Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inorg Chem ; 62(32): 12674-12682, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37531606

RESUMEN

Although magnetic order is suppressed by a strong frustration, it appears in complex forms such as a cycloid or spin density wave in weakly frustrated systems. Herein, we report a weakly magnetically frustrated two-dimensional (2D) van der Waals material CrPSe3. Polycrystalline CrPSe3 was synthesized at an optimized temperature of 700 °C to avoid the formation of any secondary phases (e.g., Cr2Se3). The antiferromagnetic transition appeared at TN ≈ 127 K with a large Curie-Weiss temperature θCW ≈ -301 K via magnetic susceptibility measurements, indicating weak frustration in CrPSe3 with a frustration factor of f (|θCW|/TN) ≈ 2.4. Evidently, the formation of a long-range incommensurate antiferromagnetic order was revealed by neutron diffraction measurements at low temperatures (below 120 K). The monoclinic crystal structure of the C2/m symmetry is preserved over the studied temperature range down to 20 K, as confirmed by Raman spectroscopy measurements. Our findings on the incommensurate antiferromagnetic order in 2D magnetic materials, not previously observed in the MPX3 family, are expected to enrich the physics of magnetism at the 2D limit, thereby opening opportunities for their practical applications in spintronics and quantum devices.

2.
Chem Rev ; 118(13): 6297-6336, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29957928

RESUMEN

Transition metal dichalcogenides are layered materials which are composed of transition metals and chalcogens of the group VIA in a 1:2 ratio. These layered materials have been extensively investigated over synthesis and optical and electrical properties for several decades. It can be insulators, semiconductors, or metals revealing all types of condensed matter properties from a magnetic lattice distorted to superconducting characteristics. Some of these also feature the topological manner. Instead of covering the semiconducting properties of transition metal dichalcogenides, which have been extensively revisited and reviewed elsewhere, here we present the structures of metallic transition metal dichalcogenides and their synthetic approaches for not only high-quality wafer-scale samples using conventional methods (e.g., chemical vapor transport, chemical vapor deposition) but also local small areas by a modification of the materials using Li intercalation, electron beam irradiation, light illumination, pressures, and strains. Some representative band structures of metallic transition metal dichalcogenides and their strong layer-dependence are reviewed and updated, both in theoretical calculations and experiments. In addition, we discuss the physical properties of metallic transition metal dichalcogenides such as periodic lattice distortion, magnetoresistance, superconductivity, topological insulator, and Weyl semimetal. Approaches to overcome current challenges related to these materials are also proposed.

3.
Nature ; 490(7419): 235-9, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23034653

RESUMEN

Grain boundaries in graphene are formed by the joining of islands during the initial growth stage, and these boundaries govern transport properties and related device performance. Although information on the atomic rearrangement at graphene grain boundaries can be obtained using transmission electron microscopy and scanning tunnelling microscopy, large-scale information regarding the distribution of graphene grain boundaries is not easily accessible. Here we use optical microscopy to observe the grain boundaries of large-area graphene (grown on copper foil) directly, without transfer of the graphene. This imaging technique was realized by selectively oxidizing the underlying copper foil through graphene grain boundaries functionalized with O and OH radicals generated by ultraviolet irradiation under moisture-rich ambient conditions: selective diffusion of oxygen radicals through OH-functionalized defect sites was demonstrated by density functional calculations. The sheet resistance of large-area graphene decreased as the graphene grain sizes increased, but no strong correlation with the grain size of the copper was revealed, in contrast to a previous report. Furthermore, the influence of graphene grain boundaries on crack propagation (initialized by bending) and termination was clearly visualized using our technique. Our approach can be used as a simple protocol for evaluating the grain boundaries of other two-dimensional layered structures, such as boron nitride and exfoliated clays.

4.
Nano Lett ; 17(1): 214-219, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073269

RESUMEN

Tuning the electron and phonon transport properties of thermoelectric materials by nanostructuring has enabled improving their thermopower figure of merit. Three-dimensional topological insulators, including many bismuth chalcogenides, attract increasing attention for this purpose, as their topologically protected surface states are promising to further enhance the thermoelectric performance. While individual bismuth chalcogenide nanostructures have been studied with respect to their photothermoelectric properties, nanostructured p-n junctions of these compounds have not yet been explored. Here, we experimentally investigate the room temperature thermoelectric conversion capability of lateral heterostructures consisting of two different three-dimensional topological insulators, namely, the n-type doped Bi2Te2Se and the p-type doped Sb2Te3. Scanning photocurrent microscopy of the nanoplatelets reveals efficient thermoelectric conversion at the p-n heterojunction, exploiting hot carriers of opposite sign in the two materials. From the photocurrent data, a Seebeck coefficient difference of ΔS = 200 µV/K was extracted, in accordance with the best values reported for the corresponding bulk materials. Furthermore, it is in very good agreement with the value of ΔS = 185 µV/K obtained by DFT calculation taking into account the specific doping levels of the two nanostructured components.

5.
Nano Lett ; 16(11): 6761-6766, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27696882

RESUMEN

Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiOx-Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiOx layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

6.
Nano Lett ; 16(10): 6403-6410, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27683947

RESUMEN

Aside from unusual properties of monolayer graphene, bilayer has been shown to have even more interesting physics, in particular allowing bandgap opening with dual gating for proper interlayer symmetry. Such properties, promising for device applications, ignited significant interest in understanding and controlling the growth of bilayer graphene. Here we systematically investigate a broad set of flow rates and relative gas ratio of CH4 to H2 in atmospheric pressure chemical vapor deposition of multilayered graphene. Two very different growth windows are identified. For relatively high CH4 to H2 ratios, graphene growth is relatively rapid with an initial first full layer forming in seconds upon which new graphene flakes nucleate then grow on top of the first layer. The stacking of these flakes versus the initial graphene layer is mostly turbostratic. This growth mode can be likened to Stranski-Krastanov growth. With relatively low CH4 to H2 ratios, growth rates are reduced due to a lower carbon supply rate. In addition bi-, tri-, and few-layer flakes form directly over the Cu substrate as individual islands. Etching studies show that in this growth mode subsequent layers form beneath the first layer presumably through carbon radical intercalation. This growth mode is similar to that found with Volmer-Weber growth and was shown to produce highly oriented AB-stacked materials. These systematic studies provide new insight into bilayer graphene formation and define the synthetic range where gapped bilayer graphene can be reliably produced.

7.
Nat Mater ; 12(5): 403-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455851

RESUMEN

Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10(-13) A. The resulting devices exhibited an excellent on/off ratio of ~10(5), a high mobility of ~40 cm(2) V(-1) s(-1) and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.

8.
Adv Sci (Weinh) ; 11(7): e2304792, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072638

RESUMEN

The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.

9.
Adv Sci (Weinh) ; 10(9): e2206842, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36698300

RESUMEN

Among the recently discovered 2D intrinsic van der Waals (vdW) magnets, Fe3 GeTe2 (FGT) has emerged as a strong candidate for spintronics applications, due to its high Curie temperature (130 - 220 K) and magnetic tunability in response to external stimuli (electrical field, light, strain). Theory predicts that the magnetism of FGT can be significantly modulated by an external strain. However, experimental evidence is needed to validate this prediction and understand the underlying mechanism of strain-mediated vdW magnetism in this system. Here, the effects of pressure (0 - 20 GPa) are elucidated on the magnetic and structural properties of Fe3 GeTe2 by means of synchrotron Mössbauer source spectroscopy, X-ray powder diffraction and Raman spectroscopy over a wide temperature range of 10 - 290 K. A strong suppression of ferromagnetic ordering is observed with increasing pressure, and a paramagnetic ground state emerges when pressure exceeds a critical value, PPM ≈ 15 GPa. The anomalous pressure dependence of structural parameters and vibrational modes is observed at PC ≈ 7 GPa and attributed to an isostructural phase transformation. Density functional theory calculations complement these experimental findings. This study highlights pressure as a driving force for magnetic quantum criticality in layered vdW magnetic systems.

10.
11.
Nano Lett ; 11(11): 4682-7, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21972980

RESUMEN

Persistent photoconductance, a prolonged light-induced conducting behavior that lasts several hundred seconds, has been observed in semiconductors. Here we report persistent negative photoconductance and consecutive prominent persistent positive photoconductance in graphene. Unusually large yields of negative PC (34%) and positive PC (1652%) and remarkably long negative transient response time (several hours) were observed. Such high yields were reduced in multilayer graphene and were quenched under vacuum conditions. Two-dimensional metallic graphene strongly interacts with environment and/or substrate, causing this phenomenon, which is markedly different from that in three-dimensional semiconductors and nanoparticles.


Asunto(s)
Grafito/química , Grafito/efectos de la radiación , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Conductividad Eléctrica , Luz , Ensayo de Materiales , Dosis de Radiación
12.
Nat Commun ; 13(1): 4556, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961959

RESUMEN

The device's integration of molecular electronics is limited regarding the large-scale fabrication of gap electrodes on a molecular scale. The van der Waals integration (vdWI) of a vertically aligned molecular layer (0D) with 2D or 3D electrodes indicates the possibility of device's integration; however, the active junction area of 0D-2D and 0D-3D vdWIs remains at a microscale size. Here, we introduce the robust fabrication of a vertical 1D-0D-1D vdWI device with the ultra-small junction area of 1 nm2 achieved by cross-stacking top carbon nanotubes (CNTs) on molecularly assembled bottom CNTs. 1D-0D-1D vdWI memories are demonstrated through ferroelectric switching of azobenzene molecules owing to the cis-trans transformation combined with the permanent dipole moment of the end-tail -CF3 group. In this work, our 1D-0D-1D vdWI memory exhibits a retention performance above 2000 s, over 300 cycles with an on/off ratio of approximately 105 and record current density (3.4 × 108 A/cm2), which is 100 times higher than previous study through the smallest junction area achieved in a vdWI. The simple stacking of aligned CNTs (4 × 4) allows integration of memory arrays (16 junctions) with high device operational yield (100%), offering integration guidelines for future molecular electronics.

13.
Adv Mater ; 34(10): e2106551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34962658

RESUMEN

Magnetic order has been proposed to arise from a variety of defects, including vacancies, antisites, and grain boundaries, which are relevant in numerous electronics and spintronics applications. Nevertheless, its magnetism remains controversial due to the lack of structural analysis. The escalation of ferromagnetism in vanadium-doped WSe2 monolayer is herein demonstrated by tailoring complex configurations of Se vacancies (SeVac ) via post heat-treatment. Structural analysis of atomic defects is systematically performed using transmission electron microscopy (TEM), enabled by the monolayer nature. Temperature-dependent magnetoresistance hysteresis ensures enhanced magnetic order after high-temperature heat-treatment, consistent with magnetic domain analysis from magnetic force microscopy (MFM). The vanadium-Se vacancy pairing is a key to promoting ferromagnetism via spin-flip by electron transfer, predicted from density-functional-theory (DFT) calculations. The approach toward nanodefect engineering paves a way to overcome weak magnetic order in diluted magnetic semiconductors (DMSs) for renovating semiconductor spintronics.

14.
Adv Sci (Weinh) ; 8(24): e2102911, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34713632

RESUMEN

The confined defects in 2D van der Waals (vdW)-layered semiconductors can be easily tailored using charge doping, strain, or an electric field. Nevertheless, gate-tunable magnetic order via intrinsic defects has been rarely observed to date. Herein, a gate-tunable magnetic order via resonant Se vacancies in WSe2 is demonstrated. The Se-vacancy states are probed via photocurrent measurements with gating to convert unoccupied states to partially occupied states associated with photo-excited carrier recombination. The magneto-photoresistance hysteresis is modulated by gating, which is consistent with the density functional calculations. The two energy levels associated with Se vacancies split with increasing laser power, owing to the robust Coulomb interaction and strong spin-orbit coupling. The findings offer a new approach for controlling the magnetic properties of defects in optoelectronic and spintronic devices using vdW-layered semiconductors.

15.
ACS Nano ; 15(8): 13770-13780, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34296605

RESUMEN

ReS2 exhibits strong anisotropic optical and electrical responses originating from the asymmetric lattice. Here, we show that the anisotropy of monolayer (1L) ReS2 in optical scattering and electrical transport can be practically erased by lattice engineering via lithium (Li) treatment. Scanning transmission electron microscopy revealed that significant strain is induced in the lattice of Li-treated 1L-ReS2, due to high-density electron doping and the resultant formation of continuous tiling of nanodomains with randomly rotating orientations of 60°, which produced a nearly isotropic response of polarized Raman scattering and absorption of Li-treated 1L-ReS2. With Li treatment, the in-plane conductance of 1L-ReS2 increased by an order of magnitude, and its angle dependence became negligible. Our result that the asymmetric phase was converted into the isotropic phase by electron injection could significantly expand the optoelectronic applications of polymorphic two-dimensional transition metal dichalcogenides.

16.
ACS Nano ; 15(12): 20267-20277, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34807575

RESUMEN

While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe2 monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate the origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe2 monolayer.

17.
Phys Chem Chem Phys ; 12(7): 1595-9, 2010 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-20126775

RESUMEN

Different bulk structures of graphite oxide were systematically investigated using density functional theory (DFT). Our model consisted of a hexagonal in-plane structure of graphene with hydroxyl and epoxide groups, and different oxidation levels and water content. The graphitic AB stacking order was stable in anhydrous graphite oxide, independent of oxidation levels. The hydrogen bonding interaction of layers became weaker as the oxidation level increased to the saturation limit. When water molecules were present in highly oxidized graphite oxide, the AB stacking order was broken due to entropic disorder. The interlayer distances increased with the oxidation level: the interlayer distance was 5.1 A for low oxidation graphite oxide and 5.8 A for high oxidation graphite oxide. The calculated interlayer distance of hydrated graphite oxide was 7.3 A, which is in excellent agreement with experimental observations.

18.
Nat Nanotechnol ; 15(10): 861-867, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32719494

RESUMEN

Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu-Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.

19.
Adv Sci (Weinh) ; 7(4): 1902964, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32099767

RESUMEN

Atomically thin 2D van der Waals semiconductors are promising candidates for next-generation nanoscale field-effect transistors (FETs). Although large-area 2D van der Waals materials have been successfully synthesized, such nanometer-length-scale devices have not been well demonstrated in 2D van der Waals semiconductors. Here, controllable nanometer-scale transistors with a channel length of ≈10 nm are fabricated via vertical channels by squeezing an ultrathin insulating spacer between the out-of-plane source and drain electrodes, and the feasibility of high-density and large-scale fabrication is demonstrated. A large on-current density of ≈70 µA µm-1 nm-1 at a source-drain voltage of 0.5 V and a high on/off ratio of ≈107-109 are obtained in ultrashort 2D vertical channel FETs with monolayer MoS2 synthesized through chemical vapor deposition. The work provides a promising route toward the complementary metal-oxide-semiconductor-compatible fabrication of wafer-scale 2D van der Waals transistors with high-density integration.

20.
Adv Sci (Weinh) ; 7(9): 1903076, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32382479

RESUMEN

Diluted magnetic semiconductors including Mn-doped GaAs are attractive for gate-controlled spintronics but Curie transition at room temperature with long-range ferromagnetic order is still debatable to date. Here, the room-temperature ferromagnetic domains with long-range order in semiconducting V-doped WSe2 monolayer synthesized by chemical vapor deposition are reported. Ferromagnetic order is manifested using magnetic force microscopy up to 360 K, while retaining high on/off current ratio of ≈105 at 0.1% V-doping concentration. The V-substitution to W sites keeps a V-V separation distance of 5 nm without V-V aggregation, scrutinized by high-resolution scanning transmission electron microscopy. More importantly, the ferromagnetic order is clearly modulated by applying a back-gate bias. The findings open new opportunities for using 2D transition metal dichalcogenides for future spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA