Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238583

RESUMO

Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions.IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Colífagos/genética , Escherichia coli K12/virologia , Lipopolissacarídeos/metabolismo , Porinas/genética , Receptores Virais/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Evolução Biológica , Colífagos/classificação , Colífagos/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Teste de Complementação Genética , Especificidade de Hospedeiro , Lipopolissacarídeos/química , Interações Microbianas/genética , Filogenia , Porinas/metabolismo , Receptores Virais/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046511

RESUMO

Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein which is used by tumor cells for immune evasion. PD-L1 is upregulated in inflamed intestinal tissues. The intestinal tract is colonized by millions of bacteria, most of which are commensal bacterial species. We hypothesized that under inflammatory conditions, some commensal bacterial species contribute to increased PD-L1 expression in intestinal epithelium and examined this hypothesis. Human intestinal epithelial HT-29 cells with and without interferon (IFN)-γ sensitization were incubated with six strains of four enteric bacterial species. The mRNA and protein levels of PD-L1 in HT-29 cells were examined using quantitative real-time PCR and flow cytometry, respectively. The levels of interleukin (IL)-1ß, IL-18, IL-6, IL-8, and tumor necrosis factor (TNF)-α secreted by HT-29 cells were measured using enzyme-linked immunosorbent assay. Apoptosis of HT-29 cells was measured using a caspase 3/7 assay. We found that Escherichia coli K12 significantly upregulated both PD-L1 mRNA and protein in IFN-γ-sensitized HT-29 cells. E. coli K12 induced the production of IL-8 in HT-29 cells, however, IL-8 did not affect HT-29 PD-L1 expression. Inhibition of the nuclear factor-kappa B pathway significantly reduced E. coli K12-induced PD-L1 expression in HT-29 cells. The other two E. coli strains and two enteric bacterial species did not significantly affect PD-L1 expression in HT-29 cells. Enterococcus faecalis significantly inhibited PD-L1 expression due to induction of cell death. Data from this study suggest that some gut bacterial species have the potential to affect immune function under inflammatory conditions via upregulating epithelial PD-L1 expression.


Assuntos
Antígeno B7-H1/genética , Escherichia coli K12/fisiologia , Regulação da Expressão Gênica , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , NF-kappa B/metabolismo , Transdução de Sinais , Antígeno B7-H1/metabolismo , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos
3.
Cell Microbiol ; 21(11): e13097, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414516

RESUMO

Over the past 20 years, the highly dynamic interactions that take place between hosts and the gut microbiota have emerged as a major determinant in health and disease. The complexity of the gut microbiota represents, however, a considerable challenge, and reductionist approaches are indispensable to define the contribution of individual bacteria to host responses and to dissect molecular mechanisms. In this tribute to Philippe Sansonetti, I would like to show how rewarding collaborations with microbiologists have guided our team of immunologists in the study of host-microbiota interactions and, thanks to the use of controlled colonisation experiments in gnotobiotic mice, toward the demonstration that segmented filamentous bacteria (SFB) are indispensable to drive the post-natal maturation of the gut immune barrier in mice. The work led with Philippe Sansonetti to set up in vitro culture conditions has been one important milestone that laid the ground for in-depth characterization of the molecular attributes of this unusual symbiont. Recent suggestions that SFB may be present in the human microbiota encourage further cross-fertilising interactions between microbiologists and immunologists to define whether results from mice can be translated to humans and, if so, how SFB may be used to promote human intestinal defences against enteropathogens. Nurturing the competences to pursue this inspiring project is one legacy of Philippe Sansonetti.


Assuntos
Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Animais , Bactérias/ultraestrutura , Citocinas/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Vida Livre de Germes/imunologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Camundongos , Simbiose , Células Th17/imunologia
4.
Microb Cell Fact ; 19(1): 16, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996234

RESUMO

BACKGROUND: Cell-based experimentation in microfluidic droplets is becoming increasingly popular among biotechnologists and microbiologists, since inherent characteristics of droplets allow high throughput at low cost and space investment. The range of applications for droplet assays is expanding from single cell analysis toward complex cell-cell incubation and interaction studies. As a result of cellular metabolism in these setups, relevant physicochemical alterations frequently occur before functional assays are conducted. However, to use droplets as truly miniaturized bioreactors, parameters like pH and oxygen availability should be controlled similar to large-scale fermentation to ensure reliable research. RESULTS: Here, we introduce a comprehensive strategy to monitor and control pH for large droplet populations during long-term incubation. We show the correlation of fluorescence intensity of 6-carboxyfluorescein and pH in single droplets and entire droplet populations. By taking advantage of inter-droplet transport of pH-mediating molecules, the average pH value of several million droplets is simultaneously adjusted in an a priori defined direction. To demonstrate the need of pH control in practice, we compared the fermentation profiles of two E. coli strains, a K12-strain and a B-strain, in unbuffered medium with 5 g/L glucose for standard 1 L bioreactors and 180 pL droplets. In both fermentation formats, the commonly used B-strain E. coli BL21 is able to consume glucose until depletion and prevent a pH drop, while the growth of the K12-strain E. coli MG1655 is soon inhibited by a low pH caused by its own high acetate production. By regulating the pH during fermentation in droplets with our suggested strategy, we were able to prevent the growth arrest of E. coli MG1655 and obtained an equally high biomass yield as with E. coli BL21. CONCLUSION: We demonstrated a comparable success of pH monitoring and regulation for fermentations in 1 L scale and 180 pL scale for two E. coli strains. This strategy has the potential to improve cell-based experiments for various microbial systems in microfluidic droplets and opens the possibility for new functional assay designs.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli K12 , Fermentação , Concentração de Íons de Hidrogênio , Microfluídica/métodos , Análise de Célula Única/métodos , Biotecnologia , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
5.
BMC Genomics ; 20(1): 504, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208335

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. RESULTS: Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. CONCLUSIONS: Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation.


Assuntos
Carbono/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulação Bacteriana da Expressão Gênica , Prófagos/fisiologia , Toxina Shiga/metabolismo , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/virologia , Perfilação da Expressão Gênica , Fenótipo , Prófagos/metabolismo
6.
Appl Microbiol Biotechnol ; 102(8): 3649-3661, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516149

RESUMO

Ability to efficiently propagate high quantities of bacteriophages (phages) is of great importance considering higher phage production needs in the future. Continuous production of phages could represent an interesting option. In our study, we tried to elucidate the effect of dilution rate on productivity of continuous production of phages in cellstat. As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host were used. Experiments where physiology of bacteria was changing with dilution rate of cellstat and where bacterial physiology was kept constant were performed. For both setups there exists an optimal dilution rate when maximal productivity is achieved. Experimentally obtained values of phage concentration and corresponding productivity were compared with mathematical model predictions, and good agreement was obtained for both types of experiments. Analysis of mathematical model coefficients revealed that latent period and burst size to dilution rate coefficient mostly affect optimum dilution rate and productivity. Due to high sensitivity, it is important to evaluate phage growth parameters carefully, to run cellstat under optimal productivity.


Assuntos
Bacteriófagos/fisiologia , Reatores Biológicos , Escherichia coli K12/virologia , Cultura de Vírus/métodos , Modelos Biológicos
7.
Biotechnol Lett ; 40(8): 1219-1226, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931463

RESUMO

OBJECTIVE: To heterologously produce the Shigella dysenteriae serotype 1 O-polysaccharide (O-PS, O-antigen) in Escherichia coli by transferring the minimum number of genes instead of the entire O-PS gene cluster. RESULTS: The three glycosyltransferase genes (rfbR, rfbQ and rfp) responsible for the formation of the O-repeat unit were introduced into E. coli K-12 W3110 to synthesize S. dysenteriae 1 O-PS. The specific O-antigen ladder type with different chain lengths of O-repeat units was observed in the recombinant E. coli strain by SDS-PAGE silver staining and western blotting using S. dysenteriae 1 lipopolysaccharide antiserum. Analysis by mass spectrometry and ion chromatography suggested generation of the specific S. dysenteriae 1 O-repeat unit structure with an extra glucose residue attached. CONCLUSIONS: Recombinant E. coli expressing specific glycosyltransferase genes can generate the O-PS of S. dysenteriae 1 and might be able to synthesize heterologous O-antigens of various pathogenic bacteria for vaccine preparation.


Assuntos
Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Expressão Gênica , Engenharia Metabólica/métodos , Antígenos O/biossíntese , Shigella dysenteriae/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Antígenos O/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Prep Biochem Biotechnol ; 48(6): 498-505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29932795

RESUMO

In efforts to speed up the assessment of microorganisms, researchers have sought to use bacteriophages as a biosensing tool, due to their host-specificity, wide abundance, and safety. However, the lytic cycle of the phage has limited its efficacy as a biosensor. Here, we cloned a fragment of tail protein J from phage lambda and characterized its binding with the host, E. coli K-12, and other microorganism. The N-terminus of J was fused with a His-tag (6HN-J), overexpressed, purified, and characterized using anti-His monoclonal antibodies. The purified protein demonstrated a size of ∼38 kDa upon SDS-PAGE and bound with the anti-His monoclonal antibodies. ELISA, dot blot, and TEM data revealed that it specifically bound to E. coli K-12, but not to Pseudomonas aeruginosa. The observed protein binding occurred over a concentration range of 0.01-5 µg/ml and was found to inhibit the in vivo adsorption of phage to host cells. This specific binding was exploited by surface plasmon resonance (SPR) to generate a novel 6HN-J-functionalized SPR biosensor. This biosensor showed rapid label-free detection of E. coli K-12 in the range of 2 × 104 -2 × 109 CFU/ml, and exhibited a lower detection limit of 2 × 104 CFU/ml.


Assuntos
Técnicas Bacteriológicas/instrumentação , Bacteriófago lambda/metabolismo , Técnicas Biossensoriais , Escherichia coli K12/isolamento & purificação , Ressonância de Plasmônio de Superfície/instrumentação , Proteínas da Cauda Viral/metabolismo , Adsorção , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli K12/metabolismo , Limite de Detecção , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
9.
Lett Appl Microbiol ; 65(4): 313-318, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28727911

RESUMO

Ultrasound creates cavitation phenomena, resulting in the formation of several free radicals, namely OH˙ and H˙, due to the breakdown of the H2 O molecule. These radicals affect the cellular integrity of the bacteria, causing the inactivation of several processes, and thus it is important to unravel the mechanism of action of this technology. This research looks into the application and mechanism of action of ultrasound technology as a means of disinfection by acoustic cavitation. Sterile water and synthetic waste water were inoculated with different mutants of Escherichia coli K12 strains containing deletions in genes affecting specific functional properties of E. coli. These were: dnak soxR, soxS, oxyR, rpoS, gadA/gadB, gadC and yneL. Escherichia coli K-12 ΔoxyR appeared to be more resistant to the treatment together with gadW, gadX, gabT and gabD, whereas the mutant K-12 ΔdnaK was more sensitive with c. 2·5 log (CFU per ml) reduction in comparison to their isogenic wild-type E. coli K-12. This indicates that the dnaK gene participates in general stress response and more specifically to hyperosmotic stress. The other E. coli deleted genes tested (soxS, rpoS, gadB, gadC, yneL) did not appear to be involved in protection of microbial cells against ultrasound. SIGNIFICANCE AND IMPACT OF THE STUDY: This study looks at the mechanism of action of ultrasound technology for the disinfection of wastewater. Different mutants with deleted genes were used to study the respective sensitivity or resistance to this treatment. This is essential to characterize changes at the molecular level, which might be occurring during treatment, resulting in bacterial adaptation.


Assuntos
Desinfecção/métodos , Escherichia coli K12/genética , Escherichia coli K12/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Ondas Ultrassônicas , Antibacterianos/farmacologia , Escherichia coli K12/metabolismo , Radicais Livres/química , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Águas Residuárias/microbiologia
10.
Electromagn Biol Med ; 34(4): 293-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24725172

RESUMO

The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth.


Assuntos
Escherichia coli K12/citologia , Vibração , Proliferação de Células , DNA Bacteriano/química , Fenômenos Mecânicos , Timidina/química , Fatores de Tempo
11.
Environ Monit Assess ; 187(10): 638, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26394621

RESUMO

In this study, organochlorine pesticides (OCP) and heavy metals were analyzed from wastewater- and groundwater- irrigated soils (control samples) by gas chromatography (GC) and atomic absorption spectrophotometry (AAS), respectively. Gas chromatographic analysis revealed the presence of high concentration of pesticides in soil irrigated with wastewater (WWS). These concentrations were far above the maximum residue permissible limits indicating that alluvial soils have high binding capacity of OCP. AAS analyses revealed higher concentration of heavy metals in WWS as compared to groundwater (GWS). Also, the DNA repair (SOS)-defective Escherichia coli K-12 mutant assay and the bacteriophage lambda system were employed to estimate the genotoxicity of soils. Therefore, soil samples were extracted by hexane, acetonitrile, methanol, chloroform, and acetone. Both bioassays revealed that hexane-extracted soils from WWS were most genotoxic. A maximum survival of 15.2% and decline of colony-forming units (CFUs) was observed in polA mutants of DNA repair-defective E. coli K-12 strains when hexane was used as solvent. However, the damage of polA (-) mutants triggered by acetonitrile, methanol, chloroform, and acetone extracts was 80.0, 69.8, 65.0, and 60.7%, respectively. These results were also confirmed by the bacteriophage λ test system as hexane extracts of WWS exhibited a maximum decline of plaque-forming units for lexA mutants of E. coli K-12 pointing to an elevated genotoxic potential. The lowest survival was observed for lexA (12%) treated with hexane extracts while the percentage of survival was 25, 49.2, 55, and 78% with acetonitrile, methanol, chloroform, and acetone, respectively, after 6 h of treatment. Thus, our results suggest that agricultural soils irrigated with wastewater from pesticide industries have a notably high genotoxic potential.


Assuntos
Dano ao DNA , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Praguicidas/toxicidade , Poluentes do Solo/toxicidade , Águas Residuárias/análise , Agricultura , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/genética , Indústria Química , Cromatografia Gasosa , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Água Subterrânea/análise , Resíduos Industriais/análise , Metais Pesados/análise , Testes de Mutagenicidade , Praguicidas/análise , Resposta SOS em Genética , Poluentes do Solo/análise , Espectrofotometria Atômica , Águas Residuárias/toxicidade
12.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000769

RESUMO

Microbial contamination can occur on the surfaces of blow-molded bottles, necessitating the development and application of effective anti-microbial treatments to mitigate the hazards associated with microbial growth. In this study, new methods of incorporating anti-microbial particles into linear low-density polyethylene (LLDPE) extrusion blow-molded bottles were developed. The anti-microbial particles were thermally embossed on the external surface of the bottle through two particle deposition approaches (spray and powder) over the mold cavity. The produced bottles were studied for their thermal, mechanical, gas barrier, and anti-microbial properties. Both deposition approaches indicated a significant enhancement in anti-microbial activity, as well as barrier properties, while maintaining thermal and mechanical performance. Considering both the effect of anti-microbial agents and variations in tensile bar weight and thickness, the statistical analysis of the mechanical properties showed that applying the anti-microbial agents had no significant influence on the tensile properties of the blow-molded bottles. The external fixation of the particles over the surface of the bottles would result in optimum anti-microbial activity, making it a cost-effective solution compared to conventional compounding processing.

13.
Microorganisms ; 11(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004779

RESUMO

An investigation into the mechanisms of action on bacteria involving exposure to stress factors was conducted in this study. The effects of ultrasound on Escherichia coli K-12 MG1655 and its isogenic mutant, ∆gadW, under high power ultrasound treatments (26 kHz) were screened and identified by analysing their transcriptome differences between primary and secondary sequential treatments using RNA-Seq. This also helped to assess any developed protection for cells between different generations. According to our results, 1825 genes of all tested conditions were expressed, playing different roles in the cell. The expression of these genes is associated with DNA damage, cell membrane integrity, and also metabolic effects. The studied strains also showed different differential expressed genes (DEGs), with some genes being directly responsible for defence mechanisms, while others play an indirect effect due to cell damage. A gradual decrease in the expression of the genes, as we moved from just one cycle of ultrasound treatment to sequential treatment, was evident from a heat map analysis of the results. Overall, E. coli K-12 builds a self-protection mechanism by increasing the expression of genes involved in the respiration for increased growth, and production of flagellum and pili. It can be concluded that high power ultrasound is a technology that triggers several different defence mechanisms which directly link to E. coli.

14.
J Genet Eng Biotechnol ; 20(1): 118, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939149

RESUMO

BACKGROUND: Aeromonas veronii is one of the most common pathogens of freshwater fishes that cause sepsis and ulcers. There are increasing numbers of cases showing that it is a significant zoonotic and aquatic agent. Epidemiological studies have shown that A. veronii virulence and drug tolerance have both increased over the last few years as a result of epidemiological investigations. Cadaverine reverse transporter (CadB) and maltoporin (LamB protein) contribute to the virulence of A. veronii TH0426. TH0426 strain is currently showing severe cases on fish species, and its resistance against therapeutic has been increasing. Despite these devastating complications, there is still no effective cure or vaccine for this strain of A.veronii. RESULTS: In this regard, an immunoinformatic method was used to generate an epitope-based vaccine against this pathogen. The immunodominant epitopes were identified using the CadB and LamB protein of A. veronii. The final constructed vaccine sequence was developed to be immunogenic, non-allergenic as well as have better solubility. Molecular dynamic simulation revealed significant binding stability and structural compactness. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher CAI value, which was then included in the cloning vector pET2+ (a). CONCLUSION: Altogether, our outcomes imply that the proposed peptide vaccine might be a good option for A. veronii TH0426 prophylaxis.

15.
EFSA J ; 19(8): e06691, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377189

RESUMO

The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts. These steviol glycoside preparations are produced via enzymatic bioconversion of highly purified stevioside and/or rebaudioside A extracts obtained from stevia plant using two UDP-glucosyltransferases and one sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12 that facilitate the transfer of glucose to purified stevia leaf extracts via glycosidic bonds. The Panel considered that the parental strain is a derivative of E. coli K-12 which is well characterised and its safety has been documented; therefore, it is considered to be safe for production purposes. The Panel concluded that there is no safety concern for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts using UDP-glucosyltransferases and sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12, to be used as a food additive. The Panel recommends the European Commission to consider the proposal of establishing separate specifications for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts in Commission Regulation (EU) No 231/2012.

16.
World Allergy Organ J ; 13(3): 100109, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32180893

RESUMO

The epithelial cell-derived cytokine milieu has been discussed as a "master switch" in the development of allergic disease. To understand the role of innate immune response in nasal epithelial cells during allergic inflammation, we created and established a fast and minimally invasive method to isolate and culture human nasal epithelial cells from clinically and immunologically well characterized patients. Human nasal epithelial cells from non-atopic volunteers and from allergic rhinitis patients were compared in respect to their growth, barrier integrity, pattern recognition, receptor expression, and immune responses to allergens and an array of pathogen-associated molecular patterns and inflammasome activators. Cells from nasal scrapings were clearly identified as nasal epithelial cells by staining of pan-Cytokeratin, Cytokeratin-14 and Tubulin. Additionally, Mucin 5AC staining revealed the presence of goblet cells, while staining of tight-junction protein Claudin-1, Occludin and ZO-1 showed the ability of the cells to form a tight barrier. Cells of atopic donors grew slower than cells of non-atopic donors. All nasal epithelial cells expressed TLR1-6 and 9, yet the expression of TLR-9 was lower in cells from allergic rhinitis (AR) donors. Additionally, epithelial cells from AR donors responded with a different TLR expression pattern to stimulation with TLR ligands. TLR-3 was the most potent modulator of cytokine and chemokine secretion in all human nasal epithelial cells (HNECs). The secretion of IL-1ß, CCL-5, IL-8, IL-18 and IL-33 was elevated in HNECs of AR donors as compared to cells of non-atopic donors. This was observed in the steady-state (IL-18, IL-33) as well as under stimulation with TLR ligands (IL-18, IL-33, CCL-5, IL-8), aqueous pollen extracts (IL-18, IL-33), or the inflammasome activator Nigericin (IL-1ß). In conclusion, nasal epithelial cells of AR donors show altered physical barrier responses in steady-state and in response to allergen stimulation. Cells of AR donors show increased expression of pro-inflammatory and IL-1 family cytokines at baseline and under stimulation, which could contribute to a micromilieu which is favorable for Th2.

17.
Curr Protoc Mol Biol ; 125(1): e83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412361

RESUMO

In this article, we provide information about culture media, including minimal liquid media, rich liquid media, solid media, top agar, and stab agar. We also provide descriptions and useful information about tools used with growth media such as inoculating loops, sterile toothpicks, and spreaders. © 2018 by John Wiley & Sons, Inc.


Assuntos
Técnicas Bacteriológicas/métodos , Contagem de Colônia Microbiana/métodos , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Preservação Biológica/métodos , Ágar/química , Contagem de Colônia Microbiana/instrumentação , Meios de Cultura/metabolismo , Escherichia coli/metabolismo
18.
Enzyme Microb Technol ; 117: 23-31, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30037548

RESUMO

The Escherichia coli phosphoglucose isomerase (pgi) mutant strain GALG20 was developed previously from wild-type K12 strain MG1655 for increased plasmid yield. To investigate the potential effects of the pgi deletion/higher plasmid levels on recombinant human Interferon Gamma (IFN-γ) production, a detailed network of the central metabolic pathway (100 metabolites, 114 reactions) of GALG20 and MG1655 was constructed. Elementary mode analysis (EMA) was then performed to compare the phenotypic spaces of both the strains and to check the effect of the pgi deletion on flux efficiency of each metabolic reaction. The results suggested that pgi deletion increases amino acid biosynthesis and flux efficiency towards IFN-γ synthesis by 11%. To further confirm the qualitative prediction that the pgi mutation favours recombinant human IFN-γ expression, GALG20 and MG1655 were lysogenised, transformed with a plasmid coding for IFN-γ and tested alongside with BL21(DE3) for their expression capabilities in shake flask experiments using complex media. IFN-γ gene expression was analysed by quantifying plasmid and mRNA copy number per cell and IFN-γ protein production level. Specific IFN-γ yields confirmed the in silico metabolic network predictions, with GALG20(DE3) producing 3.0-fold and 1.5-fold more IFN-γ as compared to MG1655(DE3) and BL21(DE3), respectively. Most of the total IFN-γ was expressed as inclusion bodies across the three strains: 95% in GALG20(DE3), 97% in BL21(DE3) and 72% in MG1655(DE3). The copy number of mRNA coding for IFN-γ was found to be higher in GALG20(DE3) as compared to the other two strains. Overall, these findings show that GALG20(DE3) has the potential to become an excellent protein expression strain.


Assuntos
Escherichia coli K12/genética , Engenharia Genética/métodos , Interferon gama/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Microbiologyopen ; 7(2): e00558, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29195013

RESUMO

It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr-1 . It was found that the burst size increases linearly from 8 PFU·cell-1 to 89 PFU·cell-1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10-9  ml·min-1 and 80 min to reach limiting values of 0.5 × 10-9  ml·min-1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr-1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed.


Assuntos
Bacteriófago T4/crescimento & desenvolvimento , Escherichia coli K12/crescimento & desenvolvimento , Crescimento Demográfico , Escherichia coli K12/virologia , Ensaio de Placa Viral , Latência Viral/fisiologia
20.
Metab Eng Commun ; 5: 78-83, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29188187

RESUMO

Escherichia coli strain LS5218 is a useful host for the production of fatty acid derived products, but the genetics underlying this utility have not been fully investigated. Here, we report the genome sequence of LS5218 and a list of large mutations and single nucleotide permutations (SNPs) relative to E. coli K-12 strain MG1655. We discuss how genetic differences may affect the physiological differences between LS5218 and MG1655. We find that LS5218 is more closely related to E. coli strain NCM3722 and suspect that small genetic differences between K-12 derived strains may have a significant impact on metabolic engineering efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA