Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(8): 463, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995455

RESUMEN

The intensifying global opioid crisis, majorly attributed to fentanyl (FT) and its analogs, has necessitated the development of rapid and ultrasensitive remote/on-site FT sensing modalities. However, current approaches for tracking FT exposure through wastewater-based epidemiology (WBE) are unadaptable, time-consuming, and require trained professionals. Toward developing an extended in situ wastewater opioid monitoring system, we have developed a screen-printed electrochemical FT sensor and integrated it with a customized submersible remote sensing probe. The sensor composition and design have been optimized to address the challenges for extended in situ FT monitoring. Specifically, ZIF-8 metal-organic framework (MOF)-derived mesoporous carbon (MPC) nanoparticles (NPs) are incorporated in the screen-printed carbon electrode (SPCE) transducer to improve FT accumulation and its electrocatalytic oxidation. A rapid (10 s) and sensitive square wave voltammetric (SWV) FT detection down to 9.9 µgL-1 is thus achieved in aqueous buffer solution. A protective mixed-matrix membrane (MMM) has been optimized as the anti-fouling sensor coating to mitigate electrode passivation by FT oxidation products and enable long-term, intermittent FT monitoring. The unique MMM, comprising an insulating polyvinyl chloride (PVC) matrix and carboxyl-functionalized multi-walled carbon nanotubes (CNT-COOH) as semiconductive fillers, yielded highly stable FT sensor operation (> 95% normalized response) up to 10 h in domestic wastewater, and up to 4 h in untreated river water. This sensing platform enables wireless data acquisition on a smartphone via Bluetooth. Such effective remote operation of submersible opioid sensing probes could enable stricter surveillance of community water systems toward timely alerts, countermeasures, and legal enforcement.


Asunto(s)
Analgésicos Opioides , Técnicas Electroquímicas , Fentanilo , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Fentanilo/análisis , Fentanilo/sangre , Analgésicos Opioides/análisis , Estructuras Metalorgánicas/química , Electrodos , Aguas Residuales/análisis , Monitoreo del Ambiente/métodos , Límite de Detección , Carbono/química , Nanopartículas/química , Tecnología de Sensores Remotos/métodos
2.
Mikrochim Acta ; 191(7): 375, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849611

RESUMEN

The production, optimisation, physicochemical, and electroanalytical characterisation of a low-cost electrically conductive additive manufacturing filament made with recycled poly(lactic acid) (rPLA), castor oil, carbon black, and graphite (CB-G/PLA) is reported. Through optimising the carbon black and graphite loading, the best ratio for conductivity, low material cost, and printability was found to be 60% carbon black to 40% graphite. The maximum composition within the rPLA with 10 wt% castor oil was found to be an overall nanocarbon loading of 35 wt% which produced a price of less than £0.01 per electrode whilst still offering excellent low-temperature flexibility and reproducible printing. The additive manufactured electrodes produced from this filament offered excellent electrochemical performance, with a heterogeneous electron (charge) transfer rate constant, k0 calculated to be (2.6 ± 0.1) × 10-3 cm s-1 compared to (0.46 ± 0.03) × 10-3 cm s-1 for the commercial PLA benchmark. The additive manufactured electrodes were applied to the determination of ß-estradiol, achieving a sensitivity of 400 nA µM-1, a limit of quantification of 70 nM, and a limit of detection of 21 nM, which compared excellently to other reports in the literature. The system was then applied to the detection of ß-estradiol within four real water samples, including tap, bottled, river, and lake water, where recoveries between 95 and 109% were obtained. Due to the ability to create high-performance filament at a low material cost (£0.06 per gram) and through the use of more sustainable materials such as recycled polymers, bio-based plasticisers, and naturally occurring graphite, additive manufacturing will have a permanent place within the electroanalysis arsenal in the future.

3.
Mikrochim Acta ; 191(6): 350, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806865

RESUMEN

Gold nanomaterials have been widely explored in electrochemical sensors due to their high catalytic property and good stability in multi-medium. In this paper, the reproducibility of the signal among batches of gold nanorods (AuNRs)-modified electrodes was investigated to improve the data stabilization and repeatability. Ordered and random self-assembled AuNRs-modified electrodes were used as electrochemical sensors for the simultaneous determination of dopamine (DA) and topotecan (TPC), with the aim of obtaining an improved signal stability in batches of electrodes and realizing the simultaneous determination of both substances. The morphology and structure of the assemblies were analyzed and characterized by UV-Vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical studies showed that the ordered AuNRs/ITO electrodes have excellent signal reproducibility among several individuals due to the homogeneous mass transfer in the ordered arrangement of the AuNRs. Under the optimized conditions, the simultaneous detection results of DA and TPC showed good linearity in the ranges 1.75-45 µM and 1.5-40 µM, and the detection limits of DA and TPC were 0.06 µM and 0.17 µM, respectively. The results showed that the prepared ordered AuNR/ITO electrode had high sensitivity, long-term stability, and reproducibility for the simultaneous determination of DA and TPC, and it was expected to be applicable for real sample testing.


Asunto(s)
Dopamina , Técnicas Electroquímicas , Electrodos , Oro , Límite de Detección , Nanotubos , Topotecan , Dopamina/análisis , Oro/química , Topotecan/análisis , Topotecan/química , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Nanotubos/química , Humanos
4.
Mikrochim Acta ; 191(4): 173, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436735

RESUMEN

MicroRNA detection is crucial for early infectious disease diagnosis and rapid cancer screening. However, conventional techniques like reverse transcription-quantitative polymerase chain reaction, requiring specialized training and intricate procedures, are less suitable for point-of-care analyses. To address this, we've developed a straightforward amplifier based on an exonuclease III (exo III)-propelled DNAzyme walker for sensitive and selective microRNA detection. This amplifier employs a specially designed hairpin probe with two exposed segments for strand recognition. Once the target microRNA is identified by the hairpin's extended single-strand DNA, exo III initiates its digestion, allowing microRNA regeneration and subsequent hairpin probe digestion cycles. This cyclical process produces a significant amount of DNAzyme, leading to a marked reduction in electrochemical signals. The biosensor exhibits a detection range from 10 fM to 100 pM and achieves a detection limit of 5 fM (3σ criterion). Importantly, by integrating an "And logic gate," our system gains the capacity for simultaneous diagnosis of multiple microRNAs, enhancing its applicability in RNA-based disease diagnostics.


Asunto(s)
ADN Catalítico , Exodesoxirribonucleasas , MicroARNs , Amplificadores Electrónicos , ADN de Cadena Simple
5.
Mikrochim Acta ; 191(7): 382, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858269

RESUMEN

A promising electrochemical sensing platform for the detection of ponceau 4R in food has been fabricated based on the carboxylated graphene oxide (GO-COOH), metal-organic framework (MOF) UIO-66-NH2, and poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). To this end GO-COOH was covalently coupled with UIO-66-NH2 through amide reaction, endowing the material (GO-CONH-UIO-66) unique hierarchical pores and high chemical stability and as a result improving the conductivity of MOF and the dispersion of GO. After the addition of PEDOT:PSS into GO-CONH-UIO-66, the continuity and conductivity of the composite (PEDOT:PSS/GO-CONH-UIO-66) have been further enhanced, due to the high conductivity, favorable film-forming, and hydrophilic properties of PEDOT:PSS. Systematic electrochemical experiments confirm that the PEDOT:PSS/GO-CONH-UIO-66/GCE shows satisfactory electrochemical sensing properties towards the detection of ponceau 4R, with a wide linear detection range of 0.01-30 µM, a low limit of detection of 3.33 nM, and a high sensitivity of 0.606 µA µM-1 cm-2. The PEDOT:PSS/GO-CONH-UIO-66 sensing platform was successfully used to detect ponceau 4R in beverage, and the detection results were compared with  high-performance liquid chromatography. As a result, the PEDOT:PSS/GO-CONH-UIO-66 composite shows a promising application prospect for rapid detection of ponceau 4R in food and will play significant role in food safety detection and supervision.

6.
Mikrochim Acta ; 191(7): 425, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926184

RESUMEN

A solvothermal synthesis of ultrasmall cerium oxide nanoparticles (USCeOxNPs) with an average size of 0.73 ± 0.07 nm using deep eutectic solvent (DES) as a stabilizing medium at a temperature of 90 ºC is reported. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to morphologically characterize the USCeOxNPs. These revealed approximately spherical shapes with emission lines characteristic of cerium. Selected area electron diffraction (SAED) was used to determine the crystalline structure of the cerium oxide nanoparticles (CeO2NPs), revealing the presence of crystalline cubic structures. The USCeOxNPs-DES/CB film was characterized by scanning electron microscopy (SEM), which demonstrated the spherical characteristic of CB with layers slightly covered by DES residues. DES was characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR), indicating its formation through hydrogen bonds between the precursors. An electrochemical sensor for dopamine (DA) determination in biological fluids was developed using the USCeOxNPs together with carbon black (CB). An enhanced current response was observed on DA voltammetric determination, and this can be attributed to the USCeOxNPs. This sensor displayed linear responses for DA in the range 5.0 × 10-7 mol L-1 to 3.2 × 10-4 mol L-1, with a limit of detection of 80 nmol L-1. Besides detectability, excellent performances were verified for repeatability and anti-interference. The sensor based on USCeOxNPs synthesized in DES in a simpler and environmentally friendly way was successfully applied to determine DA in biological matrix.


Asunto(s)
Cerio , Dopamina , Técnicas Electroquímicas , Cerio/química , Dopamina/análisis , Dopamina/sangre , Técnicas Electroquímicas/métodos , Humanos , Disolventes Eutécticos Profundos/química , Nanopartículas/química , Límite de Detección , Nanopartículas del Metal/química , Tamaño de la Partícula
7.
Mikrochim Acta ; 191(6): 348, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805077

RESUMEN

A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.


Asunto(s)
Aptámeros de Nucleótidos , Bencimidazoles , Técnicas Biosensibles , Carbamatos , Técnicas Electroquímicas , Grafito , Límite de Detección , Polietileneimina , Polimerizacion , Grafito/química , Carbamatos/química , Carbamatos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Polietileneimina/química , Técnicas Biosensibles/métodos , Bencimidazoles/química , Aptámeros de Nucleótidos/química , Electrodos , Reproducibilidad de los Resultados
8.
Mikrochim Acta ; 191(8): 472, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028442

RESUMEN

A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N3) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Titanio , Técnicas Biosensibles/métodos , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Titanio/química , Catálisis , Procesos Fotoquímicos , Humanos , Polimerizacion , Silanos/química
9.
Mikrochim Acta ; 191(2): 82, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191940

RESUMEN

A novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL-1 and improved up to 0.1 CFU mL-1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters.


Asunto(s)
Técnicas Biosensibles , Legionella , Separación Inmunomagnética , Inmunoensayo , Bacterias , Agua
10.
Mikrochim Acta ; 191(4): 179, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443677

RESUMEN

A novel electrochemical immunosensor for detecting potential depression biomarker Apolipoprotein A4 (Apo-A4) was developed using a multi-signal amplification approach. Firstly, the sensor utilized a modified electrode material, NG-PEI-COF, combining bipyridine-functionalized covalent organic framework (COF) and polyethyleneimine-functionalized nitrogen-doped graphene (NG-PEI), providing high surface area and excellent electron transfer capability for the first-stage amplification in electrical signal conduction. Subsequently, gold nanoparticles (AuNPs) were further electrodeposited onto the electrode, providing good biocompatibility and abundant binding sites for immobilizing the target antigen, thus achieving the second-stage amplification in target recognition and binding. To address the lack of redox properties of the antigen, a tracer probe was formed by loading AuNPs, anti-Apo-A4, and toluidine blue (TB) successively onto COF, leading to the third-stage amplification in signal conversion. The constructed electrochemical immunosensor TB/Ab/AuNPs/COF-Apo-A4/AuNPs/NG-PEI-COF/GCE exhibited excellent detection performance against Apo-A4 with a linear range of 0.01 to 300 ng mL-1 and had a low detection limit of 2.16 pg mL-1 (S/N = 3). In addition, the biosensor had good reproducibility (RSD = 2.31%), stability, and significant anti-interference performance toward other depression biomarkers. The sensor has been successfully used for the quantitative detection of Apo-A4 in serum, providing potential applications for detecting Apo-A4 in the clinic and serving as a reference for constructing sensing methods based on COF.


Asunto(s)
Apolipoproteínas A , Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Oro , Depresión , Reproducibilidad de los Resultados , Inmunoensayo , Cloruro de Tolonio
11.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674004

RESUMEN

Phenolic compounds, originating from industrial, agricultural, and urban sources, can leach into flowing waters, adversely affecting aquatic life, biodiversity, and compromising the quality of drinking water, posing potential health hazards to humans. Thus, monitoring and mitigating the presence of phenolic compounds in flowing waters are essential for preserving ecosystem integrity and safeguarding public health. This study explores the development and performance of an innovative sensor based on screen-printed electrode (SPE) modified with graphene (GPH), poly(3,4-ethylenedioxythiophene) (PEDOT), and tyrosinase (Ty), designed for water analysis, focusing on the manufacturing process and the obtained electroanalytical results. The proposed biosensor (SPE/GPH/PEDOT/Ty) was designed to achieve a high level of precision and sensitivity, as well as to allow efficient analytical recoveries. Special attention was given to the manufacturing process and optimization of the modifying elements' composition. This study highlights the potential of the biosensor as an efficient and reliable solution for water analysis. Modification with graphene, the synthesis and electropolymerization deposition of the PEDOT polymer, and tyrosinase immobilization contributed to obtaining a high-performance and robust biosensor, presenting promising perspectives in monitoring the quality of the aquatic environment. Regarding the electroanalytical experimental results, the detection limits (LODs) obtained with this biosensor are extremely low for all phenolic compounds (8.63 × 10-10 M for catechol, 7.72 × 10-10 M for 3-methoxycatechol, and 9.56 × 10-10 M for 4-methylcatechol), emphasizing its ability to accurately measure even subtle variations in the trace compound parameters. The enhanced sensitivity of the biosensor facilitates detection and quantification in river water samples. Analytical recovery is also an essential aspect, and the biosensor presents consistent and reproducible results. This feature significantly improves the reliability and usefulness of the biosensor in practical applications, making it suitable for monitoring industrial or river water.


Asunto(s)
Técnicas Biosensibles , Compuestos Bicíclicos Heterocíclicos con Puentes , Grafito , Monofenol Monooxigenasa , Fenoles , Polímeros , Ríos , Contaminantes Químicos del Agua , Técnicas Biosensibles/métodos , Grafito/química , Ríos/química , Polímeros/química , Fenoles/análisis , Contaminantes Químicos del Agua/análisis , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Enzimas Inmovilizadas/química , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección
12.
Anal Bioanal Chem ; 415(20): 4985-5001, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37401962

RESUMEN

Liquid biopsy analysis represents a suitable alternative analysis procedure in several cases where no tumor tissue is available or in poor patient conditions. Amino acids can play a crucial role in aiding cancer diagnosis. Monitoring of tryptophan (Trp) catabolism can aid in tracking cancer progression. Therefore, a novel nanocomposite was fabricated using overoxidized polypyrrole film doped with nano-carbon dots (nano-CDs) on the pencil graphite electrode (PGE) surface for sensitive evaluation of Trp in human serum. Using square wave voltammetry (SWV), the overoxidized polypyrrole/carbon dots/pencil graphite electrode (Ov-Ox PPy/CDs/PGE) achieved excellent electrochemical catalytic activity for evaluating Trp. The modified electrode, known as Ov-Ox PPy/CDs/PGE, demonstrated superior electrochemical catalytic activity compared to bare PGE, CDs/PGE, PPy/PGE, and PPy/CDs/PGE for evaluation of Trp. The method's excellent sensitivity was confirmed by the low limits of detection (LOD = 0.003 µmol L-1) and limit of quantitation (LOQ = 0.009 µmol L-1). The biosensor that was developed can measure tryptophan (Trp) levels in the serum of both healthy individuals and female breast cancer patients with high accuracy and sensitivity. The results indicate that there is a significant difference, as shown by the F-test, between healthy individuals and those with breast cancer. This suggests that Trp amino acid could be an essential biomarker for cancer diagnosis. Consequently, liquid biopsy analysis presents a valuable opportunity for early disease detection, particularly for cancer.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Grafito , Nanocompuestos , Humanos , Femenino , Carbono/química , Polímeros/química , Grafito/química , Triptófano/química , Pirroles/química , Neoplasias de la Mama/diagnóstico , Técnicas Biosensibles/métodos , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Electrodos
13.
Anal Bioanal Chem ; 415(8): 1559-1570, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36807994

RESUMEN

A novel voltammetric platform based on pencil graphite electrode (PGE) modification has been proposed, containing bimetallic (NiFe) Prussian blue analogue nanopolygons decorated with electro-polymerized glyoxal polymer nanocomposites (p-DPG NCs@NiFe PBA Ns/PGE). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV) were utilized to investigate the electrochemical performance of the proposed sensor. The analytical response of p-DPG NCs@NiFe PBA Ns/PGE was evaluated through the quantity of amisulpride (AMS), one of the most common antipsychotic drugs. Under the optimized experimental and instrumental conditions, the method showed linearity over the range from 0.5 to 15 × 10-8 mol L-1 with a good correlation coefficient (R = 0.9995) and a low detection limit (LOD) reached, 1.5 nmol L-1, with excellent relative standard deviation for human plasma and urine samples. The interference effect of some potentially interfering substances was negligible, and the sensing platform demonstrated an outstanding reproducibility, stability, and reusability. As a first trial, the proposed electrode aimed to shed light on the AMS oxidation mechanism, where the oxidation mechanism was monitored and elucidated using the FTIR technique. It was also found that the prepared p-DPG NCs@NiFe PBA Ns/PGE platform had promising applications for the simultaneous determination of AMS in the presence of some co-administered COVID-19 drugs, which could be attributed to the large active surface area, and high conductivity of bimetallic nanopolygons.


Asunto(s)
COVID-19 , Grafito , Humanos , Técnicas Electroquímicas/métodos , Amisulprida , Polímeros/química , Reproducibilidad de los Resultados , Electrodos , Grafito/química
14.
Biotechnol Appl Biochem ; 70(3): 1137-1148, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36585847

RESUMEN

A novel poly(styrene--ε-caprolactone)/multiwalled carbon nanotubes/cholesterol oxidase film-coated glassy carbon electrode was designed for cholesterol detection by square wave voltammetry (SWV). The biosensor responded to cholesterol with a measurement concentration range between 1 and 130 µM, a relative standard deviation of only 0.095% and accuracy of 100.42% ±2.85 with the SWV technique in the potential range from -0.6 to +0.6 V. The limit of detection was calculated to be 0.63 µM. The biosensor was preserved 91 and 84% of its initial response at the end of the 9st and 25st days, respectively. Human serum from human male AB plasma was analyzed without pretreatment except for dilution to investigate the performance of the biosensor in a complex medium.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Masculino , Técnicas Biosensibles/métodos , Colesterol , Técnicas Electroquímicas/métodos , Electrodos , Estirenos , Polímeros
15.
Mikrochim Acta ; 190(2): 53, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36640214

RESUMEN

A nanochannel-based electrochemical immunoassay was developed for the detection of human epidermal growth factor receptor 2 (HER2), with molybdate as the reporter to explore the interaction occurring into the nanochannels. The presence of target increased steric hindrance of the antibody-functionalized nanochannels, thereby hindering the transport of molybdate. And the reporter could be monitored by working electrode modified with hydroxyapatite nanoparticles, based on the formation of the redox-active molybdophosphate. As a result, peak current obtained at ca. - 0.28 V in square wave voltammograms could be applied to quantitative determination of HER2. The electrochemical signal increased linearly with the logarithm of the concentration of HER2 in a broad dynamic range of 0.1 pg∙mL-1 to 10 ng∙mL-1 with a detection limit of 0.05 pg∙mL-1. The reliability of this immunoassay was validated by a recovery range of 99.5% to 111.7% for the detection of three different levels of HER2 in human serum samples. Integrating with multiple bionanochannels, this immunoassay is expected to provide a versatile approach for quantitative detection of various biomarkers in related disease diagnosis and therapy.


Asunto(s)
Biomimética , Molibdeno , Humanos , Reproducibilidad de los Resultados , Inmunoensayo
16.
Mikrochim Acta ; 190(3): 87, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759372

RESUMEN

Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode). PS has been synthesized from elemental sulfur by hydrothermal method and characterized using UV-Vis, fluorescence, FTIR, SEM, and XPS analyses. The PS@Au electrode was employed for electrochemical sensing of SPM. In the presence of SPM, a decrease in gold oxide reduction current was noted which is proportional to the concentration of SPM. The decrease in gold oxide reduction (0.5 V) current was attributed to the complexing nature of SPM-PS at the electrode interface. The reason for the decrease in current has been substantiated using XRF, XPS, and spectroelectrochemical studies. Under the optimized conditions, the PS@Au electrode exhibited a linear range of 1.55-250 µM with LOD of 0.511 ± 0.02 µM (3σ). The electrochemical strategy for SPM sensing exhibited better selectivity even in the presence of possible interferents. The selectivity stems from the selective interaction of SPM with PS on the Au electrode surface; the tested amino acids, and other molecules do not complex with PS and hence they could not interfere. The PS@Au electrode has been subjected to the determination of SPM in artificial urine samples and exhibited outstanding performance in the synthetic sample.


Asunto(s)
Oro , Espermina , Oro/química , Solubilidad , Técnicas Electroquímicas/métodos , Sulfuros , Electrodos , Óxidos
17.
Mikrochim Acta ; 190(10): 379, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682352

RESUMEN

Graphite sheet (GS) electrodes are flexible and versatile substrates for sensing electrochemical; however, their use has been limited to incorporate (bio)chemical modifiers. Herein, we demonstrated that a cold (low temperature) CO2 plasma treatment of GS electrodes provides a substantial improvement of the electrochemical activity of these electrodes due to the increased structural defects on the GS surface as revealed by Raman spectroscopy (ID/IG ratio), and scanning electron microscopy images. XPS analyses confirmed the formation of oxygenated functional groups at the GS surface after the plasma treatment that are intrinsically related to the substantial increase in the electron transfer coefficient (K0 values increased from 1.46 × 10-6 to 2.09 × 10-3 cm s-1) and with reduction of the resistance to charge transfer (from 129.8 to 0.251 kΩ). The improved electrochemical activity of CO2-GS electrodes was checked for the detection of emerging contaminant species, such as chloramphenicol (CHL), ciprofloxacin (CIP) and sulphanilamide (SUL) antibiotics, at around + 0.15, + 1.10 and + 0.85 V (versus Ag/AgCl), respectively, by square wave voltammetry. Limit of detection values in the submicromolar range were achieved for CHL (0.08 µmol L-1), CIP (0.01 µmol L-1) and SFL (0.11 µmol L-1), which enabled the sensor to be successfully applied to natural waters and urine samples (recovery values from 85 to 119%). The CO2-GS electrode is highly stable and inexpensive ($0.09 each sensor) and can be easily inserted in portable 3D printed cells for environmental on-site analyses.


Asunto(s)
Cloranfenicol , Grafito , Ciprofloxacina , Sulfanilamida , Dióxido de Carbono , Electrodos
18.
Mikrochim Acta ; 190(7): 252, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286788

RESUMEN

A new strategy to prepare copper (Cu) nanoparticles anchored in nitrogen-doped carbon nanosheets (Cu@CN) has been designed and the nanomaterial applied to the determination of paraquat (PQ). The nanocomposite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and several other techniques. We found that the Cu nanoparticles are uniformly distributed on the carbon materials, providing abundant active sites for electrochemical detection. The electrochemical behavior of the Cu@CN-based PQ sensor was investigated by square-wave voltammetry (SWV). Cu@CN exhibited excellent electrochemical activity and PQ detection performance. The Cu@CN-modified glassy carbon electrode (Cu@CN/GCE) exhibited excellent stability, favorable sensitivity, and high selectivity under optimized conditions (enrichment voltage -0.1 V and enrichment time 400 s) of the SWV test. The detection range reached 0.50 nM to 12.00 µM, and the limit of detection was 0.43 nM with high sensitivity of 18 µA·µM-1·cm-2. The detection limit is 9 times better than that of the high-performance liquid chromatography method. The Cu@CN electrochemical sensor demonstrated excellent sensitivity and selectivity also in environmental water and fruit samples enabling its use in practical, rapid trace-level detection of PQ in environmental samples.

19.
Mikrochim Acta ; 190(4): 135, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920560

RESUMEN

The development of a highly sensitive electrochemical sensor (E-sensor) is described based on stand-alone plastic electrodes (PE) for phosphate detection, being an essential nutrient in the marine environment. The detection mechanism is based on the chemical affinity between polyoxomolybdate anions (POM) and orthophosphate to form an electroactive phosphomolybdate complex. The custom-made E-sensor was formulated with an organic octamolybdate derivative (TBA4Mo8O26) incorporated with periodic mesoporous organosilica (PMO) to obtain a significant improvement in the analytical performances of phosphate determination. This POM@PMO combination was found to be advantageous in the determination of low concentrations of phosphate in standard solutions ranging from 1 to 500 nM, using square wave voltammetry as the detection technique. This sensitivity enhancement can be attributed to the effect of hydrophobic PMO in loading more POM moieties, owing to its highly porous structure and charged shell. Consequently, the POM@PMO-PE sensor achieved a competitive sensitivity of 4.43 ± 0.14 µA.nM-1.cm-2 and a limit of detection of 0.16 nM with good selectivity against silicates. Finally, seawater and treated wastewater samples have been tested to validate the sensor response in comparison to the official method of phosphate determination.

20.
Mikrochim Acta ; 191(1): 45, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114837

RESUMEN

Graphene@MXene composite nanomaterials were utilized to construct an electrochemical sensor for alanine aminotransferase (ALT) detection. The combination of graphene nanosheets with MXene avoids the self-stacking of MXene and graphene, and broadens the charge transfer channel. In addition, the composite nanomaterial provides increased loading sites for pyruvate oxidase. The principle of ALT detection is a two-step enzymatic reaction. L-Alanine was initially transferred to pyruvate catalyzed by ALT. The formed pyruvate was then oxidized by pyruvate oxidase, generating H2O2. Through the detection of the generated H2O2, ALT activity was measured. The linear range of the sensor to ALT was from 5 to 400 U·L-1 with a detection limit of 0.16 U·L-1 (S/N = 3). For real sample analysis, the spiked recovery test results of ALT in serum samples were between 96.89 and 103.93% with RSD < 5%, confirming the reliability of the sensor testing results and potential clinical application of the sensor.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Alanina Transaminasa , Peróxido de Hidrógeno/análisis , Reproducibilidad de los Resultados , Piruvato Oxidasa , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Piruvatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA