RESUMO
The skin is the largest organ in the human body and serves multiple functions such as barrier protection and thermoregulation. The maintenance of its integrity and healthy structure is of paramount importance. Accordingly, technological advances in cosmetic sciences have been directed towards optimizing these factors. Plant-derived ingredients have been explored for their bioactivity profiles and sustainable sources. Grape by-products contain a group of bioactive molecules that display important biological activities. Nonetheless, many of these molecules (e.g., phenolic compounds) are unstable and susceptible to degradation. So, their encapsulation using nano/microsystems (i.e., microdispersions) has been explored as a promising solution. In this work, two grape seed extracts were obtained, one from a single grape variety (GSE-Ov) and another from a mix of five grape varieties (GSE-Sv). These extracts were analysed for their antioxidant and antimicrobial activities, as well as their chemical composition and molecular structure. The extract that showed the most promising properties was GSE-Ov with a DPPH IC50 of 0.079 mg mL-1. This extract was encapsulated in soy lecithin microdispersions coated with pectin, with an encapsulation efficiency of 88.8%. They showed an in vitro release of polyphenols of 59.4% during 24 h. The particles displayed a zeta potential of -20.3 mV and an average diameter of 13.6 µm. Microdispersions proved to be safe under 5 and 2.5 mg mL-1 in HaCaT and HDF cell models, respectively. Additionally, they demonstrated anti-inflammatory activity against IL-1α when tested at 2 mg mL-1. This work enabled the valorisation of a by-product from the wine industry by using natural extracts in skincare products.
Assuntos
Antioxidantes , Extrato de Sementes de Uva , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/farmacologia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Vitis/química , Higiene da Pele/métodos , Células HaCaT , Polifenóis/química , Polifenóis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Pele/efeitos dos fármacosRESUMO
Residual melon by-products were explored for the first time as a bioresource of microcrystalline cellulose (MCC) obtention. Two alkaline extraction methods were employed, the traditional (4.5% NaOH, 2 h, 80 °C) and a thermo-alkaline in the autoclave (2% NaOH, 1 h, 100 °C), obtaining a yield of MCC ranging from 4.76 to 9.15% and 2.32 to 3.29%, respectively. The final MCCs were characterized for their chemical groups by Fourier-transform infrared spectroscopy (FTIR), crystallinity with X-ray diffraction, and morphology analyzed by scanning electron microscope (SEM). FTIR spectra showed that the traditional protocol allows for a more effective hemicellulose and lignin removal from the melon residues than the thermo-alkaline process. The degree of crystallinity of MCC ranged from 51.51 to 61.94% and 54.80 to 55.07% for the thermo-alkaline and traditional processes, respectively. The peaks detected in X-ray diffraction patterns indicated the presence of Type I cellulose. SEM analysis revealed microcrystals with rough surfaces and great porosity, which could remark their high-water absorption capacity and drug-carrier capacities. Thus, these findings could respond to the need to valorize industrial melon by-products as raw materials for MCC obtention with potential applications as biodegradable materials.
Assuntos
Celulose , Cucurbitaceae , Difração de Raios X , Celulose/química , Cucurbitaceae/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Spent yeast waste streams are a byproduct obtained from fermentation process and have been shown to be a rich secondary source of bioactive compounds such as phenolic compounds and peptides. The latter are of particular interest for skin care and cosmetics as they have been shown to be safe and hypoallergenic while simultaneously being able to exert various effects upon the epidermis modulating immune response and targeting skin metabolites, such as collagen production. As the potential of spent yeast's peptides has been mainly explored for food-related applications, this work sought to understand if peptide fractions previously extracted from fermentation engineered spent yeast (Saccharomyces cerevisiae) waste streams possess biological potential for skin-related applications. To that end, cytotoxic effects on HaCat and HDFa cells and whether they were capable of exerting a positive effect upon the production of skin metabolites relevant for skin health, such as collagen, hyaluronic acid, fibronectin and elastin, were evaluated. The results showed that the peptide fractions assayed were not cytotoxic up to the highest concentration tested (500 µg/mL) for both cell lines tested. Furthermore, all peptide fractions showed a capacity to modulate the various target metabolites production with an overall positive effect being observed for the four fractions over the six selected targets (pro-collagen IαI, hyaluronic acid, fibronectin, cytokeratin-14, elastin, and aquaporin-9). Concerning the evaluated fractions, the overall best performance (Gpep > 1 kDa) was of an average promotion of 41.25% over the six metabolites and two cell lines assessed at a concentration of 100 µg/mL. These results showed that the peptide fractions assayed in this work have potential for future applications in skin-related products at relatively low concentrations, thus providing an alternative solution for one of the fermentation industry's waste streams and creating a novel and highly valuable bioactive ingredient with encompassing activity to be applied in future skin care formulations.
Assuntos
Elastina , Saccharomyces cerevisiae , Elastina/metabolismo , Fibronectinas/metabolismo , Ácido Hialurônico/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , PeleRESUMO
Whey proteins are widely used as nutritional and functional ingredients in formulated foods because they are relatively inexpensive, generally recognized as safe (GRAS) ingredient, and possess important biological, physical, and chemical functionalities. Denaturation and aggregation behavior of these proteins is of particular relevance toward manufacture of novel nanostructures with a number of potential uses. When these processes are properly engineered and controlled, whey proteins may be formed into nanohydrogels, nanofibrils, or nanotubes and be used as carrier of bioactive compounds. This review intends to discuss the latest understandings of nanoscale phenomena of whey protein denaturation and aggregation that may contribute for the design of protein nanostructures. Whey protein aggregation and gelation pathways under different processing and environmental conditions such as microwave heating, high voltage, and moderate electrical fields, high pressure, temperature, pH, and ionic strength were critically assessed. Moreover, several potential applications of nanohydrogels, nanofibrils, and nanotubes for controlled release of nutraceutical compounds (e.g. probiotics, vitamins, antioxidants, and peptides) were also included. Controlling the size of protein networks at nanoscale through application of different processing and environmental conditions can open perspectives for development of nanostructures with new or improved functionalities for incorporation and release of nutraceuticals in food matrices.
Assuntos
Suplementos Nutricionais/análise , Nanoestruturas/química , Proteínas do Soro do Leite/química , Fenômenos Químicos , Inocuidade dos Alimentos , Géis/química , Concentração de Íons de Hidrogênio , Nanotubos/química , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , TemperaturaRESUMO
This work attempted to assess the effect of high intensity ultrasound (HIUS) upon development of bio-based delivery systems, from ß-lactoglobulin (ß-Lg) gelled microparticles, for encapsulation of a bioactive peptide concentrate (PepC). Solutions of 150 g L-1 of commercial ß-Lg and 30 g L-1 PepC, at various pH values (3.0, 4.0 and 5.5), were accordingly subjected to gelation for 30 min using a dry bath kept at 80 °C. The gelled systems were then exposed to HIUS at 0-4 °C, and the effect of processing time (2.5-20.0 min) was ascertained. Laser light scattering and confocal microscopy were used to characterize the particle size distribution, prior to and immediately after HIUS treatment. Gels obtained at pH 5.5 and 4.0 were harder than those obtained at pH 3.0. Ultrasound treatment of gels produced an important reduction in particle mean diameter as sonication time elapsed. Confocal microscopy indicated that application of HIUS led to almost round and monodispersed particles, at both pH 5.5 and 4.0. The peptide encapsulation efficiency was assessed by chromatography and accompanied by assay for bioactivity, after precipitation of the encapsulated material and analysis of the soluble peptides therein.
RESUMO
Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.
Assuntos
Glucanos , Saccharomyces cerevisiae , Glucanos/química , Saccharomyces cerevisiae/química , Polissacarídeos/química , ÁguaRESUMO
Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.
Assuntos
Antioxidantes , Frutas , Lycium , Extratos Vegetais , Lycium/química , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Humanos , Permeabilidade , Ondas Ultrassônicas , Compostos Fitoquímicos/isolamento & purificação , Mucosa Intestinal/metabolismo , Células CACO-2 , Absorção Intestinal , Rutina/isolamento & purificação , Ultrassom/métodos , Função da Barreira IntestinalRESUMO
Nanosized delivery systems have been the subject of research and discussion in the scientific community due to their unique properties and functionality. However, studies reporting the behaviour of nanodelivery systems under dynamic in vitro digestion conditions are still very scarce. To address this gap, this study aims to assess the dynamic in vitro gastric digestion of lactoferrin/curcumin nanoparticles in the realistic gastric model (RGM). For this purpose, the INFOGEST standard semi-dynamic digestion protocol was used. The nanosystems were characterized in terms of hydrodynamic size, size distribution, polydispersity index (PdI), and zeta potential using dynamic light scattering (DLS), before and during the digestion process. Confocal laser scanning microscopy (CLSM) was also used to examine particle aggregation. In addition, the release of curcumin was evaluated spectroscopically and the intrinsic fluorescence of lactoferrin was measured throughout the digestion process. The protein hydrolysis was also determined by UV-VIS-SWNIR spectroscopy to estimate, in real-time, the presence of free NH2 groups during gastric digestion. It was possible to observe that lactoferrin/curcumin nanoparticles were destabilized during the dynamic digestion process. It was also possible to conclude that low sample volumes can pose a major challenge in the application of dynamic in vitro digestion models.
RESUMO
Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems.
RESUMO
Sugarcane bagasse (SCB) is the main residue of the sugarcane industry and a promising renewable and sustainable lignocellulosic material. The cellulose component of SCB, present at 40-50%, can be used to produce value-added products for various applications. Herein, we present a comprehensive and comparative study of green and traditional approaches for cellulose extraction from the by-product SCB. Green methods of extraction (deep eutectic solvents, organosolv, and hydrothermal processing) were compared to traditional methods (acid and alkaline hydrolyses). The impact of the treatments was evaluated by considering the extract yield, chemical profile, and structural properties. In addition, an evaluation of the sustainability aspects of the most promising cellulose extraction methods was performed. Among the proposed methods, autohydrolysis was the most promising approach in cellulose extraction, yielding 63.5% of a solid fraction with ca. 70% cellulose. The solid fraction showed a crystallinity index of 60.4% and typical cellulose functional groups. This approach was demonstrated to be environmentally friendly, as indicated by the green metrics assessed (E(nvironmental)-factor = 0.30 and Process Mass Intensity (PMI) = 20.5). Autohydrolysis was shown to be the most cost-effective and sustainable approach for the extraction of a cellulose-rich extract from SCB, which is extremely relevant for aiming the valorization of the most abundant by-product of the sugarcane industry.
RESUMO
Carboxymethyl cellulose use in industry is ubiquitous. Though it is recognized as safe by the EFSA and FDA, newer works have raised concerns related to its safety, as in vivo studies showed evidence of gut dysbiosis associated with CMC's presence. Herein lies the question, is CMC a gut pro-inflammatory compound? As no work addressed this question, we sought to understand whether CMC was pro-inflammatory through the immunomodulation of GI tract epithelial cells. The results showed that while CMC was not cytotoxic up to 25 mg/mL towards Caco-2, HT29-MTX and Hep G2 cells, it had an overall pro-inflammatory behavior. In a Caco-2 monolayer, CMC by itself increased IL-6, IL-8 and TNF-α secretion, with the latter increasing by 1924%, and with these increases being 9.7 times superior to the one obtained for the IL-1ß pro-inflammation control. In co-culture models, an increase in secretion in the apical side, particularly for IL-6 (692% increase), was observed, and when RAW 264.7 was added, data showed a more complex scenario as stimulation of pro-inflammatory (IL-6, MCP-1 and TNF-α) and anti-inflammatory (IL-10 and IFN-ß) cytokines in the basal side was observed. Considering these results, CMC may exert a pro-inflammatory effect in the intestinal lumen, and despite more studies being required, the incorporation of CMC in foodstuffs must be carefully considered in the future to minimize potential GI tract dysbiosis.
RESUMO
Despite being rich in starch, over half of acorn production is undervalued. High hydrostatic pressure was used to modify the properties of Q. pyrenaica (0.1 and 460 MPa for 20 min) and Q. robur (0.1 and 333 MPa for 17.4 min) acorn starches to obtain high-valued ingredients. Pressure significantly altered the span distribution and heterogeneity of the acorn starch granules depending on the species, but their morphology was unaffected. Pressurization increased the amylose/amylopectin ratio and damaged starch contents, but the effect was more prominent in Q. pyrenaica than in Q. robur. However, the polymorphism, relative crystallinity, gelatinization temperatures, and enthalpies were preserved. The pressure effect on the starch properties depended on the property and species. The solubility, swelling power, and acorn gels' resistance towards deformation for both species decreased after pressurization. For Q. pyrenaica starch, the in vitro digestibility increased, but the pseudoplastic behavior decreased after pressurization. No differences were seen for Q. robur. Regarding the commercial starch, acorn starches had lower gelatinization temperatures and enthalpies, lower in vitro digestibility, lower resistance towards deformation, superior pseudoplastic behavior, and overall higher solubility and swelling power until 80 °C. This encourages the usage of acorn starches as a new food ingredient.
RESUMO
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions.
RESUMO
The latest decade has witnessed joint efforts by the packaging and the food industries to reduce the amount of residues and wastes associated with food consumption. The recent increase in environmental awareness has also contributed toward development of edible packaging materials. Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications. These points are tackled in this review, in a critical manner. The supply of whey protein-based films and coatings, formulated to specifically address end-user needs, is also considered.
Assuntos
Manipulação de Alimentos/métodos , Embalagem de Alimentos , Conservação de Alimentos , Proteínas do Leite/química , Humanos , Proteínas do Soro do LeiteRESUMO
The current consumers' demand for high quality food products together with the growing awareness regarding the link between health and nutrition has led to the development of novel food products with added functionality. Such functionality can be modulated by adding bio-based nanosystems that can improve the bioaccessibility of bioactive compounds and facilitate nutrient absorption. However, these functional properties can be significantly affected by the adverse conditions (e.g., low pH, presence of enzymes, salts) of the gastrointestinal tract. As such, understanding the behaviour of such delivery systems under digestion conditions is of utmost importance and several analytical tools and in vitro digestion models have been used for this purpose. This review summarizes the latest updates on nanosystems' performance under in vitro digestion and provides critical insights related to important and complementary analytical tools (e.g., rheology, Raman spectroscopy, x-ray scattering) used to assess their performance throughout digestion. Furthermore, the most prominent and frequent challenges associated with such in vitro analyses are also described, together with the current trends regarding the development of in vitro digestion models and some considerations that should be undertaken for their validation. Efforts must be made towards developing reliable and standard in vitro digestion models that use sophisticated analytical techniques to further expand the knowledge regarding nanosystems' behaviour under in vitro digestion conditions.
Assuntos
Digestão , Modelos Biológicos , Alimentos , Trato GastrointestinalRESUMO
Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a need to use enabling delivering strategies, which often demand new carrier materials. Cellulose and its micro- and nanostructures are promising carriers with unique features. In this context, this review describes the fast-growing field of micro- and nanocellulose based delivery systems with a focus on the release of liposoluble bioactive compounds. The state of research on this field is reviewed in this article, which also covers the chemistry, preparation, properties, and applications of micro- and nanocellulose based delivery systems. Although there are promising perspectives for introducing these materials into various fields, aspects of safety and toxicity must be revealed and are discussed in this review. The impact of gastrointestinal conditions on the systems and on the bioavailability of the bioactive compounds are also addressed in this review. This article helps to unveil the whole panorama of micro- and nanocellulose as delivery systems for liposoluble compounds, showing that these represent a great promise in a wide range of applications.
RESUMO
Whey protein nanostructures can be used as vehicles for the incorporation of nutraceuticals (e.g., antioxidants or vitamins) aimed at the development of functional foods, because nanostructures provide greater protection, stability and controlled release to such nutraceuticals. Fundamental knowledge is required regarding the behaviour of nanostructures when associated with nutraceuticals and their interactions with real food matrices. In this study, a lactoferrin (LF) nanohydrogel was developed to encapsulate curcumin (nutraceutical model) and its behaviour was evaluated in terms of the LF structure and the interaction with curcumin. The release kinetics of curcumin from LF nanohydrogels was also assessed using food simulants with a hydrophilic nature (10% ethanol) and lipophilic nature (50% ethanol). This system was able to encapsulate curcumin at 80 µg mL-1 with an efficiency of ca. 90% and loading capacity of ca. 3%. Through spectroscopic characterisation, it is suggested that LF and curcumin bind via hydrophobic interactions and the average binding distance between LF and curcumin was found to be 1.91 nm. Under refrigerated conditions (4 °C), this system showed stability for up to 35 days, while at room temperature (25 °C) it was shown to be stable for up to 14 days of storage. The LF nanohydrogel presented higher release rates of curcumin in a lipophilic food simulant (stable after ca. 7 h) as compared to a hydrophilic simulant (stable after ca. 4 h). LF nanohydrogels were successfully incorporated into a gelatine matrix and showed no degradation in this process. The behaviour of this system and the curcumin release kinetics in food stimulants make the LF nanohydrogel an interesting system to associate with lipophilic nutraceuticals and to incorporate in refrigerated food products of a hydrophilic nature.
Assuntos
Curcumina/química , Lactoferrina/química , Nanoestruturas/química , Proteínas do Soro do Leite/química , Suplementos Nutricionais , Hidrogéis/químicaRESUMO
ß-Lactoglobulin (ß-Lg) is known to be capable to bind hydrophilic and hydrophobic bioactive compounds. This research aimed to assess the in vitro performance of ß-Lg micro- (diameter ranging from 200 to 300 nm) and nano (diameter < 100 nm) structures associated to hydrophilic and hydrophobic model compounds on Caco-2 cells and under simulated gastrointestinal (GI) conditions. Riboflavin and quercetin were studied as hydrophilic and hydrophobic model compounds, respectively. Cytotoxicity experiment was conducted using in vitro cellular model based on human colon carcinoma Caco-2 cells. Moreover, the digestion process was simulated using the harmonized INFOGEST in vitro digestion model, where samples were taken at each phase of digestion process - oral, gastric and intestinal - and characterized in terms of particle size, polydispersity index (PDI), surface charge by dynamic light scattering (DLS); protein hydrolysis degree by 2,4,6-trinitrobenzene sulfonic acid (TNBSA) assay and native polyacrylamide gel electrophoresis; and bioactive compound concentration. Caco-2 cell viability was not affected up to 21 × 10-3 mg mL-1 of riboflavin and 16 × 10-3 mg mL-1 quercetin on ß-Lg micro- and nanostructures. In the oral phase, ß-Lg structures' particle size, PDI and surface charge values were not changed comparing to the initial ß-Lg structures (i.e., before being subjected to in vitro GI digestion). During gastric digestion, ß-Lg structures were resistant to proteolytic enzymes and to acid environment of the stomach - confirmed by TNBSA and native gel electrophoresis. In vitro digestion results indicated that ß-Lg micro- and nanostructures protected both hydrophilic and hydrophobic compounds from gastric conditions and deliver them to target site (i.e., intestinal phase). In addition, ß-Lg structures were capable to enhance riboflavin and quercetin bioaccessibility and bioavailability potential compared to bioactive compounds in their free form. This study indicated that ß-Lg micro- and nanostructures were capable to enhance hydrophilic and hydrophobic compounds bioavailability potential and they can be used as oral delivery systems.
Assuntos
Lactoglobulinas/química , Veículos Farmacêuticos/química , Células CACO-2 , Sobrevivência Celular , Humanos , Quercetina/química , Riboflavina/químicaRESUMO
Milk proteins are being widely used in formulated foods as a result of their excellent technological, functional, and biological properties. However, the most representative proteins from casein and whey fractions are also recognized as major allergens and responsible for the prevalence of cow's milk protein allergy in childhood. Electroheating technologies based on thermal processing of food as a result of application of moderate electric fields, also known by ohmic heating (OH) or Joule effect, are establishing a solid foothold in the food industry. Currently, the influence of OH on allergenic aspects of milk proteins is under debate but still undisclosed. The occurrence of electrical effects on the protein structure and its function has already been reported; thus, the impact of OH over allergenicity should not be overlooked. On the basis of these recent findings, it is then relevant to speculate about the impact of this emergent technology on the potential allergenicity of milk proteins.
Assuntos
Eletricidade , Manipulação de Alimentos/métodos , Proteínas do Leite/química , Proteínas do Leite/imunologia , Alérgenos/química , Alérgenos/imunologia , Temperatura Alta , Hipersensibilidade a LeiteRESUMO
The influence that ohmic heating technology and its associated moderate electric fields (MEF) have upon production of whey protein isolate cold-set gels mediated by iron addition was investigated. Results have shown that combining heating treatments (90°C, 5min) with different MEF intensities let hydrogels with distinctive micro and macro properties - i.e. particle size distribution, physical stability, rheological behavior and microstructure. Resulting hydrogels were characterized (at nano-scale) by an intensity-weighted mean particle diameter of 145nm, a volume mean of 240nm. Optimal conditions for production of stable whey protein gels were attained when ohmic heating treatment at a MEF of 3Vâcm-1 was combined with a cold gelation step using 33mmolâL-1 of Fe2+. The consistency index of hydrogels correlated negatively to MEF intensity, but a shear thickening behavior was observed when MEF intensity was increased up to 10Vâcm-1. According to transmission electron microscopy, ohmic heating gave rise to a more homogenous and compact fine-stranded whey protein-iron microstructure. Ohmic heating appears to be a promising technique, suitable to tailor properties of whey protein gels and with potential for development of innovative functional foods.