Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38743928

RESUMEN

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Asunto(s)
Cristalización , Agua , Cristalización/métodos , Agua/química , Cinética , Estabilidad de Medicamentos , Nifedipino/química , Compuestos de Vinilo/química , Termodinámica , Pirrolidinas/química , Viscosidad , Química Farmacéutica/métodos , Humedad , Temperatura , Solubilidad , Metilcelulosa/química , Metilcelulosa/análogos & derivados
2.
Mol Pharm ; 20(4): 2067-2079, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930788

RESUMEN

The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.


Asunto(s)
Simulación de Dinámica Molecular , Polímeros , Polímeros/química , Temperatura , Neonicotinoides , Rastreo Diferencial de Calorimetría , Solubilidad , Composición de Medicamentos/métodos
3.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049679

RESUMEN

Understanding crystallization and its correlations with liquid dynamics is relevant for developing robust amorphous pharmaceutical solids. Herein, nimesulide, a classical anti-inflammatory agent, was used as a model system for studying the correlations between crystallization kinetics and molecular dynamics. Kinetic parts of crystal growth (ukin) of nimesulide exhibited a power law dependence upon the liquid viscosity (η) as ukin~η-0.61. Bulk molecular diffusivities (DBulk) of nimesulide were predicted by a force-level statistical-mechanical model from the α-relaxation times, which revealed the relationship as ukin~Dbulk0.65. Bulk crystal growth kinetics of nimesulide in deeply supercooled liquid exhibited a fragility-dependent decoupling from τα. The correlations between growth kinetics and α-relaxation times predicted by the Adam-Gibbs-Vogel equation in a glassy state were also explored, for both the freshly made and fully equilibrated glass. These findings are relevant for the in-depth understanding and prediction of the physical stability of amorphous pharmaceutical solids.

4.
J Exp Bot ; 73(8): 2631-2649, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35084458

RESUMEN

During desiccation, the cytoplasm of orthodox seeds solidifies into an intracellular glass with highly restricted diffusion and molecular mobility. Temperature and water content govern seed ageing rates, while oxygen (O2) can promote deteriorative reactions. However, whether the cytoplasmic physical state affects involvement of O2 in seed ageing remains unresolved. We aged Pinus densiflora seeds by controlled deterioration (CD) at 45 °C and distinct relative humidity (RH), resulting in cells with a glassy (11% and 30% RH) or fluid (60% and 80% RH) cytoplasm. Hypoxic conditions (0.4% O2) during CD delayed seed deterioration, lipid peroxidation, and decline of antioxidants (glutathione, α-tocopherol, and γ-tocopherol), but only when the cytoplasm was glassy. In contrast, when the cytoplasm was fluid, seeds deteriorated at the same rate regardless of O2 availability, while being associated with limited lipid peroxidation, detoxification of lipid peroxide products, substantial loss of glutathione, and resumption of glutathione synthesis. Changes in metabolite profiles provided evidence of other O2-independent enzymatic reactions in a fluid cytoplasm, including aldo-keto reductase and glutamate decarboxylase activities. Biochemical profiles of seeds stored under seed bank conditions resembled those obtained after CD regimes that maintained a glassy cytoplasm. Overall, O2 contributed more to seed ageing when the cytoplasm was glassy, rather than fluid.


Asunto(s)
Oxígeno , Pinus , Citoplasma/metabolismo , Germinación , Glutatión/metabolismo , Oxígeno/metabolismo , Pinus/metabolismo , Semillas/metabolismo
5.
Chemistry ; 28(23): e202200257, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35187737

RESUMEN

We report the complex phase behavior of the glass forming protic ionic liquid (PIL) d3-octylphosphonium bis(trifluoromethylsulfonyl)imide [C8 H17 PD3 ][NTf2 ] by means of solid-state NMR spectroscopy. Combined line shape and spin relaxation studies of the deuterons in the PD3 group of the octylphosphonium cation allow to map and correlate the phase behavior for a broad temperature range from 71 K to 343 K. In the solid PIL at 71 K, we observed a static state, characterized by the first deuteron quadrupole coupling constant reported for PD3 deuterons. A transition enthalpy of about 12 kJ mol-1 from the static to the mobile state with increasing temperature suggests the breaking of a weak, charge-enhanced hydrogen bond between cation and anion. The highly mobile phase above 100 K exhibits an almost disappearing activation barrier, strongly indicating quantum tunneling. Thus, we provide first evidence of tunneling driven mobility of the hydrogen bonded P-D moieties in the glassy state of PILs, already at surprisingly high temperatures up to 200 K. Above 250 K, the mobile phase turns from anisotropic to isotropic motion, and indicates strong internal rotation of the PD3 group. The analyzed line shapes and spin relaxation times allow us to link the structural and dynamical behavior at molecular level with the phase behavior beyond the DSC traces.

6.
Mol Pharm ; 19(2): 472-483, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34979803

RESUMEN

Four model compounds, nifedipine, indomethacin, felodipine, and ketoconazole, all with nearly identical glass transition temperatures, were chosen to study the effects of thermodynamics and molecular mobility on their crystallization propensities. The time and temperature dependence of the crystallization induction time of each compound was determined by differential scanning calorimetry (DSC) and enabled the generation of their time-temperature-transformation (TTT) diagrams. The relaxation times (τα) were measured by dielectric spectroscopy, and the Gibbs free energy (ΔG) and entropy (ΔS) difference between the crystalline and amorphous states were obtained by DSC. The temperature dependence of the crystallization induction time (τ0(T)) is a function of the thermodynamic activation barrier and the frequency of "attempted jumps" (1/τα(T)) to overcome the barrier. Even though the four model compounds exhibited very similar molecular mobility (relaxation time) over a wide range of temperatures, their crystallization propensities were very different. The observed difference in crystallization propensity was explained in terms of the difference in the thermodynamic barrier, and it is correlated to the empirical relation (TΔS3)/ΔG2.


Asunto(s)
Cristalización , Rastreo Diferencial de Calorimetría , Cinética , Preparaciones Farmacéuticas , Temperatura , Termodinámica
7.
Mol Pharm ; 19(1): 80-90, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851124

RESUMEN

In this paper, several experimental techniques [X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetry, Fourier transform infrared spectroscopy, and broad-band dielectric spectroscopy] have been applied to characterize the structural and thermal properties, H-bonding pattern, and molecular dynamics of amorphous bosentan (BOS) obtained by vitrification and cryomilling of the monohydrate crystalline form of this drug. Samples prepared by these two methods were found to be similar with regard to their internal structure, H-bonding scheme, and structural (α) dynamics in the supercooled liquid state. However, based on the analysis of α-relaxation times (dielectric measurements) predicted for temperatures below the glass-transition temperature (Tg), as well as DSC thermograms, it was concluded that the cryoground sample is more aged (and probably more physically stable) compared to the vitrified one. Interestingly, such differences in physical properties turned out to be reflected in the lower intrinsic dissolution rate of BOS obtained by cryomilling (in the first 15 min of dissolution test) in comparison to the vitrified drug. Furthermore, we showed that cryogrinding of the crystalline BOS monohydrate leads to the formation of a nearly anhydrous amorphous sample. This finding, different from that reported by Megarry et al. [ Carbohydr. Res. 2011, 346, 1061-1064] for trehalose (TRE), was revealed on the basis of infrared and thermal measurements. Finally, two various hypotheses explaining water removal upon cryomilling have been discussed in the manuscript.


Asunto(s)
Bosentán/química , Rastreo Diferencial de Calorimetría , Espectroscopía Dieléctrica , Liberación de Fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Vitrificación , Difracción de Rayos X
8.
Mol Pharm ; 19(2): 378-391, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34378939

RESUMEN

In this Perspective, the authors examine the various factors that should be considered when attempting to use miscible amorphous API-excipient mixtures (amorphous solid dispersions and coamorphous systems) to prevent the solid-state crystallization of API molecules when isothermally stored for long periods of time (a year or more) in the glassy state. After presenting an overview of a variety of studies designed to obtain a better understanding of possible mechanisms by which amorphous API undergo physical instability and by which excipients generally appear to inhibit API crystallization from the amorphous state, we examined 78 studies that reported acceptable physical stability of such systems, stored below Tg under "dry" conditions for one year or more. These results were examined more closely in terms of two major contributing factors: the degree to which a reduction in diffusional molecular mobility and API-excipient molecular interactions operates to inhibit crystallization. These two parameters were chosen because the data are readily available in early development to help compare amorphous systems. Since Tg - T = 50 K is often used as a rule of thumb for the establishing the minimum value below Tg required to reduce diffusional mobility to a period of years, it was interesting to observe that 30 of the 78 studies still produced significant physical stability at values of Tg - T < 50 K (3-47 °C), suggesting that factors besides diffusive molecular mobility likely contribute. A closer look at the Tg - T < 50 systems shows that hydrogen bonding, proton transfer, disruption of API-API self-associations (such as dimers), and possible π-π stacking were reported for most of the systems. In contrast, five crystallized systems that were monitored for a year or more were also examined. These systems exhibited Tg - T values of 9-79, with three of them exhibiting Tg - T < 50. For these three samples, none displayed molecular interactions by infrared spectroscopy. A discussion on the impact of relative humidity on long-term crystallization in the glass was included, with attention paid to the relative water vapor sorption by various excipients and effects on diffusive mobility and molecular interactions between API and excipient.


Asunto(s)
Excipientes , Polímeros , Rastreo Diferencial de Calorimetría , Cristalización/métodos , Estabilidad de Medicamentos , Excipientes/química , Vidrio/química , Enlace de Hidrógeno , Polímeros/química
9.
Mol Pharm ; 19(8): 2950-2961, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35797094

RESUMEN

Using sulfamethoxazole (SMZ) and trimethoprim (TMP) as model drugs, we designed amorphous solid dispersions (ASDs) for the simultaneous solubility enhancement of two active pharmaceutical ingredients (APIs) by exploiting the drug-drug and drug-polymer interactions. In order to make this approach broadly applicable and over a wide dose range, a mixture of SMZ and TMP at weight ratios of 5:1 and 1:5 (w/w) were formulated into ternary ASDs. Depending on the dose ratio of the two drugs, the polymer used was either an aminoalkyl methacrylate copolymer (Eudragit, EDE) or polyacrylic acid. The drug-drug and drug-polymer interactions were characterized to be ionic by infrared and solid-state nuclear magnetic resonance spectroscopy. The interactions resulted in a substantial reduction in molecular mobility, evident from the increase in the structural relaxation time determined by dielectric spectroscopy. The drug-drug interaction resulted in ∼3 orders of magnitude reduction in molecular mobility. The addition of a polymer led to a further decrease in molecular mobility of up to 4 orders of magnitude. The strength of intermolecular interactions was also estimated from the glass transition temperatures of the ASDs obtained by differential scanning calorimetry. The strong intermolecular interactions yielded highly stable ASDs with no evidence of crystallization, both at elevated temperatures and under accelerated storage conditions (40 °C/75% relative humidity; 6 weeks). The dissolution performances of the ASDs were evaluated using the area under the curve (AUC) obtained from the concentration-time profiles under the non-sink condition. SMZ and TMP in their ternary ASDs, when compared with their crystalline counterparts, exhibited up to 6.4- and 4.6-fold increases in AUC, respectively. Importantly, the synchronized release of the two drugs was observed, a desirable attribute in synergistic formulations. A single-phase ternary ASD, stabilized by drug-drug and drug-polymer interactions, is likely responsible for the unique release profile.


Asunto(s)
Polímeros , Cristalización , Combinación de Medicamentos , Composición de Medicamentos/métodos , Liberación de Fármacos , Polímeros/química , Solubilidad
10.
Solid State Nucl Magn Reson ; 118: 101783, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247851

RESUMEN

Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1H- and 2H- tetrazole tautomers can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using 13C, 15N and 1H solid-state NMR. Variable-temperature 13C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). 15N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1H- and 2H-tetrazole tautomers. Static 1H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.


Asunto(s)
Imagen por Resonancia Magnética , Tetrazoles , Enlace de Hidrógeno , Irbesartán , Espectroscopía de Resonancia Magnética/métodos
11.
Int J Mol Sci ; 23(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35563574

RESUMEN

Glass-forming ability is one of the most desired properties of organic compounds dedicated to optoelectronic applications. Therefore, finding general structure-property relationships and other rules governing vitrification and related near-glass-transition phenomena is a burning issue for numerous compound families, such as Schiff bases. Hence, we employ differential scanning calorimetry, broadband dielectric spectroscopy, X-ray diffraction and quantum density functional theory calculations to investigate near-glass-transition phenomena, as well as ambient- and high-pressure molecular dynamics for two structurally related Schiff bases belonging to the family of glycine imino esters. Firstly, the surprising great stability of the supercooled liquid phase is shown for these compounds, also under high-pressure conditions. Secondly, atypical self-organization via bifurcated hydrogen bonds into lasting centrosymmetric dimers is proven. Finally, by comparing the obtained results with the previous report, some general rules that govern ambient- and high-pressure molecular dynamics and near-glass transition phenomena are derived for the family of glycine imino esters. Particularly, we derive a mathematical formula to predict and tune their glass transition temperature (Tg) and its pressure coefficient (dTg/dp). We also show that, surprisingly, despite the presence of intra- and intermolecular hydrogen bonds, van der Waals and dipole-dipole interactions are the main forces governing molecular dynamics and dielectric properties of glycine imino esters.


Asunto(s)
Bases de Schiff , Vitrificación , Rastreo Diferencial de Calorimetría , Glicina , Temperatura de Transición
12.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269593

RESUMEN

Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari-Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari-Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.


Asunto(s)
Plastificantes , Polímeros , Biopolímeros , Rastreo Diferencial de Calorimetría , Temperatura
13.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364274

RESUMEN

This work deals with molecular mobility in renewable block copolymers based on polylactide (PLA) and poly(propylene adipate) (PPAd). In particular, we assess non-trivial effects on the mobility arising from the implementation of crystallization. Differential scanning calorimetry, polarized light microscopy and broadband dielectric spectroscopy were employed in combination for this study. The materials were subjected to various thermal treatments aiming at the manipulation of crystallization, namely, fast and slow cooling, isothermal melt- and cold-crystallization. Subsequently, we evaluated the changes recorded in the overall thermal behavior, semicrystalline morphology and molecular mobility (segmental and local). The molecular dynamics map for neat PPAd is presented here for the first time. Unexpectedly, the glass transition temperature, Tg, in the amorphous state drops upon crystallization by 8-50 K. The drop becomes stronger with the increase in the PPAd fraction. Compared to the amorphous state, crystallization leads to significantly faster segmental dynamics with severely suppressed cooperativity. For the PLA/PPAd copolymers, the effects are systematically stronger in the cold- as compared to the melt-crystallization, whereas the opposite happens for neat PLA. The local ßPLA relaxation of PLA was, interestingly, recorded to almost vanish upon crystallization. This suggests that the corresponding molecular groups (carbonyl) are strongly involved and immobilized within the semicrystalline regions. The overall results suggest the involvement of either spatial nanoconfinement imposed on the mobile chains within the inter-crystal amorphous areas and/or a crystallization-driven effect of nanophase separation. The latter phase separation seems to be at the origins of the significant discrepancy recorded between the calorimetric and dielectric recordings on Tg in the copolymers. Once again, compared to more conventional techniques such as calorimetry, dielectric spectroscopy was proved a powerful and quite sensitive tool in recording such effects as well as in providing indirect indications for the polymer chains' topology.


Asunto(s)
Poliésteres , Temperatura de Transición , Cristalización/métodos
14.
Compr Rev Food Sci Food Saf ; 21(6): 4738-4775, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124883

RESUMEN

Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.


Asunto(s)
Protones , Almidón , Almidón/química , Triticum/química , Espectroscopía de Resonancia Magnética/métodos , Agua/química
15.
AAPS PharmSciTech ; 23(5): 136, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534759

RESUMEN

The present work was to construct a roflumilast (ROF) cream for the treatment of psoriasis and clarify the dual roles of propylene glycol monocaprylate (PGM) in both molecular mobility of the cream, and drug-skin miscibility via drug-PGM-ceramide and drug-PGM-collagen intermolecular interaction. The cream formulation was screened through the stability study and in vitro skin administration study, optimized by Plackett-Burman and Box-Behnken design, and finally verified by the in vivo tissue distribution study. PGM demonstrated a significant drug skin retention enhancement effect (Rmax in vivo = 19.5 µg/g). It increased the molecular mobility of the oil phase of the cream by decreasing the molecular interaction of oil molecules proven by the rheology study (Ec = 3.73 × 10-4 mJ·m-3). More importantly, because of the good stratum corneum (SC) compatibility (∆H = - 403.88 J/g), PGM promoted an orderly flow of SC lipids (X-ray scattering, ΔLPP = 1.18 nm) and entered the viable epidermis/dermis (VE/DE) in large quantities (RPGM = 1186 µg/g), acting as a bridge to connect the drug to collagen through two H-bonds (LengthH-bond = 2.846 Å and 3.313 Å), thus increasing the miscibility of drug and VE/DE significantly (∆H = - 310.10 J/g, Emix = 21.66 kcal/mol). In this study, a ROF cream was developed successfully and the effect of PGM on the skin retention was clarified at molecular level.


Asunto(s)
Aminopiridinas , Piel , Aminopiridinas/farmacología , Benzamidas , Colágeno/farmacología , Ciclopropanos , Preparaciones Farmacéuticas , Propilenglicol/química , Glicoles de Propileno , Crema para la Piel
16.
J Exp Bot ; 72(5): 1576-1588, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33165603

RESUMEN

Lichens can withstand extreme desiccation to water contents of ≤ 0.1 g H2O g-1 DW, and in the desiccated state are among the most extremotolerant organisms known. Desiccation-tolerant life-forms such as seeds, mosses and lichens survive 'vitrification', that is the transition of their cytoplasm to a 'glassy' state, which causes metabolism to cease. However, our understanding of the mechanisms of desiccation tolerance is hindered by poor knowledge of what reactions occur in the desiccated state. Using Flavoparmelia caperata as a model lichen, we determined at what water contents vitrification occurred upon desiccation. Molecular mobility was assessed by dynamic mechanical thermal analysis, and the de- and re-epoxidation of the xanthophyll cycle pigments (measured by HPLC) was used as a proxy to assess enzyme activity. At 20 °C vitrification occurred between 0.12-0.08 g H2O g-1 DW and enzymes were active in a 'rubbery' state (0.17 g H2O g-1 DW) but not in a glassy state (0.03 g H2O g-1 DW). Therefore, desiccated tissues may appear to be 'dry' in the conventional sense, but subtle differences in water content will have substantial consequences on the types of (bio)chemical reactions that can occur, with downstream effects on longevity in the desiccated state.


Asunto(s)
Briófitas , Líquenes , Desecación , Parmeliaceae , Agua
17.
Molecules ; 26(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34641371

RESUMEN

Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron-nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.

18.
J Sci Food Agric ; 101(6): 2542-2551, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33058153

RESUMEN

BACKGROUND: Maltose is an essential derivative of starch. To understand the processability and stability of maltose-containing foods, material characterization of the phase and state transition from its amorphous state is required. Although the crystallization of amorphous maltose is well understood, few studies have reported the relationship between the crystallization and the glass transition temperature (Tg )-related molecular mobility. In this study, water sorption, crystallization, Tg -related α-relaxation, and the corresponding time factor for amorphous maltose and maltose / whey protein isolate (WPI) mixtures are measured at various water activity (aw ) levels and 25 °C. RESULTS: The water-additive principle for maltose / WPI mixtures was observed at aw ≤ 0.440 at the molecular level, whereas the crystallization of amorphous maltose occurred at high aw values (≥0.534). The crystal formation and crystallization kinetics of amorphous maltose were affected by water and WPI at aw ≥ 0.534 and 25 °C, as determined by X-ray diffraction. The relationship between Tg and the water content was fitted by the Gordon-Taylor model, and its constant showed a compositional dependence for the maltose / WPI mixtures. The α-relaxation temperature of the amorphous samples decreased due to water plasticization, but increased with an increase in the WPI quantity. The Strength (S) value for amorphous maltose, which was a quantitative estimate of the compositional effects on molecular mobility, was based on the William-Landel-Ferry (WLF) equation. CONCLUSION: The S concept exhibits considerable potential for application in controlling the crystallization of amorphous maltose and improving the processability and stability of maltose-containing foods. © 2020 Society of Chemical Industry.


Asunto(s)
Maltosa/química , Proteína de Suero de Leche/química , Animales , Rastreo Diferencial de Calorimetría , Bovinos , Cristalización , Temperatura de Transición , Difracción de Rayos X
19.
Q Rev Biophys ; 51: e7, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912496

RESUMEN

The outer layer of the skin, stratum corneum (SC) is an efficient transport barrier and it tolerates mechanical deformation. At physiological conditions, the majority of SC lipids are solid, while the presence of a small amount of fluid lipids is considered crucial for SC barrier and material properties. Here we use solid-state and diffusion nuclear magnetic resonance to characterize the composition and molecular dynamics of the fluid lipid fraction in SC model lipids, focusing on the role of the essential SC lipid CER EOS, which is a ceramide esterified omega-hydroxy sphingosine linoleate with very long chain. We show that both rigid and mobile structures are present within the same CER EOS molecule, and that the linoleate segments undergo fast isotropic reorientation while exhibiting extraordinarily slow self-diffusion. The characterization of this unusual self-assembly in SC lipids provides deepened insight into the molecular arrangement in the SC extracellular lipid matrix and the role of CER EOS linoleate in the healthy and diseased skin.


Asunto(s)
Ceramidas/química , Epidermis/química , Difusión , Ésteres/química , Ácido Linoleico/química , Espectroscopía de Resonancia Magnética , Membranas Artificiales , Conformación Molecular , Simulación de Dinámica Molecular
20.
Chemphyschem ; 21(17): 1951-1956, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32697428

RESUMEN

We present a detailed solid-state NMR characterization of the molecular dynamics of tert-butyl alcohol (TBA) confined inside breathing metal-organic framework (MOF) MIL-53(Al). 27 Al MAS NMR has demonstrated that TBA adsorption induces the iX phase of MIL-53 material with partially shrunk channels. 2 H solid-state NMR has shown that the adsorbed alcohol exhibits anisotropic rotations of the methyl groups around two C 3 axes and librations of the molecule as a whole about the axis passing through the TBA C-O bond. These librations are realized by two distinct ways: fast molecule orientation change during the translational jump diffusion along the channel with characteristic time τD of about 10-9  s at 300 K; slow local librations at a single coordination site, representing framework hydroxyl groups, with τl ≈10-6  s at 300 K. Self-diffusion coefficient of the alcohol in the MOF has been estimated: D=3.4×10-10  m2 s-1 at 300 K. It has been inferred that both the framework flexibility and the interaction with framework hydroxyl groups define the dynamics of TBA confined in the channels of MIL-53 (Al).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA