Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973295

RESUMEN

With the increased environmental concerns and health awareness among consumers, there has been a notable interest in plant-based dairy alternatives. The plant-based yogurt market has experienced rapid expansion in recent years. Due to challenges related to cultivation, higher cost of production and lower protein content researchers have explored the viability of pulse-based yogurt which has arisen as an economically and nutritionally abundant solution. This review aims to examine the feasibility of utilizing pulse protein for yogurt production. The nutritional, antinutritional, and functional characteristics of various pulses were discussed in detail, alongside the modifications in these properties during the various stages of yogurt manufacturing. The review also sheds light on pivotal findings from existing literature and outlines challenges associated with the production of pulse-based yogurt. Pulses have emerged as promising base materials for yogurt manufacturing due to their favorable nutritional and functional characteristics. Further, the fermentation process can effectively reduce antinutritional components and enhance digestibility. Nonetheless, variations in sensorial and rheological properties were noted when different types of pulses were employed. This issue can be addressed by employing suitable combinations to achieve the desired properties in pulse-based yogurt.

2.
Molecules ; 28(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067433

RESUMEN

Materials and composites with the ability to convert light into electricity are essential for a variety of applications, including solar cells. The development of materials and processes needed to boost the conversion efficiency of solar cell materials will play a key role in providing pathways for dependable light to electric energy conversion. Here, we show a simple, single-step technique to synthesize photoactive nanocomposites by coupling carbon nanotubes with semiconducting quantum dots using a molecular linker. We also discuss and demonstrate the potential application of nanocomposite for the fabrication of bulk heterojunction solar cells. Cadmium selenide (CdSe) quantum dots (QDs) were attached to multiwall carbon nanotubes (MWCNTs) using perylene-3, 4, 9, 10-tetracarboxylic-3, 4, 9, 10-dianhydride (PTCDA) as a molecular linker through a one-step synthetic route. Our investigations revealed that PTCDA tremendously boosts the density of QDs on MWCNT surfaces and leads to several interesting optical and electrical properties. Furthermore, the QD-PTCDA-MWCNTs nanocomposites displayed a semiconducting behavior, in sharp contrast to the metallic behavior of the MWCNTs. These studies indicate that, PTCDA interfaced between QDs and MWCNTs, acted as a molecular bridge which may facilitate the charge transfer between QDs and MWCNTs. We believe that the investigations presented here are important to discover simple synthetic routes for obtaining photoactive nanocomposites with several potential applications in the field of opto-electronics as well as energy conversion devices.

3.
Langmuir ; 38(41): 12630-12643, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36201686

RESUMEN

Simultaneous writing and erasing of two and three molecules in one single step at the microscale using Polymeric Lithography Editor (PLE) probes is demonstrated. Simultaneous writing and erasing of three molecules was accomplished by rastering a nanoporous probe that was loaded with rhodamine B and fluorescein over a quinine-coated glass substrate. The solvated quinine molecules were erased and transported into the probe matrix, whereas both rhodamine and fluorescein molecules were simultaneously deposited and aligned with the path of the erased quinine on the substrate. The simultaneous writing and erasing of molecules is referred to as PLiSED. The writing and erasing speed can be easily tuned by adjusting the probe speed to as large as 10,000 µm2/s. The microscale patterns on the orders of square millimeter area were fabricated by erasing fluorescein with an efficiency (ηe) > 95% while simultaneously depositing rhodamine molecules at the erased spots. The roles of the probe porosity, transport medium, and kinetics of solvation for editing were also investigated─the presence of a transport medium at the probe-substrate interface is required for the transport of the molecules into and out of the probe. The physical and mechanical properties of the polymeric probes influenced molecular editing. Young's modulus values of the hydrated hydrogels composed of varying monomer/cross-linker ratios were estimated using atomic force microscopy. Probes with the highest observed erasing capacity were used for further experiments to investigate the effects of relative humidity and erasing time on editing. Careful control over experimental conditions provided high-quality editing of microscale patterns at high editing speed. Combining erasing and deposition of multiple molecules in one single step offers a unique opportunity to significantly improve the efficiency and the accuracy of lithographic editing at the microscale. PLiSED enables rapid on-site lithographic rectification and has considerable application values in high-quality lithography and solid surface modification.


Asunto(s)
Polímeros , Quinina , Fluoresceínas , Hidrogeles , Rodaminas , Escritura
4.
Bioconjug Chem ; 30(8): 2136-2149, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31314501

RESUMEN

From pathogen intrusion to immune response, the cell membrane plays an important role in signal transduction. Such signals are important for cellular proliferation and survival. However, measurement of these subtle signals through the lipid membrane scaffold is challenging. We present a chromatic model membrane vesicle system engineered to covalently bind with lysine residues of protein molecules for investigation of cellular interactions and signaling. We discovered that different protein molecules induced differential spectroscopic signals, which is based on the chemical and physical properties of protein interacting at the vesicle surface. The observed chromatic response (CR) for bound protein molecules with higher molecular weight was much larger (∼5-15×) than those for low molecular weight proteins. Through mass spectrometry (MS), we found that only 6 out of 60 (10%) lysine groups present in bovine serum albumin (BSA) were accessible to the membrane of the vesicles. Finally, a "sphere-shell" model representing the protein-vesicle complex was used for evaluating the contribution of van der Waals interactions between proteins and vesicles. Our analysis points to contributions from van der Waals, hydrophobic, and electrostatic interactions toward observed CR signals resulting from molecular interactions at the vesicle membrane surface. Overall, this study provided a convenient, chromatic, semiquantitative method of detecting biomolecules and their interactions with model membranes at sub-nanomolar concentration.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Lisina/metabolismo , Proteínas/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Lípidos/síntesis química , Espectrometría de Masas , Membranas Artificiales , Peso Molecular , Albúmina Sérica Bovina/metabolismo , Electricidad Estática
5.
Langmuir ; 34(12): 3720-3730, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29486565

RESUMEN

Liquid-solid (LS) and vapor-liquid-solid (VLS) interfaces are important for the fundamental understanding of how surface chemistry impacts industrial processes and applications. Superhydrophobic surfaces, from structural hierarchies, were fabricated by coating flat smooth surfaces with hollow glass microspheres. These surfaces are referred to as structural hierarchical-modified microsphere surfaces (SHiMMs). Two-phase LS and three-phase VLS interfaces of water droplets on SHiMMs, with an apparent static contact angle (aSCA) of ∼160°, were probed at microscale using environmental scanning electron microscopy (ESEM) and high-resolution optical microscopy (OM). Both ESEM and OM confirmed the presence of air pockets in 3-150 µm range at the VLS triple-phase of the droplet peripheral contact line. The wetting characteristics of the LS interface in the interior of the water droplet were probed using energy-dispersive spectroscopy, which corroborated well with the VLS triple-phase observations, confirming the presence of both the microscale air pockets and fractional complete wetting of the SHiMMs. The superhydrophobic water droplets on the SHiMMs also exhibited relatively high adhesion to the SHiMMs-a tilt angle of 10°-40° was needed for detaching the droplets off the surfaces. Semiquantitative three-phase contact-line analysis and experimental data indicated high-water aSCA, and large adhesion on the microscale-roughened SHiMMs is attributed to pinning of the probe liquid both at the triple VLS and interior LS interfaces. The control over microroughness and surface chemistry of the SHiMMs will allow tuning of both the static and dynamic liquid-surface interactions.


Asunto(s)
Gases , Vidrio/química , Microesferas , Agua/química , Aire , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía/métodos , Tamaño de la Partícula , Silicatos/química , Humectabilidad
6.
J Memb Sci ; 473: 28-35, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26207081

RESUMEN

Large scale fabrication of non-linear microporous membranes is of technological importance in many applications ranging from separation to microfluidics. However, their fabrication using traditional techniques is limited in scope. We report on fabrication and characterization of non-linear parabolic micropores (PMS) in polymer membranes by utilizing flow properties of fluids. The shape of the fabricated PMS corroborated well with simplified Navier-Stokes equation describing parabolic relationship of the form L - t1/2. Here, L is a measure of the diameter of the fabricated micropores during flow time (t). The surface of PMS is smooth due to fluid surface tension at fluid-air interface. We demonstrate fabrication of PMS using curable polydimethylsiloxane (PDMS). The parabolic shape of micropores was a result of interplay between horizontal and vertical fluid movements due to capillary, viscoelastic, and gravitational forces. We also demonstrate fabrication of asymmetric "off-centered PMS" and an array of PMS membranes using this simple fabrication technique. PMS containing membranes with nanoscale dimensions are also possible by controlling the experimental conditions. The present method provides a simple, easy to adopt, and energy efficient way for fabricating non-linear parabolic shape pores at microscale. The prepared parabolic membranes may find applications in many areas including separation, parabolic optics, micro-nozzles / -valves / -pumps, and microfluidic and microelectronic delivery systems.

7.
BMC Plant Biol ; 13: 43, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23497186

RESUMEN

BACKGROUND: The protein encoded by GmRLK18-1 (Glyma_18_02680 on chromosome 18) was a receptor like kinase (RLK) encoded within the soybean (Glycine max L. Merr.) Rhg1/Rfs2 locus. The locus underlies resistance to the soybean cyst nematode (SCN) Heterodera glycines (I.) and causal agent of sudden death syndrome (SDS) Fusarium virguliforme (Aoki). Previously the leucine rich repeat (LRR) domain was expressed in Escherichia coli. RESULTS: The aims here were to evaluate the LRRs ability to; homo-dimerize; bind larger proteins; and bind to small peptides. Western analysis suggested homo-dimers could form after protein extraction from roots. The purified LRR domain, from residue 131-485, was seen to form a mixture of monomers and homo-dimers in vitro. Cross-linking experiments in vitro showed the H274N region was close (<11.1 A) to the highly conserved cysteine residue C196 on the second homo-dimer subunit. Binding constants of 20-142 nM for peptides found in plant and nematode secretions were found. Effects on plant phenotypes including wilting, stem bending and resistance to infection by SCN were observed when roots were treated with 50 pM of the peptides. Far-Western analyses followed by MS showed methionine synthase and cyclophilin bound strongly to the LRR domain. A second LRR from GmRLK08-1 (Glyma_08_g11350) did not show these strong interactions. CONCLUSIONS: The LRR domain of the GmRLK18-1 protein formed both a monomer and a homo-dimer. The LRR domain bound avidly to 4 different CLE peptides, a cyclophilin and a methionine synthase. The CLE peptides GmTGIF, GmCLE34, GmCLE3 and HgCLE were previously reported to be involved in root growth inhibition but here GmTGIF and HgCLE were shown to alter stem morphology and resistance to SCN. One of several models from homology and ab-initio modeling was partially validated by cross-linking. The effect of the 3 amino acid replacements present among RLK allotypes, A87V, Q115K and H274N were predicted to alter domain stability and function. Therefore, the LRR domain of GmRLK18-1 might underlie both root development and disease resistance in soybean and provide an avenue to develop new variants and ligands that might promote reduced losses to SCN.


Asunto(s)
Fusarium/patogenicidad , Glycine max/metabolismo , Nematodos/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Animales , Dimerización , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Proteínas de Plantas/genética , Glycine max/genética
8.
Langmuir ; 28(36): 12989-98, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22734511

RESUMEN

We investigate interactions between receptors and ligands at bilayer surface of polydiacetylene (PDA) liposomal nanoparticles using changes in electronic absorption spectroscopy and fluorescence resonance energy transfer (FRET). We study the effect of mode of linkage (covalent versus noncovalent) between the receptor and liposome bilayer. We also examine the effect of size-dependent interactions between liposome and analyte through electronic absorption and FRET responses. Glucose (receptor) molecules were either covalently or noncovalently attached at the bilayer of nanoparticles, and they provided selectivity for molecular interactions between glucose and glycoprotein ligands of E. coli. These interactions induced stress on conjugated PDA chain which resulted in changes (blue to red) in the absorption spectrum of PDA. The changes in electronic absorbance also led to changes in FRET efficiency between conjugated PDA chains (acceptor) and fluorophores (Sulphorhodamine-101) (donor) attached to the bilayer surface. Interestingly, we did not find significant differences in UV-vis and FRET responses for covalently and noncovalently bound glucose to liposomes following their interactions with E. coli. We attributed these results to close proximity of glucose receptor molecules to the liposome bilayer surface such that induced stress were similar in both the cases. We also found that PDA emission from direct excitation mechanism was ~2-10 times larger than that of the FRET-based response. These differences in emission signals were attributed to three major reasons: nonspecific interactions between E. coli and liposomes, size differences between analyte and liposomes, and a much higher PDA concentration with respect to sulforhodamine (SR-101). We have proposed a model to explain our experimental observations. Our fundamental studies reported here will help in enhancing our knowledge regarding interactions involved between soft particles at molecular levels.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Glucosa/química , Membrana Dobles de Lípidos/química , Polímeros/química , Poliinos/química , Rodaminas/química , Escherichia coli/química , Ligandos , Liposomas/química , Nanopartículas/química , Tamaño de la Partícula , Polímero Poliacetilénico , Espectrofotometría Ultravioleta , Propiedades de Superficie
9.
J Memb Sci ; 401-402: 25-32, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22942529

RESUMEN

The ability to fabricate flexible filtration membranes that can selectively separate particles of different sizes is of considerable interest. In this article, we describe a facile, reproducible and simple one-step method to produce pores in polydimethylsiloxane (PDMS) membranes. We embedded micron-sized NaHCO(3) particles in 50 micron thick PDMS films. After curing, the membranes were immersed in concentrated HCl acid. Pores were generated in the membrane by the evolution of CO(2) gas from the reaction of NaHCO(3) and HCl. High resolution Scanning Electron Microscope images clearly reveal the presence of openings on the surface and the cross-section of the membranes. Fluorescence and back-scattered electron imaging of porous PDMS membrane with embedded gold nanoparticles and comparison with non-porous PDMS membranes provided unambiguous evidence of pores in the membrane. Transport studies of molecular fluoresceinate ions, ions (sodium and chloride) and 240 nm polystyrene nanoparticles through these membranes demonstrate passable pores and existence of channels within the body of the membrane. Mechanically stretching the porous PDMS membrane and comparing the flow rates of fluoresceinate ions and the polystyrene beads through the stretched and unstretched membranes allowed a direct proof of the modulation of transport rate in the membranes. We show that stretching the membranes by 10% increases the flow rate of fluorescein molecules by 2.8 times and by a factor of approximately ~40% for the polystyrene nanoparticles.

10.
Proc Natl Acad Sci U S A ; 105(43): 16438-43, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18946047

RESUMEN

We report nanofabrication of protein dot and line patterns using a nanofountain atomic force microscopy probe (NFP). Biomolecules are continuously fed in solution through an integrated microfluidic system, and deposited directly onto a substrate. Deposition is controlled by application of an electric potential of appropriate sign and magnitude between the probe reservoir and substrate. Submicron dot and line molecular patterns were generated with resolution that depended on the magnitude of the applied voltage, dwell time, and writing speed. By using an energetic argument and a Kelvin condensation model, the quasi-equilibrium liquid-air interface at the probe tip was determined. The analysis revealed the origin of the need for electric fields in achieving protein transport to the substrate and confirmed experimental observations suggesting that pattern resolution is controlled by tip sharpness and not overall probe aperture. As such, the NFP combines the high-resolution of dip-pen nanolithography with the efficient continuous liquid feeding of micropipettes while allowing scalability to 1- and 2D probe arrays for high throughput.


Asunto(s)
Microscopía de Fuerza Atómica/instrumentación , Nanotecnología/métodos , Proteínas , Métodos , Nanotecnología/instrumentación , Electricidad Estática
11.
Diagnostics (Basel) ; 11(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34679577

RESUMEN

BACKGROUND: The potassium channel encoded by the ether-a-gogo-related gene 1A (erg1a) has been detected in the atrophying skeletal muscle of mice experiencing either muscle disuse or cancer cachexia and further evidenced to contribute to muscle deterioration by enhancing ubiquitin proteolysis; however, to our knowledge, ERG1A has not been reported in human skeletal muscle. METHODS AND RESULTS: Here, using immunohistochemistry, we detect ERG1A immunofluorescence in human Rectus abdominis skeletal muscle sarcolemma. Further, using single point brightness data, we report the detection of ERG1A immunofluorescence at low levels in the Rectus abdominis muscle sarcolemma of young adult humans and show that it trends toward greater levels (10.6%) in healthy aged adults. Interestingly, we detect ERG1A immunofluorescence at a statistically greater level (53.6%; p < 0.05) in the skeletal muscle of older cancer patients than in age-matched healthy adults. Importantly, using immunoblot, we reveal that lower mass ERG1A protein is 61.5% (p < 0.05) more abundant in the skeletal muscle of cachectic older adults than in healthy age-matched controls. Additionally, we report that the ERG1A protein is detected in a cultured human rhabdomyosarcoma line that may be a good in vitro model for the study of ERG1A in muscle. CONCLUSIONS: The data demonstrate that ERG1A is detected more abundantly in the atrophied skeletal muscle of cancer patients, suggesting it may be related to muscle loss in humans as it has been shown to be in mice experiencing muscle atrophy as a result of malignant tumors.

12.
Langmuir ; 26(22): 17726-32, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20886901

RESUMEN

We demonstrate conical pores etched in tracked glass chips for fabricating patterns at the micrometer scale. Highly fluorescent patterns based on photopolymerization of diacetylene films were formed by irradiating UV light through conical pores called "photo-pens". The properties of photopens were investigated through experiments, finite-difference-time-domain (FDTD) simulations and numerical calculations based on Fresnel equations. We show that the pattern dimensions are easily controlled by adjusting the exposure time. Thus, patterns with a range of dimensions can be fabricated without any need of changes in the pore diameter. Parallel patterning was also demonstrated by simultaneously exposing the films to photons through multiple pores in the chip. Our method provides an inexpensive, versatile, and efficient way for patterning without the use of sophisticated masks.


Asunto(s)
Microtecnología/instrumentación , Rayos Ultravioleta , Vidrio/química , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Porosidad , Factores de Tiempo
13.
Cytokine X ; 2(2): 100023, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33604554

RESUMEN

Interleukin 6 (IL-6) is a secreted cytokine that is an important mediator of the immune response in numerous tissues, including skeletal muscle. IL-6 is considered a myokine as it can be secreted by muscle. IL-6 is secreted following exercise, where it exerts both pro-myogenic effects as well as anti-myogenic effects such as promoting atrophy and muscle wasting. The regulation of IL-6 in skeletal muscle is not well understood. The purpose of this study was to determine if IFN-γ and TNF-ɑ stimulate IL-6 in skeletal muscle. We found that both IFN-γ and TNF-α stimulate IL-6 in skeletal muscle, but the stimulation is not cooperative as seen in monocytes. We have previously shown that the IFN-γ stimulated class II major histocompatibility complex transactivator (CIITA) mediates many of the effects of IFN-γ in skeletal muscle and we show here that CIITA directly stimulates IL-6. The regulation of IL-6 by CIITA is clearly complex, as we found that CIITA both stimulates and restrains IL-6 expression. To show that these effects could be observed in a physiological setting, mice were treated with IFN-γ and we found that both CIITA and IL-6 were upregulated in skeletal muscle.

14.
Adv Mater ; 31(2): e1805615, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30370605

RESUMEN

Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro-electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.

15.
J Phys Chem B ; 112(42): 13263-72, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18816092

RESUMEN

Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene-carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor ( R ad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For R ad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in R ad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET-based highly sensitive and selective chemical and biochemical sensors.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Liposomas/química , Polímeros/química , Poliinos/química , Absorción , Electrones , Polarización de Fluorescencia , Polímero Poliacetilénico , Espectrofotometría Infrarroja , Temperatura , Factores de Tiempo
16.
Lab Chip ; 18(15): 2178-2186, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29955754

RESUMEN

The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Wearable technologies that combine electrochemical sensors with conventional or emerging semiconductor device technologies offer valuable capabilities in sweat sensing, but they are limited to assays that support amperometric, potentiometric, and colorimetric analyses. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques. The results highlight the versatility of advanced fluorescent-based imaging modalities in body-worn sweat microfluidics platforms, and they suggest some practical potential for these ideas.


Asunto(s)
Fluorometría/instrumentación , Dispositivos Laboratorio en un Chip , Imagen Molecular/instrumentación , Piel/química , Teléfono Inteligente , Sudor/química , Cloruros/análisis , Humanos , Sodio/análisis , Zinc/análisis
17.
Nat Rev Drug Discov ; 2(1): 29-37, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12509757

RESUMEN

Nanoparticles are being developed for a host of biomedical and biotechnological applications, including drug delivery, enzyme immobilization and DNA transfection. Spherical nanoparticles are typically used for such applications, which reflects the fact that spheres are easier to make than other shapes. Micro- and nanotubes--structures that resemble tiny drinking straws--are alternatives that might offer advantages over spherical nanoparticles for some applications. This article discusses four approaches for making micro- and nanotubes, and reviews the current status of efforts to develop biomedical and biotechnological applications of these tubular structures.


Asunto(s)
Biotecnología/tendencias , Nanotecnología/tendencias , Fulerenos/química , Lípidos/química , Conformación Molecular , Péptidos/química , Terminología como Asunto
18.
J Biomed Mater Res A ; 105(2): 557-565, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27750375

RESUMEN

In this work, we report a protocol for synthesizing nanosize ovalbumin-functionalized polydiacetylene (PDA) liposomes (LP-Ova). We show that LP-Ova administered per-orally (p.o.) and subcutaneously (s.c.), without the use of adjuvants, induces high serum IgG1 titers. As reported previously using polystyrene nanoparticles (NPs), p.o.-primed mice developed high titers of IgG2c and intestinal IgA following s.c. boosting immunization with LP-Ova. Mice that received a single s.c. immunization with LP-Ova did not develop serum IgG2c or intestinal IgA antibodies. Additionally, in s.c.-immunized mice serum IgG1 titers decreased significantly by 3 months after immunization. In contrast, in mice primed p.o. and boosted s.c. with LP-Ova, serum IgG1/IgG2c, and intestinal IgA antibody titers remained stable. Administration of LPs exerted no adverse effects on immunized mice as no morbidity or signs of toxicity were observed for the duration of the studies. These results indicate that antigen-conjugated liposomes are immunogenic and confirm a previous report that mucosal priming followed by a s.c. boosting immunization is the most effective strategy for inducing long-lasting mucosal IgA, as well as a polarized Th1/Th2 systemic response. In addition to being biodegradable and easily functionalized by conjugation, liposomes have a hollow core which can also be loaded with cargo, allowing for a targeted delivery of multiple antigens (or drugs) simultaneously. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 557-565, 2017.


Asunto(s)
Antígenos , Inmunidad Mucosa/efectos de los fármacos , Inmunogenicidad Vacunal/inmunología , Nanopartículas/química , Polímeros , Poliestirenos , Poliinos , Animales , Antígenos/química , Antígenos/inmunología , Antígenos/farmacología , Inmunización Secundaria , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Liposomas , Ratones , Polímero Poliacetilénico , Polímeros/química , Polímeros/farmacología , Poliestirenos/química , Poliestirenos/inmunología , Poliestirenos/farmacología , Poliinos/química , Poliinos/inmunología , Poliinos/farmacología
19.
Sci Adv ; 3(6): e1602071, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28630898

RESUMEN

A new lithographic editing system with an ability to erase and rectify errors in microscale with real-time optical feedback is demonstrated. The erasing probe is a conically shaped hydrogel (tip size, ca. 500 nm) template-synthesized from track-etched conical glass wafers. The "nanosponge" hydrogel probe "erases" patterns by hydrating and absorbing molecules into a porous hydrogel matrix via diffusion analogous to a wet sponge. The presence of an interfacial liquid water layer between the hydrogel tip and the substrate during erasing enables frictionless, uninterrupted translation of the eraser on the substrate. The erasing capacity of the hydrogel is extremely high because of the large free volume of the hydrogel matrix. The fast frictionless translocation and interfacial hydration resulted in an extremely high erasing rate (~785 µm2/s), which is two to three orders of magnitude higher in comparison with the atomic force microscopy-based erasing (~0.1 µm2/s) experiments. The high precision and accuracy of the polymeric lithography editor (PLE) system stemmed from coupling piezoelectric actuators to an inverted optical microscope. Subsequently after erasing the patterns using agarose erasers, a polydimethylsiloxane probe fabricated from the same conical track-etched template was used to precisely redeposit molecules of interest at the erased spots. PLE also provides a continuous optical feedback throughout the entire molecular editing process-writing, erasing, and rewriting. To demonstrate its potential in device fabrication, we used PLE to electrochemically erase metallic copper thin film, forming an interdigitated array of microelectrodes for the fabrication of a functional microphotodetector device. High-throughput dot and line erasing, writing with the conical "wet nanosponge," and continuous optical feedback make PLE complementary to the existing catalog of nanolithographic/microlithographic and three-dimensional printing techniques. This new PLE technique will potentially open up many new and exciting avenues in lithography, which remain unexplored due to the inherent limitations in error rectification capabilities of the existing lithographic techniques.


Asunto(s)
Modelos Teóricos , Polímeros/química , Algoritmos , Hidrogeles/química , Nanoporos/ultraestructura
20.
Curr Pharm Biotechnol ; 6(1): 35-47, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15727554

RESUMEN

Nanotechnology concerns the science of very small particles and deals with both the fundamental aspects of understanding the properties of such nanoparticles and with developing technological applications of nanoparticles. Biomedical and biotechnological applications of nanoparticles have been of special recent research and development interest, with potential applications that include use of nanoparticles as drug (or DNA) delivery vehicles, and as components in medical diagnostic kits, biosensors and membranes for bioseparations. Spherical nanoparticles are typically used for such applications, but this only reflects the fact that spheres are easier to make than nanoparticles having other shapes. Micro and nanotubes - structures that resemble tiny drinking straws - are alternatives and may offer advantages over spherical nanoparticles for some applications. This article discusses different approaches for making micro and nanotubes and reviews the current status of efforts to develop biomedical and biotechnological applications of these tubular structures.


Asunto(s)
Biotecnología/instrumentación , Biotecnología/métodos , Nanotubos/química , Biotecnología/tendencias , Nanotubos/normas , Nanotubos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA