Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Hum Mol Genet ; 31(2): 166-175, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34378050

RESUMO

Transactive response DNA binding protein 43 (TDP-43) is an RNA processing protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear TDP-43 mislocalizes in patients to the cytoplasm, where it forms ubiquitin-positive inclusions in affected neurons and glia. Physiologically, cytoplasmic TDP-43 is associated with stress granules (SGs). Here, we explored TDP-43 cytoplasmic accumulation and stress granule formation following osmotic and oxidative stress. We show that sorbitol drives TDP-43 redistribution to the cytoplasm, while arsenite induces the recruitment of cytoplasmic TDP-43 to TIA-1 positive SGs. We demonstrate that inducing acute oxidative stress after TDP-43 cytoplasmic relocalization by osmotic shock induces poly (ADP-ribose) polymerase (PARP) cleavage, which triggers cellular toxicity. Recruitment of cytoplasmic TDP-43 to polyribosomes occurs in an SH-SY5Y cellular stress model and is observed in FTD brain lysate. Moreover, the processing body (P-body) marker DCP1a is detected in TDP-43 granules during recovery from stress. Overall, this study supports a central role for cytoplasmic TDP-43 in controlling protein translation in stressed cells.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Humanos
2.
Hum Mol Genet ; 26(24): 4765-4777, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973350

RESUMO

An intronic GGGGCC (G4C2) hexanucleotide repeat expansion inC9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 RNA can result in five different dipeptide repeat proteins (DPR: poly GA, poly GP, poly GR, poly PA, and poly PR), which aggregate into neuronal cytoplasmic and nuclear inclusions in affected patients, however their contribution to disease pathogenesis remains controversial. We show that among the DPR proteins, expression of poly GA in a cell culture model activates programmed cell death and TDP-43 cleavage in a dose-dependent manner. Dual expression of poly GA together with other DPRs revealed that poly GP and poly PA are sequestered by poly GA, whereas poly GR and poly PR are rarely co-localised with poly GA. Dual expression of poly GA and poly PA ameliorated poly GA toxicity by inhibiting poly GA aggregation both in vitro and in vivo in the chick embryonic spinal cord. Expression of alternative codon-derived DPRs in chick embryonic spinal cord confirmed in vitro data, revealing that each of the dipeptides caused toxicity, with poly GA being the most toxic. Further, in vivo expression of G4C2 repeats of varying length caused apoptotic cell death, but failed to generate DPRs. Together, these data demonstrate that C9-related toxicity can be mediated by either RNA or DPRs. Moreover, our findings provide evidence that poly GA is a key mediator of cytotoxicity and that cross-talk between DPR proteins likely modifies their pathogenic status in C9ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proteína C9orf72/metabolismo , Células Cultivadas , Embrião de Galinha , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/fisiologia , Células HEK293 , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Neurônios/metabolismo , Agregados Proteicos
3.
Brain ; 141(10): 2908-2924, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239641

RESUMO

Accumulation and aggregation of TDP-43 is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 inclusions also characterize patients with GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 that causes the most common genetic form of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Functional studies in cell and animal models have identified pathogenic mechanisms including repeat-induced RNA toxicity and accumulation of G4C2-derived dipeptide-repeat proteins. The role of TDP-43 dysfunction in C9ALS/FTD, however, remains elusive. We found G4C2-derived dipeptide-repeat protein but not G4C2-RNA accumulation caused TDP-43 proteinopathy that triggered onset and progression of disease in Drosophila models of C9ALS/FTD. Timing and extent of TDP-43 dysfunction was dependent on levels and identity of dipeptide-repeat proteins produced, with poly-GR causing early and poly-GA/poly-GP causing late onset of disease. Accumulating cytosolic, but not insoluble aggregated TDP-43 caused karyopherin-α2/4 (KPNA2/4) pathology, increased levels of dipeptide-repeat proteins and enhanced G4C2-related toxicity. Comparable KPNA4 pathology was observed in both sporadic frontotemporal dementia and C9ALS/FTD patient brains characterized by its nuclear depletion and cytosolic accumulation, irrespective of TDP-43 or dipeptide-repeat protein aggregates. These findings identify a vicious feedback cycle for dipeptide-repeat protein-mediated TDP-43 and subsequent KPNA pathology, which becomes self-sufficient of the initiating trigger and causes C9-related neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Degeneração Neural/metabolismo , alfa Carioferinas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Expansão das Repetições de DNA , Drosophila , Proteínas de Drosophila/metabolismo , Retroalimentação Fisiológica , Demência Frontotemporal/metabolismo , Humanos , Degeneração Neural/patologia
4.
J Neurosci ; 37(1): 58-69, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28053030

RESUMO

Tau, as a microtubule (MT)-associated protein, participates in key neuronal functions such as the regulation of MT dynamics, axonal transport, and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) MT binding repeats. Although tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated with the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here, we addressed this issue using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content, neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectory analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Conversely, the imbalance toward the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoform imbalances with APP abnormal metabolism in neurodegenerative processes. SIGNIFICANCE STATEMENT: The tau protein has a relevant role in the transport of cargos throughout neurons. Dysfunction in tau metabolism underlies several neurological disorders leading to dementia. In the adult human brain, two tau isoforms are found in equal amounts, whereas changes in such equilibrium have been associated with neurodegenerative diseases. We investigated the role of tau in human neurons in culture and found that perturbations in the endogenous balance of tau isoforms were sufficient to impair the transport of the Alzheimer's disease-related amyloid precursor protein (APP), although neuronal morphology was normal. Our results provide evidence of a direct relationship between tau isoform imbalance and defects in axonal transport, which induce an abnormal APP metabolism with important implications in neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiologia , Neurônios/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Neurônios/ultraestrutura , Isoformas de Proteínas , Tauopatias/metabolismo
6.
Hum Mol Genet ; 22(13): 2603-11, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23459933

RESUMO

Abnormal metabolism of the tau protein is central to the pathogenesis of a number of dementias, including Alzheimer's disease. Aberrant alternative splicing of exon 10 in the tau pre-mRNA resulting in an imbalance of tau isoforms is one of the molecular causes of the inherited tauopathy, FTDP-17. We showed previously in heterologous systems that exon 10 inclusion in tau mRNA could be modulated by spliceosome-mediated RNA trans-splicing (SMaRT). Here, we evaluated the potential of trans-splicing RNA reprogramming to correct tau mis-splicing in differentiated neurons in a mouse model of tau mis-splicing, the htau transgenic mouse line, expressing the human MAPT gene in a null mouse Mapt background. Trans-splicing molecules designed to increase exon 10 inclusion were delivered to neurons using lentiviral vectors. We demonstrate reprogramming of tau transcripts at the RNA level after transduction of cultured neurons or after direct delivery and long-term expression of viral vectors into the brain of htau mice in vivo. Tau RNA trans-splicing resulted in an increase in exon 10 inclusion in the mature tau mRNA. Importantly, we also show that the trans-spliced product is translated into a full-length chimeric tau protein. These results validate the potential of SMaRT to correct tau mis-splicing and provide a framework for its therapeutic application to neurodegenerative conditions linked to aberrant RNA processing.


Assuntos
Trans-Splicing , Proteínas tau/genética , Animais , Encéfalo/metabolismo , Linhagem Celular , Ordem dos Genes , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Biossíntese de Proteínas , Isoformas de Proteínas , Precursores de RNA/genética , Precursores de RNA/metabolismo
7.
Acta Neuropathol ; 127(3): 377-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366528

RESUMO

GGGGCC (G4C2) hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) has been identified as the most common genetic abnormality in both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). To investigate the role of C9ORF72-related G4C2 repeat expansion in ALS and FTLD, several animal and cell culture models have been generated that reveal initial insights into the disease pathogenesis of C9 ALS/FTLD. These models include neurons differentiated from patient-derived pluripotent stem cells as well as genetically engineered cells and organisms that knock down C9ORF72 orthologues or express G4C2 repeats. Targeted reduction or knockdown of C9ORF72 homologues in zebrafish and mice so far produced conflicting results which neither rule out, nor confirm reduced expression of C9ORF72 as a pathogenic mechanism in C9 ALS/FTLD. In contrast, studies using patient-derived cells, as well as Drosophila and zebrafish models overexpressing disease-related hexanucleotide expansions, can cause repeat length-dependent formation of RNA foci, which directly and progressively correlate with cellular toxicity. RNA foci formation is accompanied by sequestration of specific RNA-binding proteins (RBPs), including Pur-alpha, hnRNPH and ADARB2, suggesting that G4C2-mediated sequestration and functional depletion of RBPs are cytotoxic and thus directly contribute to disease. Moreover, these studies provide experimental evidence that repeat-associated non-ATG translation of repeat-containing sense and antisense RNA leads to dipeptide-repeat proteins (DPRs) that can accumulate and aggregate, indicating that accumulation of DPRs may represent another pathogenic pathway underlying C9 ALS/FTLD. These studies in cell and animal models therefore identify RNA toxicity, RBP sequestration and accumulation of DPRs as emerging pathogenic pathways underlying C9 ALS/FTLD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Fases de Leitura Aberta , Proteínas/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Proteína C9orf72 , Células Cultivadas , Expansão das Repetições de DNA , Modelos Animais de Doenças , Humanos , Proteínas/metabolismo , RNA/metabolismo
8.
Hum Mol Genet ; 20(9): 1776-86, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317158

RESUMO

Spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease, is a late-onset motor neuron disease (MND) caused by an abnormal expansion of the CAG repeat in the androgen receptor (AR) gene on the X-chromosome, encoding a polyglutamine (poly-Q) sequence in the protein product. Mutant poly-Q-expanded AR protein is widely expressed but leads to selective lower motoneuron death. Although the mechanisms that underlie SBMA remain unclear, defective axonal transport has been implicated in MND and other forms of poly-Q disease. Transcriptional dysregulation may also be involved in poly-Q repeat pathology. We therefore examined axonal transport in a mouse model of SBMA recapitulating many aspects of the human disease. We found no difference in the expression levels of motor and the microtubule-associated protein tau, in the spinal cord and sciatic nerve of wild-type (WT) and SBMA mice at various stages of disease progression. Furthermore, we found no alteration in binding properties of motor proteins and tau to microtubules. Moreover, analysis of axonal transport rates both in cultured primary motoneurons in vitro and in vivo in the sciatic nerve of adult WT and mutant SBMA mice demonstrated no overt axonal transport deficits in these systems. Our results therefore indicate that unlike other motoneuron and poly-Q diseases, axonal transport deficits do not play a significant role in the pathogenesis of SBMA.


Assuntos
Transporte Axonal , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Atrofia Muscular/genética , Atrofia Muscular Espinal/genética , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Biochem Soc Trans ; 40(4): 677-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22817715

RESUMO

Six tau isoforms differing in their affinity for microtubules are produced by alternative splicing from the MAPT (microtubule-associated protein tau) gene in adult human brain. Several MAPT mutations causing the familial tauopathy, FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17), affect alternative splicing of exon 10, encoding a microtubule-binding motif. Advanced RNA analysis methods have suggested that levels of exon 10-containing MAPT mRNA are elevated in Alzheimer's disease. Furthermore, the MAPT H1 haplotype, associated with Alzheimer's disease, promotes exon 10 inclusion in MAPT mRNA. Thus an accurate regulation of tau alternative splicing is critical for the maintenance of neuronal viability, and its alteration might be a contributing factor to Alzheimer's disease. Tau alternative splicing could represent a target for therapeutic intervention to delay the progression of pathology in familial as well as sporadic tauopathies.


Assuntos
Processamento Alternativo/genética , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Humanos
11.
Hum Mol Genet ; 18(17): 3266-73, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19498037

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-splicing (SMaRT) could be a method of choice to correct aberrant E10 splicing resulting from FTDP-17 mutations. SMaRT creates a hybrid mRNA through a trans-splicing reaction between an endogenous target pre-mRNA and a pre-trans-splicing RNA molecule (PTM). However, FTDP-17 mutations affect the strength of cis-splicing elements and could favor cis-splicing over trans-splicing. Excess E10 inclusion in FTDP-17 can be caused by intronic mutations destabilizing a stem-loop protecting the 5' splice site at the E10/intron 10 junction. COS cells transfected with a minigene containing the intronic +14 mutation produce exclusively E10(+) RNA. Generation of E10(-) RNA was restored after co-transfection with a PTM designed to exclude E10. Similar results were obtained with a target containing the exonic N279K mutation which strengthens a splicing enhancer within E10. Conversely, increase or decrease in E10 content was achieved by trans-splicing from a target carrying the Delta280K mutation, which weakens the same splicing enhancer. Thus E10 inclusion can be modulated by trans-splicing irrespective of the strength of the cis-splicing elements affected by FTDP-17 mutations. In conclusion, RNA trans-splicing could provide the basis of therapeutic strategies for impaired alternative splicing caused by pathogenic mutations in cis-acting splicing elements.


Assuntos
Mutação , Spliceossomos/metabolismo , Tauopatias/genética , Trans-Splicing , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Células COS , Chlorocebus aethiops , Éxons , Humanos , Spliceossomos/genética , Tauopatias/metabolismo
12.
Hum Mol Genet ; 18(9): 1556-65, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19208651

RESUMO

An extensive protein-protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin-proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin-1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxia-linked proteins.


Assuntos
Ataxia/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/genética , Ataxina-1 , Ataxinas , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Ratos Wistar , Alinhamento de Sequência
13.
Brain ; 133(Pt 6): 1763-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20472655

RESUMO

Trans-activation response DNA-binding protein (TDP-43) accumulation is the major component of ubiquitinated protein inclusions found in patients with amyotrophic lateral sclerosis, and frontotemporal lobar degeneration with TDP-43 positive ubiquitinated inclusions, recently relabelled the 'TDP-43 proteinopathies'. TDP-43 is predominantly located in the nucleus, however, in disease it mislocalizes to the cytoplasm where it aggregates to form hallmark pathological inclusions. The identification of TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis cases confirms its pathogenic role; but it is wild-type TDP-43 that is deposited in the vast majority of TDP-43 proteinopathies, implicating other unknown factors for its mislocalization and aggregation. One such mechanism may be defective nuclear import of TDP-43 protein, as a disruption of its nuclear localization signal leads to mislocalization and aggregation of TDP-43 in the cytoplasm. In order to explore the factors that regulate the nuclear import of TDP-43, we used a small interfering RNA library to silence 82 proteins involved in nuclear transport and found that knockdowns of karyopherin-beta1 and cellular apoptosis susceptibility protein resulted in marked cytoplasmic accumulation of TDP-43. In glutathione S-transferase pull-down assays, TDP-43 bound to karyopherin-alphas, thereby confirming the classical nuclear import pathway for the import of TDP-43. Analysis of the expression of chosen nuclear import factors in post-mortem brain samples from patients with TDP-43 positive frontotemporal lobar degeneration, and spinal cord samples from patients with amyotrophic lateral sclerosis, revealed a considerable reduction in expression of cellular apoptosis susceptibility protein in frontotemporal lobar degeneration. We propose that cellular apoptosis susceptibility protein associated defective nuclear transport may play a mechanistic role in the pathogenesis of the TDP-43 positive frontotemporal lobar degeneration.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Feminino , Glutationa Transferase/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Medula Espinal/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
14.
RNA Biol ; 7(4): 474-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20622515

RESUMO

CELF (CUG-BP and ETR-3-like factors) proteins are structurally related RNA-binding proteins involved in various aspects of RNA processing including splicing and mRNA stability. The first member of the family, CELF1/CUG-BP1, was identified through its role in myotonic dystrophy, type 1. Several recent studies have uncovered the recurrent implication, to various extents, of CELF proteins or of the functionally related muscleblind-like 1 protein in a number of neurological conditions. This is particularly clear for inherited neurodegenerative disorders caused by expansions of translated or untranslated triplet repeats in the causative gene. Here we review the role played by CELF proteins, at least as modifiers of the pathological phenotype, in a number of neurological diseases. The involvement of CELF proteins suggest that individual pathogenic pathways in a number of neurological conditions overlap at the level of RNA processing.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Processamento Pós-Transcricional do RNA
15.
Neurosci Lett ; 447(2-3): 172-4, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18840504

RESUMO

Huntington's disease is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine repeat tract in the huntingtin protein. Polyglutamine-expanded huntingtin forms intranuclear as well as perinuclear inclusion bodies. Perinuclear aggregates formed by polyglutamine-expanded proteins are associated with a characteristic indentation of the nuclear envelope. We examined the nuclear envelope in cells containing huntingtin aggregates using immunostaining for lamin B1, a major component of the nuclear lamina. Laser confocal microscopy analysis revealed that huntingtin aggregates in a juxtanuclear position were associated with a clear focal distortion in the nuclear envelope in cells transfected with polyglutamine-expanded huntingtin. Lamin B1 distribution was not altered by aggregates of polyglutamine-expanded ataxin-1, that are exclusively intranuclear. Thus lamin immunocytochemistry demonstrates clearly the depression of the nuclear envelope resulting from the formation of perinuclear aggregates by polyglutamine-expanded huntingtin. Lamin immunocytochemistry would be of value to monitor the state of the nuclear envelope in experimental paradigms aimed at establishing the significance of perinuclear aggregates of pathogenic proteins.


Assuntos
Lamina Tipo B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Ataxina-1 , Ataxinas , Células CHO/ultraestrutura , Cricetinae , Cricetulus , Glutamina/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Proteína Huntingtina , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Microscopia Confocal/métodos , Proteínas do Tecido Nervoso/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Peptídeos/genética , Transfecção/métodos
17.
Cell Rep ; 23(3): 709-715, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669277

RESUMO

The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA reprogramming in human neurodegenerative diseases.


Assuntos
Tauopatias/patologia , Proteínas tau/metabolismo , Processamento Alternativo , Animais , Modelos Animais de Doenças , Éxons , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Tauopatias/metabolismo , Proteínas tau/genética
18.
Biol Methods Protoc ; 2(1): bpx009, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32161791

RESUMO

Photo cross-linking of proteins with short RNA oligomers is a classical method to study RNA-protein interactions that are implicated in many aspects of RNA metabolism and function. Most commonly, this involves the use of [γ-32P]-labeled RNA probes. Although very sensitive, these procedures are complicated by the safety issues associated with the use of radioisotopes. Here, we describe a modified UV cross-linking method using oligonucleotide probes end labelled with the infrared dye IRDye®800. After UV cross-linking, proteins are separated by SDS-PAGE and cross-linked products are visualized with the Odyssey® Infrared Imaging system. This end labelling approach provides a streamlined alternative to random labelling which reduces the efficiency of in-vitro transcription. End labelling is also independent of the length of the probe, thus facilitating quantitative comparisons. To validate the method, we have confirmed the binding of HuD to the 3'-UTR of the mRNA for the microtubule-associated protein tau, implicated in the pathogenesis of Alzheimer's disease. UV cross-linking of HuD with a labeled 21-mer probe was successfully performed using a recombinant purified glutathione-S-transferase-HuD fusion protein as well as with lysates from CHO cells transfected with HuD cDNA. UV cross-linking combined with infrared imaging offers a convenient and robust strategy to analyse RNA-protein interactions and their emerging importance in disease.

19.
Front Cell Neurosci ; 11: 195, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744202

RESUMO

A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD is a multifaceted disease both in terms of its clinical presentation and the misregulated cellular pathways contributing to disease progression. Among the numerous pathways misregulated in C9orf72-associated ALS/FTD, altered RNA processing has consistently appeared at the forefront of C9orf72 research. This includes bidirectional transcription of the repeat sequence, accumulation of repeat RNA into nuclear foci sequestering specific RNA-binding proteins (RBPs) and translation of RNA repeats into dipeptide repeat proteins (DPRs) by repeat-associated non-AUG (RAN)-initiated translation. Over the past few years the true extent of RNA misprocessing in C9orf72-associated ALS/FTD has begun to emerge and disruptions have been identified in almost all aspects of the life of an RNA molecule, including release from RNA polymerase II, translation in the cytoplasm and degradation. Furthermore, several alterations have been identified in the processing of the C9orf72 RNA itself, in terms of its transcription, splicing and localization. This review article aims to consolidate our current knowledge on the consequence of the C9orf72 repeat expansion on RNA processing and draws attention to the mechanisms by which several aspects of C9orf72 molecular pathology converge to perturb every stage of RNA metabolism.

20.
BMB Rep ; 49(8): 405-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27222125

RESUMO

Tau proteins, which stabilize the structure and regulate the dynamics of microtubules, also play important roles in axonal transport and signal transduction. Tau proteins are missorted, aggregated, and found as tau inclusions under many pathological conditions associated with neurodegenerative disorders, which are collectively known as tauopathies. In the adult human brain, tau protein can be expressed in six isoforms due to alternative splicing. The aberrant splicing of tau pre-mRNA has been consistently identified in a variety of tauopathies but is not restricted to these types of disorders as it is also present in patients with non-tau proteinopathies and RNAopathies. Tau mis-splicing results in isoform-specific impairments in normal physiological function and enhanced recruitment of excessive tau isoforms into the pathological process. A variety of factors are involved in the complex set of mechanisms underlying tau mis-splicing, but variation in the cis-element, methylation of the MAPT gene, genetic polymorphisms, the quantity and activity of spliceosomal proteins, and the patency of other RNA-binding proteins, are related to aberrant splicing. Currently, there is a lack of appropriate therapeutic strategies aimed at correcting the tau mis-splicing process in patients with neurodegenerative disorders. Thus, a more comprehensive understanding of the relationship between tau mis-splicing and neurodegenerative disorders will aid in the development of efficient therapeutic strategies for patients with a tauopathy or other, related neurodegenerative disorders. [BMB Reports 2016; 49(8): 405-413].


Assuntos
Doenças Neurodegenerativas/genética , Splicing de RNA/genética , Proteínas tau/genética , Humanos , Mutação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA