Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.768
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(2): 340-347.e9, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31883792

RESUMO

KCNQ1, also known as Kv7.1, is a voltage-dependent K+ channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/ultraestrutura , Microscopia Crioeletrônica , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/química , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/ultraestrutura
2.
Cell ; 180(6): 1130-1143.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32160528

RESUMO

Fatty acid synthases (FASs) are central to metabolism but are also of biotechnological interest for the production of fine chemicals and biofuels from renewable resources. During fatty acid synthesis, the growing fatty acid chain is thought to be shuttled by the dynamic acyl carrier protein domain to several enzyme active sites. Here, we report the discovery of a γ subunit of the 2.6 megadalton α6-ß6S. cerevisiae FAS, which is shown by high-resolution structures to stabilize a rotated FAS conformation and rearrange ACP domains from equatorial to axial positions. The γ subunit spans the length of the FAS inner cavity, impeding reductase activities of FAS, regulating NADPH turnover by kinetic hysteresis at the ketoreductase, and suppressing off-pathway reactions at the enoylreductase. The γ subunit delineates the functional compartment within FAS. As a scaffold, it may be exploited to incorporate natural and designed enzymatic activities that are not present in natural FAS.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Aciltransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
3.
Cell ; 175(3): 822-834.e18, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30318141

RESUMO

Mdn1 is an essential AAA (ATPase associated with various activities) protein that removes assembly factors from distinct precursors of the ribosomal 60S subunit. However, Mdn1's large size (∼5,000 amino acid [aa]) and its limited homology to other well-studied proteins have restricted our understanding of its remodeling function. Here, we present structures for S. pombe Mdn1 in the presence of AMPPNP at up to ∼4 Å or ATP plus Rbin-1, a chemical inhibitor, at ∼8 Å resolution. These data reveal that Mdn1's MIDAS domain is tethered to its ring-shaped AAA domain through an ∼20 nm long structured linker and a flexible ∼500 aa Asp/Glu-rich motif. We find that the MIDAS domain, which also binds other ribosome-assembly factors, docks onto the AAA ring in a nucleotide state-specific manner. Together, our findings reveal how conformational changes in the AAA ring can be directly transmitted to the MIDAS domain and thereby drive the targeted release of assembly factors from ribosomal 60S-subunit precursors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Simulação de Dinâmica Molecular , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Biogênese de Organelas , Ligação Proteica , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Células Sf9 , Spodoptera
4.
Cell ; 175(5): 1272-1288.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343899

RESUMO

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes are multi-subunit molecular machines that play vital roles in regulating genomic architecture and are frequently disrupted in human cancer and developmental disorders. To date, the modular organization and pathways of assembly of these chromatin regulators remain unknown, presenting a major barrier to structural and functional determination. Here, we elucidate the architecture and assembly pathway across three classes of mSWI/SNF complexes-canonical BRG1/BRM-associated factor (BAF), polybromo-associated BAF (PBAF), and newly defined ncBAF complexes-and define the requirement of each subunit for complex formation and stability. Using affinity purification of endogenous complexes from mammalian and Drosophila cells coupled with cross-linking mass spectrometry (CX-MS) and mutagenesis, we uncover three distinct and evolutionarily conserved modules, their organization, and the temporal incorporation of these modules into each complete mSWI/SNF complex class. Finally, we map human disease-associated mutations within subunits and modules, defining specific topological regions that are affected upon subunit perturbation.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/química , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/genética , Drosophila/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Mutagênese , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição/análise , Fatores de Transcrição/genética
5.
Cell ; 171(7): 1599-1610.e14, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245012

RESUMO

Eukaryotic 60S ribosomal subunits are comprised of three rRNAs and ∼50 ribosomal proteins. The initial steps of their formation take place in the nucleolus, but, owing to a lack of structural information, this process is poorly understood. Using cryo-EM, we solved structures of early 60S biogenesis intermediates at 3.3 Å to 4.5 Å resolution, thereby providing insights into their sequential folding and assembly pathway. Besides revealing distinct immature rRNA conformations, we map 25 assembly factors in six different assembly states. Notably, the Nsa1-Rrp1-Rpf1-Mak16 module stabilizes the solvent side of the 60S subunit, and the Erb1-Ytm1-Nop7 complex organizes and connects through Erb1's meandering N-terminal extension, eight assembly factors, three ribosomal proteins, and three 25S rRNA domains. Our structural snapshots reveal the order of integration and compaction of the six major 60S domains within early nucleolar 60S particles developing stepwise from the solvent side around the exit tunnel to the central protuberance.


Assuntos
Chaetomium/química , Biogênese de Organelas , Subunidades Ribossômicas Maiores de Eucariotos/química , Chaetomium/citologia , Microscopia Crioeletrônica , Redes e Vias Metabólicas , Modelos Moleculares , Dobramento de RNA , Ribonucleoproteínas/química
6.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053971

RESUMO

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Assuntos
Autoantígenos/imunologia , Bacteroides/imunologia , Colite/imunologia , Microbioma Gastrointestinal , Glucose-6-Fosfatase/imunologia , Adulto , Animais , Bacteroides/classificação , Bacteroides/enzimologia , Colite/microbiologia , Feminino , Glucose-6-Fosfatase/genética , Humanos , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mimetismo Molecular , Linfócitos T/imunologia
7.
Cell ; 170(3): 470-482.e11, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735751

RESUMO

Voltage-gated sodium (Nav) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNav1.4, the Nav channel from electric eel, in complex with the ß1 subunit at 4.0 Å resolution. The immunoglobulin domain of ß1 docks onto the extracellular L5I and L6IV loops of EeNav1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSDIII). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed NavPaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation.


Assuntos
Electrophorus/metabolismo , Proteínas de Peixes/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Proteínas de Peixes/metabolismo , Proteínas de Peixes/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Alinhamento de Sequência , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestrutura
8.
Annu Rev Biochem ; 85: 103-32, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27023846

RESUMO

Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/ultraestrutura , Biossíntese de Proteínas , Subunidades Ribossômicas/ultraestrutura , Animais , Antibacterianos/farmacologia , Evolução Biológica , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , DNA Mitocondrial/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Cell ; 167(6): 1610-1622.e15, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912064

RESUMO

The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Microscopia Crioeletrônica , Espectrometria de Massas , Modelos Moleculares , Multimerização Proteica , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo
10.
Mol Cell ; 83(24): 4555-4569.e4, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38035882

RESUMO

Modulation of large conductance intracellular ligand-activated potassium (BK) channel family (Slo1-3) by auxiliary subunits allows diverse physiological functions in excitable and non-excitable cells. Cryoelectron microscopy (cryo-EM) structures of voltage-gated potassium (Kv) channel complexes have provided insights into how voltage sensitivity is modulated by auxiliary subunits. However, the modulation mechanisms of BK channels, particularly as ligand-activated ion channels, remain unknown. Slo1 is a Ca2+-activated and voltage-gated BK channel and is expressed in neurons, muscle cells, and epithelial cells. Using cryo-EM and electrophysiology, we show that the LRRC26-γ1 subunit modulates not only voltage but also Ca2+ sensitivity of Homo sapiens Slo1. LRRC26 stabilizes the active conformation of voltage-senor domains of Slo1 by an extracellularly S4-locking mechanism. Furthermore, it also stabilizes the active conformation of Ca2+-sensor domains of Slo1 intracellularly, which is functionally equivalent to intracellular Ca2+ in the activation of Slo1. Such a dual allosteric modulatory mechanism may be general in regulating the intracellular ligand-activated BK channel complexes.


Assuntos
Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Cálcio/metabolismo , Microscopia Crioeletrônica , Ativação do Canal Iônico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Ligantes , Potássio , Regulação Alostérica
11.
Mol Cell ; 83(21): 3852-3868.e6, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852256

RESUMO

The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.


Assuntos
Proteínas de Ligação ao GTP , Chaperonas Moleculares , Humanos , Microscopia Crioeletrônica , Chaperonas Moleculares/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Dobramento de Proteína , Transdução de Sinais , Chaperoninas
12.
Mol Cell ; 83(24): 4445-4460.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37995689

RESUMO

The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.


Assuntos
Proteínas de Drosophila , Terminação da Transcrição Genética , Animais , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
13.
Genes Dev ; 37(17-18): 844-860, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821106

RESUMO

SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on ß-globin, EMCV IRES, and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nt downstream from the mRNA entrance, indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of the Nsp1 NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , RNA Mensageiro/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas
14.
Mol Cell ; 81(6): 1200-1215.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33639093

RESUMO

Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.


Assuntos
Proteínas de Escherichia coli , Evolução Molecular , Loci Gênicos , Hidroliases , Proteínas Monoméricas de Ligação ao GTP , Subunidades Ribossômicas Maiores de Bactérias , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliases/química , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
15.
Mol Cell ; 80(6): 971-979.e7, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33248026

RESUMO

CRISPR-Cas adaptive immune systems provide prokaryotes with defense against viruses by degradation of specific invading nucleic acids. Despite advances in the biotechnological exploitation of select systems, multiple CRISPR-Cas types remain uncharacterized. Here, we investigated the previously uncharacterized type I-D interference complex and revealed that it is a genetic and structural hybrid with similarity to both type I and type III systems. Surprisingly, formation of the functional complex required internal in-frame translation of small subunits from within the large subunit gene. We further show that internal translation to generate small subunits is widespread across diverse type I-D, I-B, and I-C systems, which account for roughly one quarter of CRISPR-Cas systems. Our work reveals the unexpected expansion of protein coding potential from within single cas genes, which has important implications for understanding CRISPR-Cas function and evolution.


Assuntos
Imunidade Adaptativa/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Evolução Molecular , Proteínas Associadas a CRISPR/imunologia , Células Procarióticas/imunologia , Células Procarióticas/virologia , Biossíntese de Proteínas , Vírus/imunologia
16.
Mol Cell ; 79(4): 615-628.e5, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32668200

RESUMO

Ribosome assembly is driven by numerous assembly factors, including the Rix1 complex and the AAA ATPase Rea1. These two assembly factors catalyze 60S maturation at two distinct states, triggering poorly understood large-scale structural transitions that we analyzed by cryo-electron microscopy. Two nuclear pre-60S intermediates were discovered that represent previously unknown states after Rea1-mediated removal of the Ytm1-Erb1 complex and reveal how the L1 stalk develops from a pre-mature nucleolar to a mature-like nucleoplasmic state. A later pre-60S intermediate shows how the central protuberance arises, assisted by the nearby Rix1-Rea1 machinery, which was solved in its pre-ribosomal context to molecular resolution. This revealed a Rix12-Ipi32 tetramer anchored to the pre-60S via Ipi1, strategically positioned to monitor this decisive remodeling. These results are consistent with a general underlying principle that temporarily stabilized immature RNA domains are successively remodeled by assembly factors, thereby ensuring failsafe assembly progression.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
EMBO J ; 42(7): e112699, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762427

RESUMO

The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribossômicas/genética , Proteômica , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
18.
Annu Rev Microbiol ; 76: 193-210, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609945

RESUMO

The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.


Assuntos
Proteínas Ribossômicas , Ribossomos , Bactérias/genética , Bactérias/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
19.
Trends Biochem Sci ; 47(11): 936-949, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691784

RESUMO

Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.


Assuntos
Citocinas , Interleucina-12 , Interleucina-12/química , Interleucina-12/metabolismo , Interleucina-23/química , Interleucina-23/metabolismo , Chaperonas Moleculares/metabolismo
20.
Mol Cell ; 70(5): 881-893.e3, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883607

RESUMO

The assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit. Late reconstitution products were subjected to high-resolution cryo-electron microscopy and multiparticle refinement analysis to reconstruct five distinct precursors of the 50S subunit with 4.3-3.8 Å resolution. These assembly intermediates define a progressive maturation pathway culminating in a late assembly particle, whose structure is more than 96% identical to a mature 50S subunit. Our structures monitor the formation and stabilization of structural elements in a nascent particle in unprecedented detail and identify the maturation of the rRNA-based peptidyl transferase center as the final critical step along the 50S assembly pathway.


Assuntos
Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA