Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Microbiol ; 64: 126-134, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28213016

RESUMO

Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth.


Assuntos
Geobacillus stearothermophilus/fisiologia , Temperatura Alta , Esporos Bacterianos/fisiologia , Contagem de Colônia Microbiana , Geobacillus stearothermophilus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Modelos Lineares , Viabilidade Microbiana , Modelos Biológicos , Permeabilidade , Esporos Bacterianos/crescimento & desenvolvimento
2.
Food Microbiol ; 55: 64-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26742617

RESUMO

Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow.


Assuntos
Esporos Bacterianos/crescimento & desenvolvimento , Thermoanaerobacterium/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Temperatura Alta , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Esporos Bacterianos/química , Thermoanaerobacterium/química
3.
Food Microbiol ; 56: 87-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26919821

RESUMO

Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions.


Assuntos
Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Geobacillus stearothermophilus/fisiologia , Temperatura Alta , Esporos Bacterianos/fisiologia , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Modelos Biológicos , Esporos Bacterianos/crescimento & desenvolvimento , Esterilização/métodos
4.
Food Microbiol ; 48: 153-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25791003

RESUMO

Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery.


Assuntos
Geobacillus stearothermophilus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Geobacillus stearothermophilus/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Teóricos , Esporos Bacterianos/química , Esporos Bacterianos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA