Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37769355

RESUMEN

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Miocitos Cardíacos/metabolismo , Mutación del Sistema de Lectura , Células Madre Pluripotentes Inducidas/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Heterocigoto , Mutación , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo
2.
RNA ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39084880

RESUMEN

The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.

3.
J Med Genet ; 61(10): 939-942, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39103207

RESUMEN

BACKGROUND: It has long been observed that there are families in which non-medullary thyroid cancer (NMTC) occurs, but few syndromes and genes have been described to date. Proteins in the shelterin complex have been implied in cancer. Here, we have studied shelterin genes in families affected by NMTC (FNMTC). METHODS: We performed whole-exome sequencing (WES) in 10 affected individuals from four families with at least three affected members. Polymerase chain reaction (PCR) and Sanger sequencing were performed to search for variants in the TINF2 gene in 40 FNMTC families. TINF2 transcripts and loss of heterozygosity (LOH) were studied in several affected patients of one family. RESULTS: We found the c.507G>T variant in heterozygosis in the TINF2 gene in one family, co-segregating in all five affected members. This variant affects the normal splicing. LOH was not observed. CONCLUSIONS: Our results reinforce the TINF2 gene as a susceptibility cause of FNMTC suggesting the importance of location of frameshift variants in TINF2. According to our data and previous literature, TINF2 pathogenic variants appear to be a significant risk factor for the development of NMTC and/or melanoma.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Linaje , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Femenino , Masculino , Mutación de Línea Germinal/genética , Adulto , Persona de Mediana Edad , Proteínas de Unión a Telómeros/genética , Pérdida de Heterocigocidad/genética , Anciano
4.
BMC Bioinformatics ; 25(1): 82, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389044

RESUMEN

BACKGROUND: One of the stranger phenomena that can occur during gene translation is where, as a ribosome reads along the mRNA, various cellular and molecular properties contribute to stalling the ribosome on a slippery sequence and shifting the ribosome into one of the other two alternate reading frames. The alternate frame has different codons, so different amino acids are added to the peptide chain. More importantly, the original stop codon is no longer in-frame, so the ribosome can bypass the stop codon and continue to translate the codons past it. This produces a longer version of the protein, a fusion of the original in-frame amino acids, followed by all the alternate frame amino acids. There is currently no automated software to predict the occurrence of these programmed ribosomal frameshifts (PRF), and they are currently only identified by manual curation. RESULTS: Here we present PRFect, an innovative machine-learning method for the detection and prediction of PRFs in coding genes of various types. PRFect combines advanced machine learning techniques with the integration of multiple complex cellular properties, such as secondary structure, codon usage, ribosomal binding site interference, direction, and slippery site motif. Calculating and incorporating these diverse properties posed significant challenges, but through extensive research and development, we have achieved a user-friendly approach. The code for PRFect is freely available, open-source, and can be easily installed via a single command in the terminal. Our comprehensive evaluations on diverse organisms, including bacteria, archaea, and phages, demonstrate PRFect's strong performance, achieving high sensitivity, specificity, and an accuracy exceeding 90%. The code for PRFect is freely available and installs with a single terminal command. CONCLUSION: PRFect represents a significant advancement in the field of PRF detection and prediction, offering a powerful tool for researchers and scientists to unravel the intricacies of programmed ribosomal frameshifting in coding genes.


Asunto(s)
Sistema de Lectura Ribosómico , Biosíntesis de Proteínas , Codón de Terminación/genética , Genoma Viral , Aminoácidos
5.
Plant J ; 115(5): 1169-1184, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37403571

RESUMEN

Individual cells give rise to diverse cell lineages during the development of multicellular organisms. Understanding the contribution of these lineages to mature organisms is a central question of developmental biology. Several techniques to document cell lineages have been used, from marking single cells with mutations that express a visible marker to generating molecular bar codes by CRISPR-induced mutations and subsequent single-cell analysis. Here, we exploit the mutagenic activity of CRISPR to allow lineage tracing within living plants with a single reporter. Cas9-induced mutations are directed to correct a frameshift mutation that restores expression of a nuclear fluorescent protein, labelling the initial cell and all progenitor cells with a strong signal without modifying other phenotypes of the plants. Spatial and temporal control of Cas9 activity can be achieved using tissue-specific and/or inducible promoters. We provide proof of principle for the function of lineage tracing in two model plants. The conserved features of the components and the versatile cloning system, allowing for easy exchange of promoters, are expected to make the system widely applicable.


Asunto(s)
Sistemas CRISPR-Cas , Mutación del Sistema de Lectura , Sistemas CRISPR-Cas/genética , Mutación , Fenotipo , Linaje de la Célula/genética
6.
Lab Invest ; 104(10): 102132, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265891

RESUMEN

Junctional epidermolysis bullosa is an intractable cutaneous disorder in humans causing skin fragility and blistering due to mutations in genes encoding essential molecules adhering epidermis and dermis including collagen XVII. However, the pathogenesis still remains to be not fully understood perhaps because of a lack of appropriate animal models. In this study, we report novel mutant rats experiencing junctional epidermolysis bullosa, which was confirmed to be caused by a frameshift mutation of Col17a1 gene, as a rat model for investigating the underlying mechanism of pathogenesis. The mutant rats completely lacked the expression of collagen XVII and had blisters leading to infantile deaths as a homozygous condition, although their skin was apparently normal at birth by light microscopic evaluation except that immunohistochemical examination could not detect collagen XVII in any organs. These observations suggest that collagen XVII is not essential for the development of skin during the prenatal period but is indispensable for keeping epidermal-dermal connections stable after birth. Subsequent electron microscopic examinations further revealed an absence of hemidesmosomal inner plaques being composed of BP230, a binding partner of collagen XVII, and plectin in Col17a1-null newborns, albeit mRNA expressions of these molecules seemed to be unaffected at least during the fetal period. These results suggest that the lack of collagen XVII induces attenuation of hemidesmosomal inner plaques, which in turn destabilizes the epidermis-dermis connection and results in deterioration of epidermal physiology with formation of blisters after birth.

7.
EMBO J ; 39(3): e103365, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31858614

RESUMEN

Inhibitory codon pairs and poly(A) tracts within the translated mRNA cause ribosome stalling and reduce protein output. The molecular mechanisms that drive these stalling events, however, are still unknown. Here, we use a combination of in vitro biochemistry, ribosome profiling, and cryo-EM to define molecular mechanisms that lead to these ribosome stalls. First, we use an in vitro reconstituted yeast translation system to demonstrate that inhibitory codon pairs slow elongation rates which are partially rescued by increased tRNA concentration or by an artificial tRNA not dependent on wobble base-pairing. Ribosome profiling data extend these observations by revealing that paused ribosomes with empty A sites are enriched on these sequences. Cryo-EM structures of stalled ribosomes provide a structural explanation for the observed effects by showing decoding-incompatible conformations of mRNA in the A sites of all studied stall- and collision-inducing sequences. Interestingly, in the case of poly(A) tracts, the inhibitory conformation of the mRNA in the A site involves a nucleotide stacking array. Together, these data demonstrate a novel mRNA-induced mechanisms of translational stalling in eukaryotic ribosomes.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Codón , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Poli A/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética
8.
Biochem Biophys Res Commun ; 691: 149306, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38056247

RESUMEN

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Our previous study on IMTs reveals that disrupt NMD pathway causes to lower the threshold for triggering the immune cell infiltration, thereby resulting in inappropriate immune activation. However, myofibroblast differentiation and proliferation is not yet known. METHODS: RT-PCR, RT-qPCR, DNA sequence, western bolt, 5'race analysis and site-specific mutagenesis were used in this study. RESULTS: Here, an alternative spliced (ALS) UPF2 mRNA skipping exon 2 and 3 and corresponding to the truncated UPF2 protein were found in 2 pancreatic IMTs. We showed that the uORF present in the 5'UTR of UPF2 mRNA is responsible for the translation inhibition, whiles ALS UPF2 is more facilitated to be translated into the truncated UPF2 protein. Several mRNA targets of the NMD were upregulated in IMT samples, indicating that the truncated UPF2 function is strongly perturbed, resulted in disrupted NMD pathway in IMTs. These upregulated NMD targets included cdkn1a expression and the generation of high levels of p21 (waf1/cip1), which may contribute to triggering IMTs. CONCLUSION: The disrupt UPFs/NMD pathway may link to molecular alteration associated with differentiation and proliferation for IMTs.


Asunto(s)
Neoplasias , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
Appl Environ Microbiol ; : e0131324, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291986

RESUMEN

Bacterial leaf spot of pepper (BSP), primarily caused by Xanthomonas euvesicatoria (Xe), poses a significant challenge to pepper production worldwide. Despite its impact, the genetic diversity of this pathogen remains underexplored, which limits our understanding of its population structure. To bridge this knowledge gap, we conducted a comprehensive analysis using 103 Xe strains isolated from pepper in southwest Florida to characterize genomic and type III effector (T3E) variation in this population. Phylogenetic analysis of core genomes revealed a major distinct genetic lineage associated with amylolytic activity. This amylolytic lineage was represented in Xe strains globally. Molecular clock analysis dated the emergence of amylolytic strains in Xe to around 1972. Notably, non-amylolytic strains possessed a single base pair frameshift deletion in the ⍺-amylase gene yet retained a conserved C-terminus. GUS assay revealed the expression of two open reading frames in non-amylolytic strains, one at the N-terminus and another that starts 136 base pairs upstream of the ⍺-amylase gene. Analysis of T3Es in the Florida Xe population identified variation in 12 effectors, including two classes of mutations in avrBs2 that prevent AvrBs2 from triggering a hypersensitive response in Bs2-resistant pepper plants. Knowledge of T3E variation could be used for effector-targeted disease management. This study revealed previously undescribed population structure in this economically important pathogen.IMPORTANCEBacterial leaf spot (BSP), a significant threat to pepper production globally, is primarily caused by Xanthomonas euvesicatoria (Xe). Limited genomic data has hindered detailed studies on its population diversity. This study analyzed the whole-genome sequences of 103 Xe strains from peppers in southwest Florida, along with additional global strains, to explore the pathogen's diversity. The study revealed two major distinct genetic groups based on their amylolytic activity, the ability to break down starch, with non-amylolytic strains having a mutation in the ⍺-amylase gene. Additionally, two classes of mutations in the avrBs2 gene were found, leading to susceptibility in pepper plants with the Bs2 resistance gene, a commercially available resistance gene for BSP. These findings highlight the need to forecast the emergence of such strains, identify genetic factors for innovative disease management, and understand how this pathogen evolves and spreads.

10.
Arch Biochem Biophys ; 756: 109989, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38621446

RESUMEN

It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.


Asunto(s)
Neoplasias , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas , Transactivadores , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , ARN Helicasas/metabolismo , ARN Helicasas/genética , Transactivadores/metabolismo , Transactivadores/genética , Regulación Neoplásica de la Expresión Génica , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
11.
Hum Genomics ; 17(1): 42, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189200

RESUMEN

BACKGROUND: Hearing loss is a rare hereditary deficit that is rather common among consanguineous populations. Autosomal recessive non-syndromic hearing loss is the predominant form of hearing loss worldwide. Although prevalent, hearing loss is extremely heterogeneous and poses a pitfall in terms of diagnosis and screening. Using next-generation sequencing has enabled a rapid increase in the identification rate of genes and variants in heterogeneous conditions, including hearing loss. We aimed to identify the causative variants in two consanguineous Yemeni families affected with hearing loss using targeted next-generation sequencing (clinical exome sequencing). The proband of each family was presented with sensorineural hearing loss as indicated by pure-tone audiometry results. RESULTS: We explored variants obtained from both families, and our analyses collectively revealed the presence and segregation of two novel loss-of-function variants: a frameshift variant, c.6347delA in MYO15A in Family I, and a splice site variant, c.5292-2A > C, in OTOF in Family II. Sanger sequencing and PCR-RFLP of DNA samples from 130 deaf and 50 control individuals confirmed that neither variant was present in our in-house database. In silico analyses predicted that each variant has a pathogenic effect on the corresponding protein. CONCLUSIONS: We describe two novel loss-of-function variants in MYO15A and OTOF that cause autosomal recessive non-syndromic hearing loss in Yemeni families. Our findings are consistent with previously reported pathogenic variants in the MYO15A and OTOF genes in Middle Eastern individuals and suggest their implication in hearing loss.


Asunto(s)
Sordera , Proteínas de la Membrana , Miosinas , Sordera/genética , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Miosinas/genética , Linaje , Yemen , Humanos
12.
Am J Med Genet A ; 194(5): e63504, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38153133

RESUMEN

Congenital cataracts are the leading cause of irreversible visual disability in children, and genetic factors play an important role in their development. In this study, targeted exome sequencing revealed a novel single-base deletional mutation of MIP (c.301delG; p.Ala101Profs*16) segregated with congenital punctate cataract in a Chinese family. The hydrophobic properties, and secondary and tertiary structures for truncated MIP were predicted to affect the function of protein by bioinformatics analysis. When MIP-WT and MIP-Ala101fs expression constructs were singly transfected into HeLa cells, it was found that the mRNA level showed no significant difference, while the protein level of the mutant was remarkably reduced compared to that of the wild-type MIP. Immunofluorescence images showed that the MIP-WT was principally localized to the plasma membrane, whereas the MIP-Ala101fs protein was aberrantly trapped in the cytoplasm. Furthermore, the cell-to-cell adhesion capability and the cell-to-cell communication property were both significantly reduced for MIP-Ala101fs compared to the MIP-WT (all *p < 0.05). This is the first report of the c.301delG mutation in the MIP gene associated with autosomal dominant congenital cataracts. We propose that the cataract is caused by the decreased protein expression and reduced cell-to-cell adhesion by the mutant MIP. The impaired trafficking or instability of the mutant protein, as well as compromised intercellular communication is probably a concurrent result of the mutation. The results expand the genetic and phenotypic spectra of MIP and help to better understand the molecular basis of congenital cataracts.


Asunto(s)
Catarata , Proteínas del Ojo , Niño , Humanos , Catarata/genética , Catarata/congénito , Adhesión Celular/genética , China , Proteínas del Ojo/genética , Células HeLa , Mutación
13.
Pediatr Allergy Immunol ; 35(6): e14179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923448

RESUMEN

LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.


Asunto(s)
Dominios Proteicos , Humanos , Dominios Proteicos/genética , Fenotipo , Agammaglobulinemia/genética , Agammaglobulinemia/inmunología , Agammaglobulinemia/diagnóstico , Niño , Edad de Inicio , Mutación , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Variable Común/inmunología , Proteínas Adaptadoras Transductoras de Señales
14.
Virus Genes ; 60(1): 9-17, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37938470

RESUMEN

Most wild strains of Japanese encephalitis virus (JEV) produce NS1' protein, which plays an important role in viral infection and immune escape. The G66A nucleotide mutation in NS2A gene of the wild strain SA14 prevented the ribosomal frameshift that prevented the production of NS1' protein, thus reduced the virulence. In this study, the 66th nucleotide of the NS2A gene of SA14 was mutated into A, U or C, respectively. Both the G66U and G66C mutations cause the E22D mutation of the NS2A protein. Subsequently, the expression of NS1' protein, plaque size, replication ability, and virulence to mice of the three mutant strains were examined. The results showed that the three mutant viruses could not express NS1' protein, and their proliferation ability in nerve cells and virulence to mice were significantly reduced. In addition, the SA14(G66C) was less virulent than the other two mutated viruses. Our results indicate that only when G is the 66th nucleotide of NS2A, the JEV can produce NS1' protein, which affects the virulence.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Ratones , Virus de la Encefalitis Japonesa (Especie)/genética , Nucleótidos/metabolismo , Virulencia/genética , Línea Celular , Proteínas no Estructurales Virales/metabolismo , Proliferación Celular
15.
Thromb J ; 22(1): 19, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347553

RESUMEN

BACKGROUND: Antithrombin (AT) is an important anticoagulant in hemostasis. We describe here the characterization of a novel AT mutation associated with clinically relevant thrombosis. A pair of sisters with confirmed type I AT protein deficiency was genetically analyzed on suspicion of an inherited SERPINC1 mutation. A frameshift mutation, c.1247dupC, was identified and the effect of this mutation was examined on the cellular and molecular level. METHODS: Plasmids for the expression of wild-type (WT) and mutated SERPINC1 coding sequence (CDS) fused to green fluorescent protein (GFP) or hemagglutinin (HA) tag were transfected into HEK293T cells. Subcellular localization and secretion of the respective fusion proteins were analyzed by confocal laser scanning microscopy and Western blot. RESULTS: The c.1247dupC mutation results in a frameshift in the CDS of the SERPINC1 gene and a subsequently altered amino acid sequence (p.Ser417LysfsTer48). This alteration affects the C-terminus of the AT antigen and results in impaired secretion as confirmed by GFP- and HA-tagged mutant AT analyzed in HEK293T cells. CONCLUSION: The p.Ser417LysfsTer48 mutation leads to impaired secretion, thus resulting in a quantitative AT deficiency. This is in line with the type I AT deficiency observed in the patients.

16.
J Med Genet ; 60(2): 174-182, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35361685

RESUMEN

BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is an inheritable blinding disorder with clinical and genetic heterogeneity. Heterozygous variants in the CTNNB1 gene have been reported to cause FEVR. However, the pathogenic basis of CTNNB1-associated FEVR has not been fully explored. METHODS: Whole-exome sequencing was performed on the genomic DNA of probands. Dual-luciferase reporter assay, western blotting and co-immunoprecipitation were used to characterise the impacts of variants. Quantitative real-time PCR, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay and immunocytochemistry were performed on the primary human retinal microvascular endothelial cells (HRECs) to investigate the effect of CTNNB1 depletion on the downstream genes involved in Norrin/ß-catenin signalling, cell proliferation and junctional integrity, respectively. Transendothelial electrical resistance assay was applied to measure endothelial permeability. Heterozygous endothelial-specific Ctnnb1-knockout mouse mice were generated to verify FEVR-like phenotypes in the retina. RESULTS: We identified two novel heterozygous variants (p.Leu103Ter and p.Val199LeufsTer11) and one previously reported heterozygous variant (p.His369ThrfsTer2) in the CTNNB1 gene. These variants caused truncation and degradation of ß-catenin that reduced Norrin/ß-catenin signalling activity. Additionally, knockdown (KD) of CTNNB1 in HRECs led to diminished mRNA levels of Norrin/ß-catenin targeted genes, reduced cell proliferation and compromised junctional integrity. The Cre-mediated heterozygous deletion of Ctnnb1 in mouse endothelial cells (ECs) resulted in FEVR-like phenotypes. Moreover, LiCl treatment partially rescued the defects in CTNNB1-KD HRECs and EC-specific Ctnnb1 heterozygous knockout mice. CONCLUSION: Our findings reinforced the current pathogenesis of Norrin/ß-catenin for FEVR and expanded the causative variant spectrum of CTNNB1 for the prenatal diagnosis and genetic counselling of FEVR.


Asunto(s)
Enfermedades de la Retina , beta Catenina , Humanos , Animales , Ratones , Vitreorretinopatías Exudativas Familiares/genética , beta Catenina/genética , Células Endoteliales , Retina , Fenotipo , Mutación , Linaje , Análisis Mutacional de ADN , Enfermedades de la Retina/genética
17.
J Med Genet ; 60(6): 615-619, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36535754

RESUMEN

BACKGROUND: Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. METHODS: RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. RESULTS: We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. CONCLUSION: These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , ARN Mensajero/genética , Mutación , Reacción en Cadena de la Polimerasa Multiplex
18.
Eur Arch Otorhinolaryngol ; 281(1): 237-243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37603052

RESUMEN

PURPOSE: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited disorder that involves epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVMs). This study aims to investigate the genetic causes in a Chinese family with HHT. METHODS: HHT was confirmed according to Curaçao's diagnostic criteria. Three patients diagnosed with HHT and healthy members were recruited. Whole-exome sequencing (WES) and sanger sequencing were performed to define the patient's genetically pathogenic factor. RESULTS: The proband presented with recurrent epistaxis, hepatopulmonary arteriovenous malformation, and adenocarcinoma. A novel frameshift mutation (c.1376_1377delAC, p.H459Lfs*41) of the ENG gene was revealed in affected individuals by WES. There was no report of this variant and predicted to be highly damaging by causing truncation of the ENG protein. CONCLUSION: We report a novel variant in the ENG gene in Chinese that extends the mutational and phenotypic spectra of the ENG gene, and also demonstrates the feasibility of WES in the application of genetic diagnosis of HHT.


Asunto(s)
Mutación del Sistema de Lectura , Telangiectasia Hemorrágica Hereditaria , Humanos , Endoglina/genética , Telangiectasia Hemorrágica Hereditaria/complicaciones , Telangiectasia Hemorrágica Hereditaria/diagnóstico , Telangiectasia Hemorrágica Hereditaria/genética , Epistaxis , Mutación , China
19.
Hemoglobin ; 48(2): 113-115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38565194

RESUMEN

Newborn screening identified a Chinese-Canadian infant who was positive for possible ß-thalassemia (ß-thal). Detailed family studies demonstrated that the proband was a compound heterozygote for the Chinese Gγ(Aγδß)0-thal deletion and a novel frameshift mutation within exon 3 (HBB:c.336dup), and heterozygous for the Southeast Asian α-thal deletion (--SEA/αα). This case illustrates the importance of follow-up molecular testing of positive newborn screening results to confirm the diagnosis and define risks for future pregnancies.


Asunto(s)
Genotipo , Tamizaje Neonatal , Globinas beta , Talasemia beta , Femenino , Humanos , Recién Nacido , Masculino , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/diagnóstico , Mutación del Sistema de Lectura , Heterocigoto , Mutación , Linaje
20.
Hemoglobin ; 48(3): 200-202, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653553

RESUMEN

Here, we report a novel frameshift mutation caused by a single base deletion in exon 3 of the HBA2 gene (HBA2:c.337delC) detected by next-generation sequencing. The proband was a 26-year-old Chinese pregnant woman who originates from Hunan Province. Her mean corpuscular volume(MCV) and mean corpuscular hemoglobin (MCH) had a mild decrease. Capillary electrophoresis (CE) showed that both Hb A (97.8%) and Hb F (0.0%) values were within normal range, while the Hb A2 (2.2%) value was below normal. Sequence analysis of the α and ß-globin genes revealed a novel single base deletion at codon 112 (HBA2:c.337delC) in the heterozygous state, which resulted in a mild phenotype of α-thalassemia.


Asunto(s)
Mutación del Sistema de Lectura , Secuenciación de Nucleótidos de Alto Rendimiento , Talasemia alfa , Humanos , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Femenino , Adulto , China , Globinas alfa/genética , Hemoglobina A2/genética , Embarazo , Índices de Eritrocitos , Exones , Fenotipo , Heterocigoto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA