Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JHEP Rep ; 5(4): 100683, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36950091

RESUMO

Background & Aims: Although extensive experimental evidence on the process of liver regeneration exists, in humans, validation is largely missing. However, liver regeneration is critically affected by underlying liver disease. Within this project, we aimed to systematically assess early transcriptional changes during liver regeneration in humans and further assess how these processes differ in people with dysfunctional liver regeneration. Methods: Blood samples of 154 patients and intraoperative tissue samples of 46 patients undergoing liver resection were collected and classified with regard to dysfunctional postoperative liver regeneration. Of those, a matched cohort of 21 patients were used for RNA sequencing. Samples were assessed for circulating cytokines, gene expression dynamics, intrahepatic neutrophil accumulation, and spatial transcriptomics. Results: Individuals with dysfunctional liver regeneration demonstrated an aggravated transcriptional inflammatory response with higher intracellular adhesion molecule-1 induction. Increased induction of this critical leukocyte adhesion molecule was associated with increased intrahepatic neutrophil accumulation and activation upon induction of liver regeneration in individuals with dysfunctional liver regeneration. Comparing baseline gene expression profiles in individuals with and without dysfunctional liver regeneration, we found that dual-specificity phosphatase 4 (DUSP4) expression, a known critical regulator of intracellular adhesion molecule-1 expression in endothelial cells, was markedly reduced in patients with dysfunctional liver regeneration. Mimicking clinical risk factors for dysfunctional liver regeneration, we found liver sinusoidal endothelial cells of two liver disease models to have significantly reduced baseline levels of DUSP4. Conclusions: Exploring the landscape of early transcriptional changes of human liver regeneration, we observed that people with dysfunctional regeneration experience overwhelming intrahepatic inflammation. Subclinical liver disease might account for DUSP4 reduction in liver sinusoidal endothelial cells, which ultimately primes the liver for an aggravated inflammatory response. Impact and implications: Using a unique human biorepository, focused on liver regeneration (LR), we explored the landscape of circulating and tissue-level alterations associated with both functional and dysfunctional LR. In contrast to experimental animal models, people with dysfunctional LR demonstrated an aggravated transcriptional inflammatory response, higher intracellular adhesion molecule-1 (ICAM-1) induction, intrahepatic neutrophil accumulation and activation upon induction of LR. Although inflammatory responses appear rapidly after liver resection, people with dysfunctional LR have exaggerated inflammatory responses that appear to be related to decreased levels of LSEC DUSP4, challenging existing concepts of post-resectional LR.

2.
Acta Pharm Sin B ; 12(1): 50-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127372

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.

3.
Toxicol Rep ; 8: 846-862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948438

RESUMO

Exposure to air pollution from traffic-generated sources is known to contribute to the etiology of inflammatory diseases, including cardiovascular disease (CVD) and obesity; however, the signaling pathways involved are still under investigation. Dysregulation of the renin-angiotensin system (RAS) can contribute to CVD and alter lipid storage and inflammation in adipose tissue. Our previous exposure studies revealed that traffic-generated emissions increase RAS signaling, further exacerbated by a high-fat diet. Thus, we investigated the hypothesis that exposure to engine emissions increases systemic and local adipocyte RAS signaling, promoting the expression of factors involved in CVD and obesity. Male C57BL/6 mice (6-8 wk old) were fed either a high-fat (HF, n = 16) or low-fat (LF, n = 16) diet, beginning 30d prior to exposures, and then exposed via inhalation to either filtered air (FA, controls) or a mixture of diesel engine + gasoline engine vehicle emissions (MVE: 100 µg PM/m3) via whole-body inhalation for 6 h/d, 7 d/wk, 30d. Endpoints were assessed via immunofluorescence and RT-qPCR. MVE-exposure promoted vascular adhesion factors (VCAM-1, ICAM-1) expression, monocyte/macrophage sequestration, and oxidative stress in the vasculature, associated with increased angiotensin II receptor type 1 (AT1) expression. In the kidney, MVE-exposure promoted the expression of renin, AT1, and AT2 receptors. In adipose tissue, both HF-diet and MVE-exposure mediated increased epididymal fat pad weight and adipocyte hypertrophy, associated with increased angiotensinogen and AT1 receptor expression; however, these outcomes were further exacerbated in the MVE + HF group. MVE-exposure also induced inflammation, monocyte chemoattractant protein (MCP)-1, and leptin, while reducing insulin receptor and glucose transporter, GLUT4, expression in adipose tissue. Our results indicate that MVE-exposure promotes systemic and local adipose RAS signaling, associated with increased expression of factors contributing to CVD and obesity, further exacerbated by HF diet consumption.

4.
Med Drug Discov ; 7: 100049, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32835211

RESUMO

The Bacillus Calmette-Guerin vaccine (BCG vaccine) designed to prevent tuberculosis in children has been shown to induce a adaptive immune response in the body to fight against bacteria as well as other parasites and viruses. This knowledge has been reciprocated to generate the idea that this vaccine can also offer protection against severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). Some recent pre-print articles have highlighted that countries with mass BCG immunizations seems to have a lower incidence of coronavirus disease 2019 (COVID-19) compared to those without BCG immunization. There are yet no experimental proof of any such association and the world health organisation (WHO) is currently testing the theory with clinical trials on selected cohorts. Epidemiologists and other scientific experts has expressed both their hope and concern simultaneously regarding the success theory of BCG vaccination to prevent COVID-19. Though its still not verified in any way whether the BCG vaccination can actually prevent COVID-19 or not but we believe a thorough analytical research in this regard is indeed worth a shot.

5.
J Nutr Sci ; 7: e10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599972

RESUMO

Marine n-3 (omega-3) fatty acids alter gene expression by regulating the activity of transcription factors. Krill oil is a source of marine n-3 fatty acids that has been shown to modulate gene expression in animal studies; however, the effect in humans is not known. Hence, we aimed to compare the effect of intake of krill oil, lean and fatty fish with a similar content of n-3 fatty acids, and high-oleic sunflower oil (HOSO) with added astaxanthin on the expression of genes involved in glucose and lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC) as well as circulating inflammatory markers. In an 8-week trial, healthy men and women aged 18-70 years with fasting TAG of 1·3-4·0 mmol/l were randomised to receive krill oil capsules (n 12), HOSO capsules (n 12) or lean and fatty fish (n 12). The weekly intakes of marine n-3 fatty acids from the interventions were 4654, 0 and 4103 mg, respectively. The mRNA expression of four genes, PPAR γ coactivator 1A (PPARGC1A), steaoryl-CoA desaturase (SCD), ATP binding cassette A1 (ABCA1) and cluster of differentiation 40 (CD40), were differently altered by the interventions. Furthermore, within-group analyses revealed that krill oil down-regulated the mRNA expression of thirteen genes, including genes involved in glucose and cholesterol metabolism and ß-oxidation. Fish altered the mRNA expression of four genes and HOSO down-regulated sixteen genes, including several inflammation-related genes. There were no differences between the groups in circulating inflammatory markers after the intervention. In conclusion, the intake of krill oil and HOSO with added astaxanthin alter the PBMC mRNA expression of more genes than the intake of fish.

6.
Cell Mol Gastroenterol Hepatol ; 4(3): 329-337, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28884136

RESUMO

Inflammatory responses in the intestinal mucosa inevitably result in the recruitment of neutrophils (polymorphonuclear leukocytes [PMNs]). Epithelial cells that line the mucosa play an integral role in the recruitment, maintenance, and clearance of PMNs at sites of inflammation. The consequences of such PMN-epithelial interactions often determine tissue responses and, ultimately, organ function. For this reason, there is significant interest in understanding how PMNs function in the mucosa during inflammation. Recent studies have shown that PMNs play a more significant role in molding of the immune response than previously thought. Here, we review the recent literature regarding the contribution of PMNs to the development and resolution of inflammation, with an emphasis on the role of the tissue microenvironment and pathways for promoting epithelial restitution. These studies highlight the complex nature of inflammatory pathways and provide important insight into the difficulties of treating mucosal inflammation.

7.
Epigenetics ; 10(3): 237-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793777

RESUMO

We aimed to determine the effect of SGI-110 on methylation and expression of the cancer testis antigens (CTAs) NY-ESO-1 and MAGE-A in epithelial ovarian cancer (EOC) cells in vitro and in vivo and to establish the impact of SGI-110 on expression of major histocompatibility (MHC) class I and Intracellular Adhesion Molecule 1 (ICAM-1) on EOC cells, and on recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. We also tested the impact of combined SGI-110 and NY-ESO-1-specific CD8+ T-cells on tumor growth and/or murine survival in a xenograft setting. EOC cells were treated with SGI-110 in vitro at various concentrations and as tumor xenografts with 3 distinct dose schedules. Effects on global methylation (using LINE-1), NY-ESO-1 and MAGE-A methylation, mRNA, and protein expression were determined and compared to controls. SGI-110 treated EOC cells were evaluated for expression of immune-modulatory genes using flow cytometry, and were co-cultured with NY-ESO-1 specific T-cell clones to determine immune recognition. In vivo administration of SGI-110 and CD8+ T-cells was performed to determine anti-tumor effects on EOC xenografts. SGI-110 treatment induced hypomethylation and CTA gene expression in a dose dependent manner both in vitro and in vivo, at levels generally superior to azacitidine or decitabine. SGI-110 enhanced the expression of MHC I and ICAM-1, and enhanced recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. Sequential SGI-110 and antigen-specific CD8+ cell treatment restricted EOC tumor growth and enhanced survival in a xenograft setting. SGI-110 is an effective hypomethylating agent and immune modulator and, thus, an attractive candidate for combination with CTA-directed vaccines in EOC.


Assuntos
Azacitidina/análogos & derivados , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metiltransferases/antagonistas & inibidores , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antígenos de Neoplasias/genética , Azacitidina/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos SCID , Transplante de Neoplasias , Linfócitos T
8.
Oncoimmunology ; 4(7): e1016699, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26140241

RESUMO

The graft-versus-leukemia (GVL) effect following allogeneic hematopoietic stem cell transplantation (allo-HCT) is critical for its curative potential. Hwever, GVL is tightly linked to graft-versus-host disease (GVHD). Among hematological malignancies, acute lymphoblastic leukemia (ALL) is the most resistant to GVL, although the reasons for this remain poorly understood. Clinical studies have identified alterations in Ikaros (Ik) transcription factor as the major marker associated with poor outcomes in ALL. We have shown that the absence of Ik in professional host-derived hematopoietic antigen-presenting cells (APCs) exacerbates GVHD. However, whether Ik expression plays a role in resistance to GVL is not known. In this study we used multiple clinically relevant murine models of allo-HCT to explore whether Ik expression in hematopoietic APCs and/or leukemic cells is critical for increasing resistance to GVL and thus inducing relapse. We found that Ik deficiency in host APCs failed to enhance GVL despite increased GVHD severity. Mechanistic studies with bone marrow (BM) chimeras and tetramer analyses demonstrated reduced tumor-specific immunodominant (gag+) antigen responses in the [B6Ik-/-→B6] group. Loss of GVL was observed when both the leukemia cells and the host APCs were deficient in Ik. We found that calreticulin (CRT) expression in host antigen-presenting dendritic cells (DCs) of Ik-/- animals was significantly lower than in wild-type animals. Rescuing CRT expression in Ik-/- DCs improved leukemic-specific cytotoxic T cell function. Together, our data demonstrate that the absence of Ikaros in host hematopoietic cells promotes resistance to GVL despite increasing GVHD and thus provides a potential mechanism for the poor outcome of Ik-/- ALL patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA