Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(1): 112-119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36282026

RESUMO

Most chromosomal aberrations revealed by chromosomal microarray testing (CMA) are simple; however, very complex chromosomal structural rearrangements can also be found. Although the mechanism of structural rearrangements has been gradually revealed, not all mechanisms have been elucidated. We analyzed the breakpoint-junctions (BJs) of two or more clustered copy number variations (CNVs) in the same chromosome arms to understand their conformation and the mechanism of complex structural rearrangements. Combining CMA with long-read whole-genome sequencing (WGS) analysis, we successfully determined all BJs for the clustered CNVs identified in four patients. Multiple CNVs were intricately intertwined with each other, and clustered CNVs in four patients were involved in global complex chromosomal rearrangements. The BJs of two clustered deletions identified in two patients showed microhomologies, and their characteristics were explained by chromothripsis. In contrast, the BJs in the other two patients, who showed clustered deletions and duplications, consisted of blunt-end and nontemplated insertions. These findings could be explained only by alternative nonhomologous end-joining, a mechanism related to polymerase theta. All the patients had at least one inverted segment. Three patients showed cryptic aberrations involving a disruption and a deletion/duplication, which were not detected by CMA but were first identified by WGS. This result suggested that complex rearrangements should be considered if clustered CNVs are observed in the same chromosome arms. Because CMA has potential limitations in genotype-phenotype correlation analysis, a more detailed analysis by whole genome examination is recommended in cases of suspected complex structural aberrations.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Humanos , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Aberrações Cromossômicas , Análise de Sequência
2.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445641

RESUMO

Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). TP53 was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs. The most frequent CNAs (~60%) were gains at 1q21.2q21.3, 6p21.1, and 8q13.3q24.22, and losses at 10q26 and 13q14.3q21.1. Seven cases presented CNA patterns reminiscent of complex events (chromothripsis and chromoanasynthesis). Putative RB1 and TP53 germline variants were found in five samples associated with metastasis at diagnosis along with complex genomic patterns of CNAs. PTPRQ, KNL1, ZFHX4, and DMD alterations were prevalent in metastatic or deceased patients, being potentially indicative of poor prognosis. TNFRSF11B, involved in skeletal system development and maintenance, emerged as a candidate for osteosarcomagenesis due to its biological function and a high frequency of copy number gains. A protein-protein network enrichment highlighted biological pathways involved in immunity and bone development. Our findings reinforced the high genomic OS instability and heterogeneity, and led to the identification of novel disrupted genes deserving further evaluation as biomarkers due to their association with poor outcomes.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Mutação , Variações do Número de Cópias de DNA/genética , Instabilidade Genômica , Osteossarcoma/genética , Neoplasias Ósseas/genética , Desenvolvimento Ósseo , Imunidade , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores
3.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328739

RESUMO

Chromoanagenesis constitutes a group of events that arise from single cellular events during early development. This particular class of complex rearrangements is a newfound occurrence that may lead to chaotic and complex genomic realignments. By that, chromoanagenesis is thought to be a crucial factor regarding macroevolution of the genome, and consequently is affecting the karyotype revolution together with genomic plasticity. One of chromoanagenesis-type of events is chromothripsis. It is characterised by the breakage of the chromosomal structure and its reassembling in random order and orientation which results in the establishment of derivative forms of chromosomes. Molecular mechanisms that underlie this phenomenon are mostly related to chromosomal sequestration throughout the micronuclei formation process. Chromothripsis is linked both to congenital and cancer diseases, moreover, it might be detected in subjects characterised by a normal phenotype. Chromothripsis, as well as the other chromoanagenetic variations, may be confined to one or more chromosomes, which makes up a non-uniform variety of karyotypes among chromothriptic patients. The detection of chromothripsis is enabled via tools like microarray-based comparative genomic hybridisation, next generation sequencing or authorial protocols aimed for the recognition of structural variations.


Assuntos
Cromotripsia , Hibridização Genômica Comparativa , Rearranjo Gênico , Genoma , Genômica , Humanos
4.
Int J Cancer ; 148(4): 812-824, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949152

RESUMO

Micronuclei, small spatially-separated, nucleus-like structures, are a common feature of human cancer cells. There are considerable heterogeneities in the sources, structures and genetic activities of micronuclei. Accumulating evidence suggests that micronuclei and main nuclei represent separate entities with respect to DNA replication, DNA damage sensing and repairing capacity because micronuclei are not monitored by the same checkpoints nor covered by the same nuclear envelope as the main nuclei. Thus, micronuclei are spatially restricted "mutation factories." Several large-scale DNA sequencing and bioinformatics studies over the last few years have revealed that most micronuclei display a mutational signature of chromothripsis immediately after their generation and the underlying molecular mechanisms have been dissected extensively. Clonal expansion of the micronucleated cells is context-dependent and is associated with chromothripsis and several other mutational signatures including extrachromosomal circular DNA, kataegis and chromoanasynthesis. These results suggest what was once thought to be merely a passive indicator of chromosomal instability is now being recognized as a strong mutator phenotype that may drive intratumoral genetic heterogeneity. Herein, we revisit the actionable determinants that contribute to the bursts of mutagenesis in micronuclei and present the growing number of evidence which suggests that micronuclei have distinct short- and long-term mutational and functional effects to cancer genomes. We also pose challenges for studying the long-term effects of micronucleation in the upcoming years.


Assuntos
Núcleo Celular/genética , Dano ao DNA , Instabilidade Genômica/genética , Micronúcleos com Defeito Cromossômico , Mutação , Neoplasias/genética , Cromotripsia , Humanos , Mitose/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética
5.
Cytogenet Genome Res ; 161(5): 236-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34274931

RESUMO

The use of new technologies in the routine diagnosis of constitutional abnormalities, such as high-resolution chromosomal microarray and next-generation sequencing, has unmasked new mechanisms for generating structural variation of the human genome. For example, complex chromosome rearrangements can originate by a chromosome catastrophe phenomenon in which numerous genomic rearrangements are apparently acquired in a single catastrophic event. This phenomenon is named chromoanagenesis (from the Greek "chromo" for chromosome and "anagenesis" for rebirth). Herein, we report 2 cases of genomic chaos detected at prenatal diagnosis. The terms "chromothripsis" and "chromoanasynthesis" and the challenge of genetic counseling are discussed.


Assuntos
Pontos de Quebra do Cromossomo , Cromotripsia , Rearranjo Gênico , Genoma Humano , Diagnóstico Pré-Natal/métodos , Aborto Eugênico , Adulto , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Feto , Aconselhamento Genético/ética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem/métodos , Masculino , Gravidez
6.
Genes Dev ; 27(23): 2513-30, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24298051

RESUMO

Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.


Assuntos
Evolução Molecular , Rearranjo Gênico/genética , Genoma Humano/genética , Aberrações Cromossômicas , Instabilidade Genômica , Humanos
7.
BMC Genomics ; 21(1): 593, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847497

RESUMO

BACKGROUND: Duplications of large genomic segments provide genetic diversity in genome evolution. Despite their importance, how these duplications are generated remains uncertain, particularly for distant duplicated genomic segments. RESULTS: Here we provide evidence of the participation of circular DNA intermediates in the single generation of some large human segmental duplications. A specific reversion of sequence order from A-B/C-D to B-A/D-C between duplicated segments and the presence of only microhomologies and short indels at the evolutionary breakpoints suggest a circularization of the donor ancestral locus and an accidental replicative interaction with the acceptor locus. CONCLUSIONS: This novel mechanism of random genomic mutation could explain several distant genomic duplications including some of the ones that took place during recent human evolution.


Assuntos
DNA Circular , Duplicações Segmentares Genômicas , DNA Circular/genética , Duplicação Gênica , Genoma , Genoma Humano , Humanos
8.
Cytogenet Genome Res ; 160(11-12): 671-679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33535208

RESUMO

Chromoanagenesis, a phenomenon characterized by complex chromosomal rearrangement and reorganization events localized to a limited number of genomic regions, includes the subcategories chromothripsis, chromoanasynthesis, and chromoplexy. Although definitions of these terms are evolving, constitutional chromoanagenesis events have been reported in a limited number of patients with variable phenotypes. We report on 2 cases with complex genomic events characterized by multiple copy number gains and losses confined to a single chromosome region, which are suggestive of constitutional chromoanagenesis. Case 1 is a 43-year-old male with intellectual disability and recently developed generalized tonic-clonic seizures. Chromosomal microarray analysis identified a complex rearrangement involving chromosome region 14q31.1q32.2, consisting of 16 breakpoints ranging in size from 0.2 to 6.2 Mb, with 5 segments of normal copy number present between these alterations. Interestingly, this case represents the oldest known patient with a complex rearrangement indicative of constitutional chromoanagenesis. Case 2 is a 2-year-old female with developmental delay, speech delay, low muscle tone, and seizures. Chromosomal microarray analysis identified a complex rearrangement consisting of 28 breakpoints localized to 18q21.32q23. The size of the copy number alterations ranged from 0.042 to 5.1 Mb, flanked by 12 small segments of normal copy number. These cases add to a growing body of literature demonstrating complex chromosomal rearrangements as a disease mechanism for congenital anomalies.


Assuntos
Aberrações Cromossômicas , Células Germinativas , Adolescente , Adulto , Pré-Escolar , Cromotripsia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
9.
BMC Cancer ; 18(1): 738, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005627

RESUMO

BACKGROUND: HER2 positive (HER2+) breast cancers involve chromosomal structural alterations that act as oncogenic driver events. METHODS: We interrogated the genomic structure of 18 clinically-defined HER2+ breast tumors through integrated analysis of whole genome and transcriptome sequencing, coupled with clinical information. RESULTS: ERBB2 overexpression in 15 of these tumors was associated with ERBB2 amplification due to chromoanasynthesis with six of them containing single events and the other nine exhibiting multiple events. Two of the more complex cases had adverse clinical outcomes. Chromosomes 8 was commonly involved in the same chromoanasynthesis with 17. In ten cases where chromosome 8 was involved we observed NRG1 fusions (two cases), NRG1 amplification (one case), FGFR1 amplification and ADAM32 or ADAM5 fusions. ERBB3 over-expression was associated with NRG1 fusions and EGFR and ERBB3 expressions were anti-correlated. Of the remaining three cases, one had a small duplication fully encompassing ERBB2 and was accompanied with a pathogenic mutation. CONCLUSION: Chromoanasynthesis involving chromosome 17 can lead to ERBB2 amplifications in HER2+ breast cancer. However, additional large genomic alterations contribute to a high level of genomic complexity, generating the hypothesis that worse outcome could be associated with multiple chromoanasynthetic events.


Assuntos
Neoplasias da Mama/genética , Cromotripsia , Amplificação de Genes , Receptor ErbB-2/genética , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Cromossomos Humanos Par 17 , Estudos de Coortes , Feminino , Humanos , Estadiamento de Neoplasias , Receptor ErbB-2/análise
10.
Clin Genet ; 91(5): 653-660, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27888607

RESUMO

Although complex chromosomal rearrangements were thought to reflect the accumulation of DNA damage over time, recent studies have shown that such rearrangements frequently arise from 'all-at-once' catastrophic cellular events. These events, designated chromothripsis, chromoanasynthesis, and chromoanagenesis, were first documented in the cancer genome and subsequently observed in the germline. These events likely result from micronucleus-mediated chromosomal shattering and subsequent random reassembly of DNA fragments, although several other mechanisms have also been proposed. Typically, only one or a few chromosomes of paternal origin are affected per event. These events can produce intrachromosomal deletions, duplications, inversions, and translocations, as well as interchromosomal translocations. Germline complex rearrangements of autosomes often result in developmental delay and dysmorphic features, whereas X chromosomal rearrangements are usually associated with relatively mild clinical manifestations. The concept of these catastrophic events provides novel insights into the etiology of human genomic disorders. This review introduces the molecular characteristics and phenotypic outcomes of catastrophic cellular events in the germline.


Assuntos
Aberrações Cromossômicas , Cromotripsia , Células Germinativas , Quebras de DNA de Cadeia Dupla , Feminino , Rearranjo Gênico , Genoma Humano , Mutação em Linhagem Germinativa , Humanos , Masculino , Gravidez
11.
Hum Mutat ; 37(7): 661-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26936114

RESUMO

Chromoanagenesis is the process by which a single catastrophic event creates complex rearrangements confined to a single or a few chromosomes. It is usually characterized by the presence of multiple deletions and/or duplications, as well as by copy neutral rearrangements. In contrast, an array CGH screen of patients with developmental anomalies revealed three patients in which a single chromosome carries from 8 to 11 large copy number gains confined to a single chromosome or chromosomal arm, but the absence of deletions. Subsequent fluorescence in situ hybiridization and massive parallel sequencing revealed the duplicons to be clustered together in distinct locations across the altered chromosomes. Breakpoint junction sequences showed both microhomology and non-templated insertions of up to 40 bp. Hence, these patients each demonstrate a single altered chromosome of clustered insertional duplications, no deletions, and breakpoint junction sequences showing microhomology and/or non-templated insertions. These observations are difficult to reconcile with current mechanistic descriptions of chromothripsis and chromoanasynthesis. Therefore, we hypothesize those rearrangements to be of a mechanistically different origin. In addition, we suggest that large untemplated insertional sequences observed at breakpoints are driven by a non-canonical non-homologous end joining mechanism.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Hibridização Genômica Comparativa , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Análise de Sequência de DNA
12.
Genetics ; 227(2)2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577877

RESUMO

Complex chromosomal rearrangements (CCRs) are often observed in clinical samples from patients with cancer and congenital diseases but are difficult to induce experimentally. Here, we report the first success in establishing animal models for CCRs. Mutation in Recql5, a crucial member of the DNA helicase RecQ family involved in DNA replication, transcription, and repair, enabled CRISPR/Cas9-mediated CCRs, establishing a mouse model containing triple fusion genes and megabase-sized inversions. Some of these structural features of individual chromosomal rearrangements use template switching and microhomology-mediated break-induced replication mechanisms and are reminiscent of the newly described phenomenon "chromoanasynthesis." These data show that Recql5 mutant mice could be a powerful tool to analyze the pathogenesis of CCRs (particularly chromoanasynthesis) whose underlying mechanisms are poorly understood. The Recql5 mutants generated in this study are to be deposited at key animal research facilities, thereby making them accessible for future research on CCRs.


Assuntos
Sistemas CRISPR-Cas , RecQ Helicases , Zigoto , Animais , RecQ Helicases/genética , RecQ Helicases/metabolismo , Camundongos , Zigoto/metabolismo , Mutação
13.
Cancers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802828

RESUMO

Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called "genome chaos." To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.

14.
Front Oncol ; 10: 1653, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974204

RESUMO

We present the genetic profile of kidney giant leiomyosarcoma characterized by sequencing of 409 cancer related genes and chromosomal microarray analysis. Renal leiomyosarcomas are extremely rare neoplasms with aggressive behavior and poor survival prognosis. Most frequent somatic events in leiomyosarcomas are mutations in the TP53, RB1, ATRX, and PTEN genes, chromosomal instability (CIN) and chromoanagenesis. 67-year-old woman presented with a right kidney completely replaced by tumor. Immunohistochemical reaction on surgical material was positive to desmin and smooth muscle actin. Molecular genetic analysis revealed that tumor harbored monosomy of chromosomes 3 and 11, gain of Xp (ATRX) arm and three chromoanasynthesis regions (6q21-q27, 7p22.3-p12.1, and 12q13.11-q21.2), with MDM2 and CDK4 oncogenes copy number gains, whereas no copy number variations (CNVs) or tumor specific single nucleotide variants (SNVs) in TP53, RB1, and PTEN genes were present. We hypothesize that chromoanasynthesis in 12q13.11-q21.2 could be a trigger of observed CIN in this tumor.

15.
Mol Cytogenet ; 13: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32010222

RESUMO

Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of "Hopeful Monsters" and the "Punctuated Equilibrium". In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.

16.
Mol Cytogenet ; 12: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695749

RESUMO

BACKGROUND: Chromoanagenesis events encompassing chromoanasynthesis, chromoplexy, and chromothripsis are described in cancers and can result in highly complex chromosomal rearrangements derived from 'all-at-once' catastrophic cellular events. The complexity of these rearrangements and the original descriptions in cancer cells initially led to the assumption that it was an acquired anomaly. While rare, these phenomena involving chromosome 1 have been reported a few individuals in a constitutional setting. CASE PRESENTATION: Here, we describe a newborn baby who was initially referred for cytogenetic testing for multiple congenital anomalies including cystic encephalomalacia, patent ductus arteriosus, inguinal hernia, and bilateral undescended testicles. Chromosome analysis was performed and revealed a derivative chromosome 1 with an 1q24-q31 segment inserted into 1q42.13 resulting in gain of 1q24-q31. Whole genome SNP microarray analysis showed a complex pattern of copy number variants with four gains and one loss involving 1q24-q31. Mate pair next-generation sequencing analysis revealed 18 chromosome breakpoints, six gains along an 1q24-q31 segment, one deletion of 1q31.3 segment and one deletion of 1q42.13 segment, which is strongly evocative of a chromoanasynthesis event for developing this complex rearrangement. Parental chromosome analyses were performed and showed the same derivative chromosome 1 in the mother. CONCLUSIONS: To our knowledge, our case is the first case with familial constitutional chromoanagenesis involving chromosome 1q24-q42. This report emphasizes the value of performing microarray and mate pair next-generation sequencing analysis for individuals with germline abnormal or complex chromosome rearrangements.

17.
Mol Cytogenet ; 12: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805029

RESUMO

BACKGROUND: During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of "chromoanagenesis". RESULTS: For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy-number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition and end-to-end telomere fusion. CONCLUSION: The concept of chromanagenesis has provided new insight into the aetiology of complex structural rearrangements, the connection between defective cell cycle progression and genomic instability, and the complexity of cancer evolution. Increasing reported chromoanagenesis events suggest that these chaotic mechanisms are probably much more frequent than anticipated.

18.
Clin Case Rep ; 7(11): 2165-2168, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788271

RESUMO

We report a case of a de novo ring 21 complex chromosomal rearrangement in a fetus presenting with hydrops. Noninvasive prenatal testing (NIPT) failed to detect the imbalance. This case highlights the need to understand the various limitations and strengths of NIPT technology when counseling patients.

19.
Mol Cytogenet ; 11: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181777

RESUMO

BACKGROUND: Complex genomic structural variations, involving chromoanagenesis, have been implicated in multiple congenital anomalies and abnormal neurodevelopment. Familial inheritance of complex chromosomal structural alteration resulting from germline chromoanagenesis-type mechanisms are limited. CASE PRESENTATION: We report a two-year eleven-month old male presenting with epilepsy, ataxia and dysmorphic features of unknown etiology. Chromosomal microarray identified a complex unbalanced rearrangement involving chromosome 21. G-banding and FISH for targeted regions of chromosome 21 revealed that the copy number imbalances were limited to gains dispersed throughout the long arm of chromosome 21, characteristic of a chromosome derived from chromoanagenesis. Family studies showed that the unbalanced chromosome had been stably inherited, as it was present in both his healthy mother and maternal grandfather. Further molecular testing for non-syndromic intellectual disability genes found a likely pathogenic mutation in SYNGAP1 (NM_006772.2:c.3722_3723del). CONCLUSIONS: This study indicates that complex rearrangements involving an unbalanced chromosome derived from chromoanasynthesis can be familial and should be not be presumed pathogenic.

20.
Methods Mol Biol ; 1769: 3-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564814

RESUMO

In 2011 a phenomenon involving complex chromosomal rearrangements was discovered in cancer genomes. This phenomenon has been termed chromothripsis, on the basis of its chromosomal hallmarks, which point to an underlying process involving chromosome (chromo) shattering (thripsis). The prevailing hypothesis of cancer genome evolution as a gradual process of mutation and selection was challenged by the discovery of chromothripsis, because its patterns of chromosome rearrangement rather indicated an one-off catastrophic burst of genome rearrangement. The initial discovery of chromothripsis has led to many more examples of chromothripsis both in cancer genomes as well as in patients with congenital diseases and in the genomes of healthy individuals. Since then, a burning topic has been the study of the molecular mechanism that leads to chromothripsis. Cumulating evidence has shown that chromothripsis may result from lagging chromosomes encapsulated in micronuclei, as well as from telomere fusions followed by chromosome bridge formation. In this chapter, we will outline the genomic characteristics of chromothripsis, and we present genomic methodologies that enable the detection of chromothripsis. Furthermore, we will give an overview of recent insights into the mechanisms underlying chromothripsis.


Assuntos
Cromotripsia , Genoma , Genômica , Animais , Aberrações Cromossômicas , Doenças Genéticas Inatas/genética , Genoma Humano , Genômica/métodos , Humanos , Neoplasias/genética , Prevalência , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA