urease inhibition as compared to thiourea standard. It was found that novel compounds fulfill the criteria of drug-likeness by obeying Lipinski's rule of five. Particularly compound 4a and 4c can serve as lead molecules in 4D (drug designing discovery and development). Kinetic mechanism and molecular docking studies also carried out to delineate the mode of inhibition and binding affinity of the molecules.


Asunto(s)
Canavalia/enzimología , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Tiourea/farmacología , Ureasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Cinética , Estructura Molecular , Relación Estructura-Actividad , Tiourea/química , Ureasa/metabolismo
16.
Arch Pharm (Weinheim) ; 352(8): e1900061, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31338866

RESUMEN

Elastase is the only enzyme that has the capability to degrade elastin and collagen, the two proteins essential for skin and bones. The synthesis of some densely substituted piperidines functionalized with the trifluoromethyl group (4a-j) was carried out. The newly prepared compounds were subjected to elastase enzyme inhibitory potential and antioxidant activity assays. Among the series, 4i (IC50 = 0.341 ± 0.001 µM) exhibited the maximum inhibition against elastase. Binding analysis delineated that the fluorine atom of ligand 4i showed hydrogen and hydrophobic bonds with Thr41 and Thr96, with bond distances of 3.84 and 5.631 Å, respectively. The obtained results indicate that these trifluoromethyl functionalized piperidine derivatives could be considered as potential candidates to treat skin disorders.


Asunto(s)
Hidrocarburos Fluorados/farmacología , Elastasa Pancreática/antagonistas & inhibidores , Piperidinas/farmacología , Inhibidores de Serina Proteinasa/farmacología , Animales , Relación Dosis-Respuesta a Droga , Hidrocarburos Fluorados/síntesis química , Hidrocarburos Fluorados/química , Ligandos , Modelos Moleculares , Estructura Molecular , Páncreas/enzimología , Elastasa Pancreática/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad , Porcinos
17.
Molecules ; 24(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823444

RESUMEN

A small library of new drug-1,3,4-thiazidazole hybrid compounds (3a⁻3i) was synthesized, characterized, and assessed for their acetyl cholinesterase enzyme (AChE) inhibitory and free radical scavenging activities. The newly synthesized derivatives showed promising activities against AChE, especially compound 3b (IC50 18.1 ± 0.9 nM), which was the most promising molecule in the series, and was substantially more active than the reference drug (neostigmine methyl sulfate; IC50 2186.5 ± 98.0 nM). Kinetic studies were performed to elucidate the mode of inhibition of the enzyme, and the compounds showed mixed-type mechanisms for inhibiting AChE. The Ki of 3b (0.0031 µM) indicates that it can be very effective, even at low concentrations. Compounds 3a⁻3i all complied with Lipinski's Rule of Five, and showed high drug-likeness scores. The pharmacokinetic parameters revealed notable lead-like properties with insignificant liver and skin-penetrating effects. The structure⁻activity relationship (SAR) analysis indicated π⁻π interactions with key amino acid residues related to Tyr124, Trp286, and Tyr341.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Tiadiazoles/química , Relación Estructura-Actividad
18.
Molecules ; 24(8)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999646

RESUMEN

A series of symmetrical salicylaldehyde-bishydrazine azo molecules, 5a-5h, have been synthesized, characterized by 1H-NMR and 13C-NMR, and evaluated for their in vitro α-glucosidase and α-amylase inhibitory activities. All the synthesized compounds efficiently inhibited both enzymes. Compound 5g was the most potent derivative in the series, and powerfully inhibited both α-glucosidase and α-amylase. The IC50 of 5g against α-glucosidase was 0.35917 ± 0.0189 µM (standard acarbose IC50 = 6.109 ± 0.329 µM), and the IC50 value of 5g against α-amylase was 0.4379 ± 0.0423 µM (standard acarbose IC50 = 33.178 ± 2.392 µM). The Lineweaver-Burk plot indicated that compound 5g is a competitive inhibitor of α-glucosidase. The binding interactions of the most active analogues were confirmed through molecular docking studies. Docking studies showed that 5g interacts with the residues Trp690, Asp548, Arg425, and Glu426, which form hydrogen bonds to 5g with distances of 2.05, 2.20, 2.10 and 2.18 Å, respectively. All compounds showed high mutagenic and tumorigenic behaviors, and only 5e showed irritant properties. In addition, all the derivatives showed good antioxidant activities. The pharmacokinetic evaluation also revealed promising results.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química , alfa-Glucosidasas/química , Animales , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Estructura Molecular , Porcinos
19.
Bioorg Med Chem ; 26(12): 3707-3715, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29884581

RESUMEN

To seek the new medicinal potential of sulfadiazine drug, the free amino group of sulfadiazine was exploited to obtain acyl/aryl thioureas using simple and straightforward protocol. Acyl/aryl thioureas are well recognized bioactive pharmacophore containing moieties. A new series (4a-4j) of sulfadiazine derived acyl/aryl thioureas was synthesized and characterized through spectroscopic and elemental analysis. The synthesized derivatives 4a-4j were subjected to calf intestinal alkaline phosphatase (CIAP) activity. The derivative 4a-4j showed better inhibition potential compared to standard monopotassium phosphate (MKP). The compound 4c exhibited higher potential in the series with IC50 0.251 ±â€¯0.012 µM (standard KH2PO4 4.317 ±â€¯0.201 µM). Lineweaver-Burk plots revealed that most potent derivative 4c inhibition CIAP via mixed type pathway. Pharmacological investigations showed that synthesized compounds 4a-4j obey Lipinsk's rule. ADMET parameters evaluation predicted that these molecule show significant lead like properties with minimum possible toxicity and can serve as templates in drug designing. The synthetic compounds show none mutagenic and irritant behavior. Molecular docking analysis showed that compound 4c interacts with Asp273, His317 and Arg166 amino acid residues.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Sulfadiazina/química , Tiourea/análogos & derivados , Fosfatasa Alcalina/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Bovinos , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Depuradores de Radicales Libres/química , Semivida , Intestinos/enzimología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiourea/metabolismo , Tiourea/farmacocinética
20.
Chem Biodivers ; 15(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29121447

RESUMEN

Urease enzyme plays a crucial role in the survival of Helicobacter pylori that contributes to different diseases, including peptic ulcer (gastric and duodenal ulcers). Coagulansin A is the steroidal lactone (withanolide) found in plants of solanaceae family such Withania coagulans. The current study was carried out to examine the in vitro urease, COX-2 inhibitory activity and effect on type II collagen expression of coagulansin A. Moreover, we investigated cytotoxic effects on rabbit articular chondrocytes through MTT assay. COX-2 and type II collagen expressions were determined through a Western blot method. Molecular docking and simulation studies of urease (PDBID 4H9M) and COX-2 (PDBID 5F1A) proteins were also performed as an in silico approach. Results showed that COX-2 expression was decreased dose dependably, significantly higher expression of type II collagen was observed at higher doses. In the current study, coagulansin A was found as non-toxic, and showed notable urease inhibitory activity in non-competitive manner with IC50 23.14 µm in comparison to reference drug thiourea 17.81 µm. Significant decrease in COX-2 expression (40%) and increase in type II collagen (20%) were observed as compared to control. In silico results unveiled the strong binding affinities of coagulansin A with both of these urease and COX-2 proteins. Therefore, herein we proposed the significant antiurease potential of this compound that could be used in treating different diseases such as ulcers. Moreover, detailed in vivo studies and molecular mechanism based studies are suggested.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Inhibidores Enzimáticos/farmacología , Ureasa/antagonistas & inhibidores , Withania/química , Witanólidos/farmacología , Animales , Canavalia/enzimología , Supervivencia Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Inhibidores Enzimáticos/química , Cinética , Ratones , Modelos Moleculares , Conformación Molecular , Conejos , Ureasa/metabolismo , Witanólidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA