Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4485-4492, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578031

RESUMO

Confining DNA in nanochannels is an important approach to studying its structure and transportation dynamics. Graphene nanochannels are particularly attractive for studying DNA confinement due to their atomic flatness, precise height control, and excellent mechanical strength. Here, using femtosecond laser etching and wetting transfer, we fabricate graphene nanochannels down to less than 4.3 nm in height, with the length-to-height ratios up to 103. These channels exhibit high stability, low noise, and self-cleaning ability during the long-term ionic current recording. We report a clear linear relationship between DNA length and the residence time in the channel and further utilize this relationship to differentiate DNA fragments based on their lengths, ranging widely from 200 bps to 48.5 kbps. The graphene nanochannel presented here provides a potential platform for label-free analyses and reveals fundamental insights into the conformational dynamics of DNA and proteins in confined space.


Assuntos
Grafite , Eletricidade , Condutividade Elétrica , Proteínas , DNA/química
2.
Nano Lett ; 24(21): 6296-6301, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747343

RESUMO

Ion transport through nanoporous two-dimensional (2D) membranes is predicted to be tunable by controlling the charging status of the membranes' planar surfaces, the behavior of which though remains to be assessed experimentally. Here we investigate ion transport through intrinsically porous membranes made of 2D metal-organic-framework layers. In the presence of certain cations, we observe a linear-to-nonlinear transition of the ionic current in response to the applied electric field, the behavior of which is analogous to the cation gating effect in the biological ion channels. Specifically, the ionic currents saturate at transmembrane voltages exceeding a few hundreds of millivolts, depending on the concentration of the gating cations. This is attributed to the binding of cations at the membranes' surfaces, tuning the charging states there and affecting the entry/exit process of translocating ions. Our work also provides 2D membranes as candidates for building nanofluidic devices with tunable transport properties.

3.
Small ; : e2401112, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716623

RESUMO

DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.

4.
Small ; : e2402188, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899397

RESUMO

Ionic diodes provide ionic current rectification (ICR), which is useful for micro-/nanofluidic devices for ionic current-mediated applications. However, the modulation of ICR is not fully developed, and current challenges include limited active control and localized modulation for further multiplexing of micro-/nanofluidic ionic diodes. Herein, a microfluidic device integrated with particle-assembly-based ionic diodes (PAIDs) and a gas-flow channel above them is presented. Exploiting in-situ gas permeation through a polymeric film, precise control over the physiochemical conditions of the nanopores within the PAIDs, leading to the modulation of ICR is demonstrated. The investigation not only characterizes the rectification properties of the PAIDs but also unveils their capacitor-like behavior and the ability to actively modulate ICR using various gas flows. Furthermore, the reversible modulation of ICR through dynamic switching of gas-dissolved solutions, enabling ion-signal amplification is showcased. This pioneering approach of in situ gas-permeation offers programmable manipulation of ion transport along PAIDs, thereby positioning ionic diodes as versatile nanofluidic components. Looking ahead, the development of multiplexed PAIDs in an addressable manner on a chip holds promise for practical applications across diverse fields, including ion signaling, ion-based logic, chemical reactors, and (bio)chemical sensing.

5.
Chemistry ; 30(30): e202400281, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507278

RESUMO

Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.

6.
Angew Chem Int Ed Engl ; 63(13): e202316434, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38192021

RESUMO

Aptamer-based probes are pivotal components in various sensing strategies, owing to their exceptional specificity and versatile programmable structure. Nevertheless, numerous aptamer-based probes usually offer only a single function, limiting their capacity to meet the diverse requirements of multi-faceted sensing systems. Here, we introduced supersandwich DNA probes (SSW-DNA), designed and modified on the outer surface of nanochannels with hydrophobic inner walls, enabling dual functionality: qualitative detection for on-site analysis and quantitative detection for precise analysis. The fragmented DNAs resulting from the target recognition, are subsequently identified through lateral flow assays, enabling robust on-site qualitative detection of microcystin-LR with an impressively low limit of detection (LOD) at 0.01 µg/L. Meanwhile, the nanochannels enable highly sensitive quantification of microcystin-LR through the current analysis, achieving an exceptionally low LOD at 2.5×10-7  µg/L, with a broad dynamic range spanning from 1×10-6 to 1×102  µg/L. Furthermore, the process of target recognition introduces just a single potential error propagation, which reduces the overall risk of errors during the entire qualitative and quantitative detection process. This sensing strategy broadens the scope of applications for aptamer-based composite probes, holding promising implications across diverse fields, such as medical diagnosis, food safety, and environmental protection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Sondas de DNA , DNA , Limite de Detecção
7.
Artigo em Inglês | MEDLINE | ID: mdl-37207928

RESUMO

Hibernating mammals are capable of maintaining normal cardiac function at low temperatures. Excitability of cardiac myocytes crucially depends on the fast sodium current (INa), which is decreased in hypothermia due to both depolarization of resting membrane potential and direct negative effect of low temperature. Therefore, INa in hibernating mammals should have specific features allowing to maintain excitability of myocardium at low temperatures. The current-voltage dependence of INa, its steady-state inactivation and activation and recovery from inactivation were studied in winter hibernating (WH) and summer active (SA) ground squirrels and in rats using whole-cell patch clamp at 10 °C and 20 °C. INa peak amplitude and the parameters of steady-state activation and inactivation curves did not differ between SA and WH ground squirrels at both temperatures. However, at both temperatures strong positive shift of activation and inactivation curves by 5-12 mV was observed in both WH and SA ground squirrels if compared to rats. This peculiarity of cardiac INa in ground squirrels helps to maintain excitability in conditions of depolarized resting membrane potential. The time course of INa recovery from inactivation at 10 °C was faster in WH than in SA ground squirrels, which could ensure normal activation of myocardium during hibernation.


Assuntos
Hibernação , Sódio , Animais , Ratos , Coração/fisiologia , Miocárdio , Mamíferos , Sciuridae , Hibernação/fisiologia
8.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762309

RESUMO

The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining various physiological processes in the body, including blood pressure regulation, electrolyte balance, and overall cardiovascular health. However, any compounds or drugs known to perturb the RAAS might have an additional impact on transmembrane ionic currents. In this retrospective review article, we aimed to present a selection of chemical compounds or medications that have long been recognized as interfering with the RAAS. It is noteworthy that these substances may also exhibit regulatory effects in different types of ionic currents. Apocynin, known to attenuate the angiotensin II-induced activation of epithelial Na+ channels, was shown to stimulate peak and late components of voltage-gated Na+ current (INa). Esaxerenone, an antagonist of the mineralocorticoid receptor, can exert an inhibitory effect on peak and late INa directly. Dexamethasone, a synthetic glucocorticoid, can directly enhance the open probability of large-conductance Ca2+-activated K+ channels. Sparsentan, a dual-acting antagonist of the angiotensin II receptor and endothelin type A receptors, was found to suppress the amplitude of peak and late INa effectively. However, telmisartan, a blocker of the angiotensin II receptor, was effective in stimulating the peak and late INa along with a slowing of the inactivation time course of the current. However, telmisartan's presence can also suppress the erg-mediated K+ current. Moreover, tolvaptan, recognized as an aquaretic agent that can block the vasopressin receptor, was noted to suppress the amplitude of the delayed-rectifier K+ current and the M-type K+ current directly. The above results indicate that these substances not only have an interference effect on the RAAS but also exert regulatory effects on different types of ionic currents. Therefore, to determine their mechanisms of action, it is necessary to gain a deeper understanding.


Assuntos
Angiotensina II , Sistema Renina-Angiotensina , Angiotensina II/farmacologia , Pressão Sanguínea , Glucocorticoides , Receptor de Endotelina A , Telmisartan , Humanos
9.
Angew Chem Int Ed Engl ; 62(9): e202215801, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36550087

RESUMO

Single-cell protein therapeutics is expected to promote our in-depth understanding of how a specific protein with a therapeutic dosage treats the cell without population averaging. However, it has not yet been tackled by current single-cell nanotools. We address this challenge by the use of a double-barrel nanopipette, in which one lumen was used for electroosmotic cytosolic protein delivery and the other was customized for ionic evaluation of the consequence. Upon injection of protein DJ-1 through the delivery lumen, upregulation of the antioxidant protein could protect neural PC-12 cells against oxidative stress from phorbol myristate acetate exposure, as deduced by targeting of the cytosolic hydrogen peroxide by the detecting lumen. The nanotool developed in this study for single-cell protein therapeutics provides a perspective for future single-cell therapeutics involving different therapeutic modalities, such as peptides, enzymes and nucleic acids.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Proteína Desglicase DJ-1 , Íons , Peptídeos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas , Proteína Desglicase DJ-1/farmacologia , Proteína Desglicase DJ-1/uso terapêutico , Estresse Oxidativo , Acetato de Tetradecanoilforbol
10.
Electrophoresis ; 43(23-24): 2428-2435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36193776

RESUMO

As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ∼-0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.


Assuntos
Nanoporos , Polímeros , Porosidade , Propriedades de Superfície , Íons/química , Polietilenotereftalatos/química
11.
Nanotechnology ; 34(6)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34749349

RESUMO

Two-step anodization has been widely used because it can produce highly self-organized anodic TiO2nanotubes, but the differences in morphology and current-time curve of one-step anodization and two-step anodization are rarely reported. Here, one-step anodization and two-step anodization were conducted at different voltages. By comparing the FESEM image of anodic TiO2nanotubes fabricated by one-step anodization and two-step anodization, it was found that the variation of morphology characteristics is same with voltage. The distinction of morphology and current-time curve between one-step anodization and two-step anodization at the same voltage were analyzed: the nanotube average growth rate and porosity of two-step anodization are greater than that of one-step anodization. In the current-time curve, the duration of stage I and stage II in two-step anodization are significantly shorter than one-step anodization. The traditional field-assisted dissolution theory cannot explain the three stages of the current-time curves and their physics meaning under different voltages in the same fluoride electrolyte. Here, the distinction between one-step anodization and two-step anodization was clarified successfully by the theories of ionic current and electronic current and oxygen bubble mould.

12.
Nanotechnology ; 34(1)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36179658

RESUMO

In the last few decades, tremendous effort has been dedicated to mimicking the efficient ionic current rectification (ICR) of biological nanopores. Nanoporous membranes and singular nanopores with ICR functionality have been fabricated using advanced, yet costly technologies. We herein demonstrate that a simple, novel, and robust ICR platform can be constructed using 80 nm silica nanoparticles and a piece of 15 nm track-etched polycarbonate membrane. Efficient ICR can be obtained when voltages of different polarities are applied across the membrane, due to the asymmetric electrophoretic migration of silica nanoparticles whose surfaces are modified with different functional groups. The effect of pore size, ionic strength, pH, voltage magnitude, and density of silica nanoparticles on the efficiency of the ICR system has been systematically investigated in this report. Our results clearly show that smaller pore, lower ionic strength, appropriate pH value, higher electrical field strength, lower density of silica nanoparticles can generally enhance the efficiency of the ICR system. The principles of this new ICR system may find many potential applications in controllable drug delivery, energy storage and water purification.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35346823

RESUMO

The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.


Assuntos
Miócitos Cardíacos , Sódio , Potenciais de Ação/fisiologia , Animais , Mamíferos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Sódio/metabolismo , Vertebrados/metabolismo
14.
Sens Actuators A Phys ; 3462022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37273787

RESUMO

Extracellular vesicles (EVs) bearing biomolecules from parental cells can represent a novel source of disease biomarkers and are under intensive study for their clinical potential. Tunable resistive pulse sensing (TRPS) quantifies the magnitude of a small ionic resistive pulse current to determine the size, concentration, and zeta potential of EVs. Environmental noise is a common limiting factor that affects the precision of sensing devices. TRPS is particularly vulnerable to environmental noise, including both mechanical and electrical. The upper detection limit of the TRPS relies on the physical size of the elastomeric tunable nanopore. The lower limit relies on the electrical signal-to-noise ratio. Guided by simulation, we designed an external device to suppress environmental noise for TRPS measurement. Both mechanical and electrical environmental noise reductions were observed after using the shield. The study also validated the noise reduction function of the shield by quantifying EVs from different cell origins. Detection of EVs smaller than 200 nm was improved by using the shield; which was reported challenging for conventional quantification methods. The study highlighted a feasible approach to solve environmental noise challenges for TRPS based EV quantification.

15.
Small ; 17(26): e2100503, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101356

RESUMO

Though significant advances are made in the arena of single-cell electroanalysis, quantification of intracellular amino acids of human cells remains unsolved. Exemplified by l-histidine (l-His), this issue is addressed by a practical electrochemical nanotool synergizing the highly accessible nanopipette with commercially available synthetic DNAzyme. The fabricated nanotools are screened before operation of a single-use manner, and the l-His-provoked cleavage of the DNA molecules can be sensibly transduced by the ionic current rectification response, the intrinsic property of nanopipette governed by its interior surface charges. Regional distribution of cytosolic l-His level in human cells is electrochemically quantified for the first time, and time-dependent drug treatment effects are further revealed. This work unveils the possibility of electrochemistry for quantification of cytosolic amino acids of a spatial- and time-based manner and ultimately enables a better understanding of amino acid-involved events in living cells.


Assuntos
Aminoácidos , DNA Catalítico , DNA , Histidina , Humanos
16.
Small ; 17(31): e2100383, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171160

RESUMO

The rectification of ion transport through biological ion channels has attracted much attention and inspired the thriving invention and applications of ionic diodes. However, the development of high-performance ionic diodes is still challenging, and the working mechanisms of ionic diodes constructed by 1D ionic nanochannels have not been fully understood. This work reports the systematic investigation of the design and mechanism of a new type of ionic diode constructed from horizontally aligned multi-walled carbon nanotubes (MWCNTs) with oppositely charged polyelectrolytes decorated at their two entrances. The major design and working parameters of the MWCNT-based ionic diode, including the ion channel size, the driven voltage, the properties of working fluids, and the quantity and length of charge modification, are extensively investigated through numerical simulations and/or experiments. An optimized ionic current rectification (ICR) ratio of 1481.5 is experimentally achieved on the MWCNT-based ionic diode. These results promise potential applications of the MWCNT-based ionic diode in biosensing and biocomputing. As a proof-of-concept, DNA detection and HIV-1 diagnosis is demonstrated on the ionic diode. This work provides a comprehensive understanding of the working principle of the MWCNT-based ionic diodes and will allow rational device design and optimization.


Assuntos
Nanotubos de Carbono , DNA , Transporte de Íons , Íons , Polieletrólitos
17.
Small ; 17(43): e2100495, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34117705

RESUMO

Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.


Assuntos
Fluorescência , Eletrodos , Íons , Conformação Molecular , Molhabilidade
18.
Eur J Clin Invest ; 51(9): e13585, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34002387

RESUMO

INTRODUCTION: Phosphodiesterase (PDE) isoform inhibitors have mechanical and electrical effects on the heart. Inhibition of PDE-1 enzymes is a novel strategy for treating heart failure. However, the electrophysiological effects of PDE-1 inhibition on the heart remain unclear. This study explored the effects of PDE-1 inhibition using ITI-214 on electrical activity in the pulmonary vein (PV), the most common trigger of atrial fibrillation, and investigated the underlying ionic mechanisms. METHODS: Conventional microelectrodes or whole-cell patch clamps were employed to study the effects of ITI-214 (0.1-10 µM) on PV electrical activity, mechanical responses and ionic currents in isolated rabbit PV tissue specimens and isolated single PV cardiomyocytes. RESULTS: ITI-214 at 1 µM and 10 µM (but not 0.1 µM) significantly reduced PV spontaneous beating rate (10 ± 2% and 10 ± 3%, respectively) and PV diastolic tension (11 ± 3% and 17 ± 3%, respectively). ITI-24 (1 µM) significantly reduced late sodium current (INa-Late ), L-type calcium current (ICa-L ) and the reverse mode of the sodium-calcium exchanger (NCX), but it did not affect peak sodium currents. CONCLUSIONS: ITI-214 reduces PV spontaneous activity and PV diastolic tension by reducing INa-Late , ICa-L and NCX current. Considering its therapeutic potential in heart failure, targeting PDE-1 inhibition may provide a novel strategy for managing atrial arrhythmogenesis.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Veias Pulmonares/efeitos dos fármacos , Animais , Cálcio/metabolismo , Técnicas de Patch-Clamp , Veias Pulmonares/citologia , Coelhos
19.
Bioorg Chem ; 115: 105230, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416507

RESUMO

Voltage-gated sodium channel blockers are one of the vital targets for the management of several central nervous system diseases, including epilepsy, chronic pain, psychiatric disorders, and spasticity. The voltage-gated sodium channels play a key role in controlling cellular excitability. This reduction in excitotoxicity is also applied to improve the symptoms of epileptic conditions. The effectiveness of antiepileptic drugs as sodium channel depends upon the reversible blocking of the spontaneous discharge without blocking its propagation. There are number of antiepileptic drug(s) which are in pipeline to flour the market to conquer abnormal neuronal excitability. They inhibit the seizures through the inhibition of complex voltage- and frequency-dependent ionic currents through sodium channels. Over the past decade, the sodium channel is one of the most explored targets to control or treat the seizure, but there has not been any game-changing discovery yet. Although there are large numbers of drugs approved for the treatment of epilepsy, however they are associated with several acute to chronic side effects. Many research groups have tirelessly worked for better therapeutic medication on this popular target to treat epileptic seizures. The review quotes briefly the developments of the approved examples of sodium channel blockers as anticonvulsant drugs. Medicinal chemists have tried the design and development of some more potent anticonvulsant drugs to minimize the toxicity that are discussed here, and an emphasis is given for their possible mechanism and the structure-activity relationship (SAR).


Assuntos
Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Canais de Sódio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Anticonvulsivantes/química , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Humanos , Estrutura Molecular , Convulsões/metabolismo , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
20.
Nano Lett ; 20(11): 8089-8095, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33048551

RESUMO

Nanopores in solid state membranes are a tool able to probe nanofluidic phenomena or can act as a single molecular sensor. They also have diverse applications in filtration, desalination, or osmotic power generation. Many of these applications involve chemical, or hydrostatic pressure differences which act on both the supporting membrane, and the ion transport through the pore. By using pressure differences between the sides of the membrane and an alternating current approach to probe ion transport, we investigate two distinct physical phenomena: the elastic deformation of the membrane through the measurement of strain at the nanopore, and the growth of ionic current rectification with pressure due to pore entrance effects. These measurements are a significant step toward the understanding of the role of elastic membrane deformation or fluid flow on linear and nonlinear transport properties of nanopores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA