Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 6481-6486, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421318

RESUMEN

Aspersteroids A and B are novel ergostane-type 18,22-cyclosterols with immunosuppressive and antimicrobial activities. Herein, we report the first synthesis of these two natural products, which was accomplished in 15 and 14 steps, respectively, from commercially available ergosterol by means of a bioinspired divergent approach. Key features of this synthesis include an unprecedented radical relay cyclization that was initiated by iron(II)-mediated decomposition of an alkyl hydroperoxide to construct the E ring cyclopentane motif; a titanium(III)-mediated diastereoselective radical reduction of an epoxide to install the challenging C22 stereocenter; and highly regioselective, divergent late-stage oxidations to access the highly oxidized core framework.


Asunto(s)
Productos Biológicos , Compuestos Epoxi , Ciclización , Oxidación-Reducción , Estereoisomerismo
2.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658952

RESUMEN

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Asunto(s)
Autofagia , Neoplasias Colorrectales , Reposicionamiento de Medicamentos , Ivermectina , Nanopartículas , Autofagia/efectos de los fármacos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/terapia , Humanos , Ratones , Nanopartículas/química , Ivermectina/farmacología , Ivermectina/química , Línea Celular Tumoral , Indoles/química , Indoles/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Fotoquimioterapia/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia/métodos , Ácido Hialurónico/química , Hidroxicloroquina/farmacología , Hidroxicloroquina/química , Terapia Fototérmica/métodos
3.
J Craniofac Surg ; 35(1): e21-e23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37643126

RESUMEN

BACKGROUND: Schwannomas are benign tumors that arise from Schwann cells. Rare cases are shown to arise from the olfactory nerve. The genesis of Olfactory groove schwannoma (OGSs) is still puzzling. Yusda et al hypothesized that olfactory ensheathing cell tumors (OECTs) might be the origin of OGSs. CLINICAL PRESENTATION: Here, the authors report the case of a 59-year-old woman who presented with a paroxysmal headache for 1 year. The tumor appeared as hypointensity on T1-weighted images, hyperintensity on T2-weighted, and exhibited strong, heterogeneous enhancement. The tumor was removed through a lateral supraorbital approach. The final pathologic diagnosis was schwannoma. The postoperative period was uneventful after 4 months, and the headache disappeared. DISSCUSSION AND CONCLUSION: OGSs and OECTs are extremely rare. There are many similarities in clinical manifestations, images, and pathologic findings. OGSs are difficult to distinguish from OECTs.


Asunto(s)
Fosa Craneal Anterior , Neurilemoma , Femenino , Humanos , Persona de Mediana Edad , Imagen por Resonancia Magnética , Neurilemoma/diagnóstico por imagen , Neurilemoma/cirugía , Cefalea
4.
J Environ Manage ; 365: 121601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959771

RESUMEN

Tetracycline (TC) is widely present in the environment, and adsorption technology is a potential remediation method. S/N co-doped tea residue biochar (SNBC) was successfully prepared by hydrothermal carbonization method using tea residue as raw material. S was doped by Na2S2O3·5H2O, and N was doped by N in tea residue. The adsorption efficiency of SNBC could reach 94.16% when the concentration of TC was 100 mg L-1. The adsorption effect of SNBC on TC was 9.38 times more than that of unmodified biochar. Tea biochar had good adsorption effect at pH 4-9. The maximum adsorption capacity of 271 mg g-1 was calculated by the Langmuir isotherm model. The adsorption mechanism involved many mechanisms such as pore filling, π-π interaction and hydrogen bonding. The adsorbent prepared in this study could be used as an effective adsorbent in the treatment of TC wastewater.


Asunto(s)
Carbón Orgánico , , Tetraciclina , Contaminantes Químicos del Agua , Carbón Orgánico/química , Tetraciclina/química , Adsorción , Té/química , Contaminantes Químicos del Agua/química , Nitrógeno/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Aguas Residuales/química
5.
Small ; 19(2): e2205354, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399643

RESUMEN

Durable glioblastoma multiforme (GBM) management requires long-term chemotherapy after surgery to eliminate remaining cancerous tissues. Among chemotherapeutics, temozolomide is considered as the first-line drug for GBM therapy, but the treatment outcome is not satisfactory. Notably, regorafenib, an oral multi-kinase inhibitor, has been reported to exert a markedly superior effect on GBM suppression compared with temozolomide. However, poor site-specific delivery and bioavailability significantly restrict the efficient permeability of regorafenib to brain lesions and compromise its treatment efficacy. Therefore, human H-ferritin (HFn), regorafenib, and Cu2+ are rationally designed as a brain-targeted nanoplatform (HFn-Cu-REGO NPs), fulfilling the task of site-specific delivery and manipulating autophagy and cuproptosis against GBM. Herein, HFn affords a preferential accumulation capacity to GBM due to transferrin receptor 1 (TfR1)-mediated active targeting and pH-responsive delivery behavior. Moreover, regorafenib can inhibit autophagosome-lysosome fusion, resulting in lethal autophagy arrest in GBM cells. Furthermore, Cu2+ not only facilitates the encapsulation of regorafenib to HFn through coordination interaction but also disturbs copper homeostasis for triggering cuproptosis, resulting in a synergistical effect with regorafenib-mediated lethal autophagy arrest against GBM. Therefore, this work may broaden the clinical application scope of Cu2+ and regorafenib in GBM treatment via modulating autophagy and cuproptosis.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Glioblastoma , Humanos , Apoferritinas , Autofagia , Encéfalo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Cobre
6.
Small ; : e2309215, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044295

RESUMEN

Drug resistance is one of the leading causes of treatment failure in current cancer chemotherapy. In addition to the classical drug efflux transporter-mediated chemoresistance, cancer cells with stemness features play a crucial role in escaping the maximum impact of chemotherapy. To sensitize cancer chemotherapy, in a novel approach, the hedgehog pathway inhibitor ellagic acid (EA) is coordinated with Cu2+ to develop nanoscale metal-organic frameworks (EA-Cu), which are then loaded with doxorubicin (DOX) and modified with targeted chondroitin sulfate (CS) to form the CS/E-C@DOX nanoplatform (CS/NPs). Notably, EA inhibits stemness maintenance by suppressing the hedgehog pathway, while Cu2+ further decreases stemness features of tumor cells by disrupting mitochondrial metabolism, effectively enhancing DOX-mediated chemotherapy. Meanwhile, EA can act synergistically with Cu2+ to cause mitochondrial dysfunction and cuproptosis, which effectively decreases ATP levels and subsequently suppresses the activity of P-glycoprotein (P-gp), thus reducing drug efflux and sensitizing DOX-mediated chemotherapy. Additionally, the attached CS endows CS/NPs with specific tumor targeting properties, whereas EA-Cu endows this nanoplatform with pH/glutathione (GSH) dual-responsive release behavior. Taken together, CS/NPs exhibited excellent antitumor effects by inducing cuproptosis and significantly inhibiting cancer cell stemness, which has great potential for overcoming cancer chemoresistance.

7.
Small ; 19(23): e2207201, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899444

RESUMEN

Insufficienct T lymphocyte infiltration and unresponsiveness to immune checkpoint blockade therapy are still major difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). Although econazole has shown promise in inhibiting PDAC growth, its poor bioavailability and water solubility limit its potential as a clinical therapy for PDAC. Furthermore, the synergistic role of econazole and biliverdin in immune checkpoint blockade therapy in PDAC remains elusive and challenging. Herein, a chemo-phototherapy nanoplatform is designed by which econazole and biliverdin can be co-assembled (defined as FBE NPs), which significantly improve the poor water solubility of econazole and enhance the efficacy of PD-L1 checkpoint blockade therapy against PDAC. Mechanistically, econazole and biliverdin are directly released into the acidic cancer microenvironment, to activate immunogenic cell death via biliverdin-induced PTT/PDT and boost the immunotherapeutic response of PD-L1 blockade. In addition, econazole simultaneously enhances PD-L1 expression to sensitize anti-PD-L1 therapy, leading to suppression of distant tumors, long-term immune memory effects, improved dendritic cell maturation, and tumor infiltration of CD8+ T lymphocytes. The combined FBE NPs and α-PDL1 show synergistic antitumor efficacy. Collectively, FBE NPs show excellent biosafety and antitumor efficacy by combining chemo-phototherapy with PD-L1 blockade, which has promising potential in a precision medicine approach as a PDAC treatment strategy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Econazol/uso terapéutico , Biliverdina/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Inmunoterapia , Agua , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Pancreáticas
8.
Small ; 19(46): e2303073, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37460404

RESUMEN

Glioblastoma (GBM), the most aggressive and lethal form of malignant brain tumor, is a therapeutic challenge due to the drug filtration capabilities of the blood-brain barrier (BBB). Interestingly, glioblastoma tends to resist apoptosis during chemotherapy, but is susceptible to ferroptosis. Developing therapies that can effectively target glioblastoma by crossing the BBB and evoke ferroptosis are, therefore, crucial for improving treatment outcomes. Herein, a versatile biomimetic nanoplatform, L-D-I/NPs, is designed that self-assembled by loading the antimalarial drug dihydroartemisinin (DHA) and the photosensitizer indocyanine green (ICG) onto lactoferrin (LF). This nanoplatform can selectively target glioblastoma by binding to low-density lipoprotein receptor-related protein-1 (LRP1) and crossing the BBB, thus inducing glioblastoma cell ferroptosis by boosting intracellular reactive oxygen species (ROS) accumulation and iron overload. In addition, L-D-I/NPs have demonstrated the ability to effectively suppress the progression of orthotopic glioblastoma and significantly prolong survival in a mouse glioblastoma model. This nanoplatform has facilitated the application of non-chemotherapeutic drugs in tumor treatment with minimal adverse effects, paving the way for highly efficient ferroptosis-based therapies for glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Glioma , Ratones , Animales , Glioblastoma/patología , Reposicionamiento de Medicamentos , Barrera Hematoencefálica/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral
9.
J Nanobiotechnology ; 21(1): 24, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670444

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a common malignancy with the second highest mortality and the third highest morbidity worldwide. However, the overall survival of patients is unsatisfactory, thus requiring more effective clinical strategies. Celastrol (CLT), a natural bioactive compound, has been reported to induce reactive oxygen species (ROS)-mediated apoptosis to exhibit significant antitumor effects against CRC. However, the poor water solubility, low targeting ability, and bioavailability of CLT have limited its application, and CLT-induced protective autophagy weakens its therapeutic efficiency. RESULTS: We designed a targeted chemo-phototherapy nanoplatform (HCR NPs) to improve the application of CLT. The codelivery of IR820 and CLT in HCR NPs solved the water-soluble problem of CLT and enhanced apoptosis via IR820-mediated hyperthermia. In addition, hydroxychloroquine (HCQ) conjugated to hyaluronic acid (HA) not only increased the active targeting of HCR NPs but also inhibited CLT-induced protective autophagy to exacerbate apoptosis, thus achieving an amplified antitumor effect. Importantly, the HCR NPs exhibited an excellent therapeutic effect on CRC both in vitro and in vivo. CONCLUSION: The HCR NPs presented in this study may not merely provide a new reference for the clinical application of CLT but also result in an attractive strategy for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Hipertermia Inducida , Nanopartículas , Humanos , Terapia Fototérmica , Nanopartículas/uso terapéutico , Fototerapia , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico , Agua , Línea Celular Tumoral
10.
J Am Chem Soc ; 144(39): 17769-17775, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36125970

RESUMEN

Controlling the conformation of medium-sized rings is challenging because of their flexibility and ring strain effects. Herein, we report non-Curtin-Hammett conditions for the precise control of the conformation of cyclodecenones to effect the first cis-selective transannular Prins cyclization, which enabled concise syntheses of the 5(10→1)abeo-steroids bufospirostenin A and ophiopogonol A in only seven steps from inexpensive starting materials. Computational results indicated that the key cyclization was kinetically controlled and proceeded via either a Prins pathway or a carbonyl-ene pathway, depending on the reaction conditions. Moreover, conformational isomerization played a critical role in determining the stereochemistry of the products.


Asunto(s)
Ciclización , Bufanólidos , Conformación Molecular , Estereoisomerismo
11.
Small ; 18(48): e2204926, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36260824

RESUMEN

Chemo-phototherapy has emerged as a promising approach to complement traditional cancer treatment and enhance therapeutic effects. However, it still faces the challenges of drug efflux transporter-mediated chemoresistance and heat shock proteins (HSPs)-mediated phototherapy tolerance, which both depend on an excessive supply of adenosine triphosphate. Therefore, manipulating energy metabolism to impair the expression or function of P-glycoprotein (P-gp) and HSPs may be a prospective strategy to reverse cancer therapeutic resistance. Herein, a chondroitin sulfate (CS)-functionalized zeolitic imidazolate framework-8 (ZIF-8) chemo-phototherapy nanoplatform (CS/ZIF-8@A780/DOX NPs) is rationally designed that is capable of manipulating energy metabolism against cancer therapeutic resistance by integrating the photosensitizer IR780 iodide (IR780)-conjugated atovaquone (ATO) (A780) and the chemotherapeutic agent doxorubicin (DOX). Mechanistically, ATO and zinc ions that are released in the acidic tumor microenvironment can lead to systematic energy exhaustion through disturbing mitochondrial electron transport and the glycolysis process, thus suppressing the activity of P-gp and HSP70, respectively. In addition, CS is used on the surface of ZIF-8@A780/DOX NPs to improve the targeting capability to tumor tissues. These data provide an efficient strategy for manipulating energy metabolism for cancer treatment, especially for overcoming cancer chemo-phototherapy resistance.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Zeolitas , Humanos , Fototerapia , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Metabolismo Energético , Nanopartículas/uso terapéutico , Microambiente Tumoral
12.
J Am Chem Soc ; 143(46): 19576-19586, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762408

RESUMEN

Bufospirostenin A, which was the first spirostanol to be isolated from an animal, possesses an unprecedented 5/7/6/5/5/6 hexacyclic framework. Herein, we report two biomimetic syntheses of this natural product in just seven or nine steps from a readily available steroidal lactone. Key features of the syntheses include a photosantonin rearrangement and a Wagner-Meerwein rearrangement for rapid construction of the rearranged A/B ring system, as well as a cobalt-mediated olefin hydroselenylation and a selenide E2 reaction to accomplish a challenging olefin transposition. Our syntheses provide experimental support for the biogenetic pathway to 5(10→1)abeo-steroids that we have proposed.

13.
J Am Chem Soc ; 143(33): 13016-13021, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34398601

RESUMEN

Herein we report the first total synthesis of polychlorinated steroids clionastatins A and B, which was accomplished asymmetrically by means of a convergent, radical fragment coupling approach. Key features of the synthesis include an Ireland-Claisen rearrangement to introduce the C5 stereocenter (which was ultimately transferred to the C10 quaternary stereocenter of the clionastatins via a traceless stereochemical relay), a regioselective acyl radical conjugate addition to join the two fragments, an intramolecular Heck reaction to install the C10 quaternary stereocenter, and a diastereoselective olefin dichlorination to establish the synthetically challenging pseudoequatorial dichlorides. This work also enabled us to determine that the true structures of clionastatins A and B are in fact C14 epimers of the originally proposed structures.

14.
J Am Chem Soc ; 143(13): 4886-4890, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33761241

RESUMEN

Pinnigorgiols B and E are 9,11-secosteroids with a unique tricyclic γ-diketone framework. Herein, we report the first synthesis of these natural products from inexpensive, commercially available ergosterol. This synthesis features a semipinacol rearrangement and an acyl radical cyclization/hemiketalization cascade; the latter efficiently assembled the tricyclic γ-diketone skeleton, with two rings and three contiguous stereogenic centers being formed in a single step.

15.
J Craniofac Surg ; 32(5): e411-e413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33038175

RESUMEN

ABSTRACT: Internal carotid artery (ICA) injury is a rare but disastrous complication during extended endoscopic endonasal surgery. The method of ICA sacrifice via endonasal clipping has only been reported in a few cases to treat ICA injury. To provide some technical experience of this method, here the authors present 2 cases of ICA injury during extended endoscopic endonasal surgery with 2-year follow-up. The 2-nostrils/4-hands technique was used to control the active bleeding. Based on the good collateral circulation status and the normal results of intraoperative electrophysiological monitoring, we sacrificed the injured ICAs via endonasal clipping. Both cases had a satisfying tumor resection rate and a good clinical outcome.


Asunto(s)
Traumatismos de las Arterias Carótidas , Endoscopía , Traumatismos de las Arterias Carótidas/etiología , Traumatismos de las Arterias Carótidas/cirugía , Arteria Carótida Interna/cirugía , Humanos , Cavidad Nasal , Nariz/cirugía
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(1): 57-63, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33474890

RESUMEN

Metabolic aberrance is one of the hallmarks of cancer. The metabolic patterns in cancer cells are well reprogrammed to provide building blocks and energy for their sustained growth. During tumor metabolic reprogramming, reactive oxygen species (ROS) are generated and the antioxidant systems are activated. High levels of ROS lead to oxidative damage and even cell death, whereas ROS at low levels act as second messenger to regulate many signaling pathways. Recently, with the revisiting of oxidative stress, it has been found that ROS can directly mediate the redox modifications of proteins, resulting in protein conformational and functional alterations. However, only a very small portion of metabolic enzymes, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and PKM2, etc., has been reported to undergo redox modifications. Whether other metabolic enzymes are regulated by redox modifications and thus exhibit critical functions remain largely unknown. Moreover, the specific spatio-temporal targeting of redox modifications of metabolic enzymes, as well as overcoming the existed redox and metabolic adaptation, are key points to be solved. Here, we will review the reported redox modification patterns of metabolic enzymes, the involved regulatory mechanisms and their roles in tumorigenesis and tumor progress. In addition, we will discuss the future therapeutic strategies targeting redox modifications of metabolic enzymes for tumor treatment.


Asunto(s)
Neoplasias , Estrés Oxidativo , Antioxidantes , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno
17.
Angew Chem Int Ed Engl ; 60(20): 11222-11226, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33682234

RESUMEN

Sarocladione is the first 5,10:8,9-diseco-steroid with a 14-membered macrocyclic diketone framework to have been isolated from a natural source. Herein we report a biomimetic synthesis of sarocladione in only two or seven steps from inexpensive, commercially available ergosterol. The key feature of this synthesis was a novel ruthenium-catalyzed endoperoxide fragmentation, which transformed various saturated endoperoxides into olefinic diketones by cleavage of two C-C bonds. This synthesis allowed us to unambiguously determine the structure of sarocladione and provided experimental support for its revised biosynthetic origin. This work also vividly demonstrates that consideration of the biogenesis is a powerful tool for elucidating the structures of natural products.


Asunto(s)
Peróxidos/química , Secoesteroides/síntesis química , Catálisis , Estructura Molecular , Rutenio/química , Secoesteroides/química
18.
J Am Chem Soc ; 142(10): 4690-4695, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32073850

RESUMEN

Wickerols A and B are diterpene natural products that have a novel fused 6-5-6-6 ring framework and exhibit potent antiviral activity against the H1N1 type A influenza virus. Herein, we report a divergent synthesis of wickerols A and B in 16 and 15 steps, respectively, from commercial sitolactone. The key reactions of the synthesis are a SmI2-mediated intramolecular ketone-allylic acetate reductive cyclization, a Claisen rearrangement, and an intramolecular alkylation/aldol reaction that rapidly assembled the compact tetracyclic core framework in a stereocontrolled manner. The work described herein allowed us to confirm the absolute configurations of wickerols A and B.


Asunto(s)
Antivirales/síntesis química , Diterpenos/síntesis química , Ciclización , Oxidación-Reducción , Estereoisomerismo
19.
Int J Syst Evol Microbiol ; 70(9): 4986-4992, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32762805

RESUMEN

A novel strain, designated NS18T, was isolated from sediment sampled at Taihu Lake, PR China. Cells of the isolate were spherical, aerobic, non-motile, Gram-stain-positive and non-endospore-forming. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NS18T clustered in a clade of the genus Agrococcus. Its closest phylogenetic neighbour was Agrococcus lahaulensis DSM 17612T with 98.2 % 16S rRNA gene sequence similarity. The complete genome of NS18T was 2 736 037 bp and its genomic DNA G+C content was 72.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain NS18T and A. lahaulensis DSM 17612T based on their whole genomes were 85.1 and 28.7 %, respectively. The major fatty acids were anteiso-C17 : 0 and anteiso-C15 : 0. The predominant menaquinones were MK11 and MK12. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol and two unidentified lipids. The components of the peptidoglycan were Ala, Gly, Asp, Thr and DAB. The whole-cell sugars contained rhamnose, ribose, xylose and glucose. According to the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain NS18T (=NBRC 113859T=MCCC 1K03759T) represents a novel species, for which the name Agrococcus sediminis sp. nov is proposed.


Asunto(s)
Actinobacteria/clasificación , Sedimentos Geológicos/microbiología , Lagos/microbiología , Filogenia , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
20.
J Am Chem Soc ; 141(12): 5021-5033, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30827095

RESUMEN

Bridged ring systems are found in a wide variety of biologically active molecules including pharmaceuticals and natural products. However, the development of practical methods to access such systems with precise control of the planar chirality presents considerable challenges to synthetic chemists. In the context of our work on the synthesis of cyclocitrinols, a family of steroidal natural products, we herein report the development of a point-to-planar chirality transfer strategy for preparing bridged ring systems from readily accessible fused ring systems. Inspired by the proposed pathway for biosynthesis of cyclocitrinols from ergosterol, our strategy involves a bioinspired cascade rearrangement, which enabled the gram-scale synthesis of a common intermediate in nine steps and subsequent unified synthesis of 10 cyclocitrinols in an additional one to three steps. Our work provides experimental support for the proposed biosynthetic pathway and for the possible interrelationships between members of the cyclocitrinol family. In addition to being a convenient route to 5(10→19) abeo-steroids, our strategy also offers a generalized approach to bridged ring systems via point-to-planar chirality transfer. Mechanistic investigations suggest that the key cascade rearrangement involves a regioselective ring scission of a cyclopropylcarbinyl cation rather than a direct Wagner-Meerwein rearrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA