Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 3416-3426, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266168

RESUMEN

A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.

2.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203711

RESUMEN

The genotoxicity of AuNPs has sparked a scientific debate, with one perspective attributing it to direct DNA damage and another to oxidative damage through reactive oxygen species (ROS) activation. This controversy poses challenges for the widespread use of AuNPs in biomedical applications. To address this debate, we employed four-dimensional atomic force microscopy (4DAFM) to examine the ability of AuNPs to damage DNA in vitro in the absence of ROS. To further examine whether the size and chemical coupling of these AuNPs are properties that control their toxicity, we exposed individual DNA molecules to three different types of AuNPs: small (average diameter = 10 nm), large (average diameter = 22 nm), and large conjugated (average diameter = 39 nm) AuNPs. We found that all types of AuNPs caused rapid (within minutes) and direct damage to the DNA molecules without the involvement of ROS. This research holds significant promise for advancing nanomedicines in diverse areas like viral therapy (including COVID-19), cancer treatment, and biosensor development for detecting DNA damage or mutations by resolving the ongoing debate regarding the genotoxicity mechanism. Moreover, it actively contributes to the continuous endeavors aimed at fully harnessing the capabilities of AuNPs across diverse biomedical fields, promising transformative healthcare solutions.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Oro , Especies Reactivas de Oxígeno , ADN
3.
Chem Soc Rev ; 49(4): 1233-1252, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31998907

RESUMEN

Although N-heterocyclic carbenes (NHCs) have been known as ligands for organometallic complexes since the 1960s, these carbenes did not attract considerable attention until Arduengo et al. reported the isolation of a metal-free imidazol-2-ylidene in 1991. In 2001 Crabtree et al. reported a few complexes featuring an NHC isomer, namely an imidazol-5-ylidene, also termed abnormal NHC (aNHCs). In 2009, it was shown that providing to protect the C-2 position of an imidazolium salt, the deprotonation occurred at the C-5 position, affording imidazol-5-ylidenes that could be isolated. Over the last ten years, stable aNHCs have been used for designing a range of catalysts employing Pd(ii), Cu(i), Ni(ii), Fe(0), Zn(ii), Ag(i), and Au(i/iii) metal based precursors. These catalysts were utilized for different organic transformations such as the Suzuki-Miyaura cross-coupling reaction, C-H bond activation, dehydrogenative coupling, Huisgen 1,3-dipolar cycloaddition (click reaction), hydroheteroarylation, hydrosilylation reaction and migratory insertion of carbenes. Main-group metal complexes were also synthesized, including K(i), Al(iii), Zn(ii), Sn(ii), Ge(ii), and Si(ii/iv). Among them, K(i), Al(iii), and Zn(ii) complexes were used for the polymerization of caprolactone and rac-lactide at room temperature. In addition, based on the superior nucleophilicity of aNHCs, relative to that of their nNHCs isomers, they were used for small molecules activation, such as carbon dioxide (CO2), nitrous oxide (N2O), tetrahydrofuran (THF), tetrahydrothiophene and 9-borabicyclo[3.3.1]nonane (9BBN). aNHCs have also been shown to be efficient metal-free catalysts for ring opening polymerization of different cyclic esters at room temperature; they are among the most active metal-free catalysts for ε-caprolactone polymerization. Recently, aNHCs successfully accomplished the metal-free catalytic formylation of amides using CO2 and the catalytic reduction of carbon dioxide, including atmospheric CO2, into methanol, under ambient conditions. Although other transition metal complexes featuring aNHCs as ligand have been prepared and used in catalysis, this review article summarize the results obtained with the isolated aNHCs.

4.
J Cell Biochem ; 121(1): 804-815, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31407360

RESUMEN

Anticancer drugs exert their effects on cancer cells by deregulating many pathways linked to cell cycle, apoptosis, etc. but cancer cells gradually become resistive against anticancer drugs, thereby necessitating the development of newer generation anticancer molecules. N-end rule pathway has been shown to be involved in the degradation of many cell cycle and apoptosis-related proteins. However, the involvements of this pathway in cancer are not well established. Recently, we developed a non-peptide-based N-end rule pathway inhibitor, RF-C11 for type 1 and 2 recognition domains of E3 ubiquitin ligases. The inhibitor significantly increased the half-life of potential N-degrons leading to significant physiological changes in vivo. We hypothesized RF-C11 may be used to decipher the N-end rule pathway's role in cancer towards the development of anticancer therapeutics. In this study, we showed that RF-C11, barring noncancer cells, significantly sensitizes cancer cells towards different anticancer agents tested. We further find that the profound cellular sensitization to anticancer drugs was affected by (a) downregulation of X-linked inhibitor of apoptosis protein, an antiapoptotic protein and (b) by stabilization of RAD21, and thereby inhibiting metaphase to anaphase promotion. The study shows that RF-C11 or its analogs may be used as a novel additive in combination therapy against cancer.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proliferación Celular , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética
5.
Adv Funct Mater ; 30(19)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34093104

RESUMEN

Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.

6.
Molecules ; 25(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438691

RESUMEN

Triple-Negative Breast Cancer (TNBC) is considered as the most onerous cancer subtype, lacking the estrogen, progesterone, and HER2 receptors. Evaluating new markers is an unmet need for improving targeted therapy against TNBC. TNBC depends on several factors, including hypoxia development, which contributes to therapy resistance, immune evasion, and tumor stroma formation. In this study, we studied the curcumin analogue (3,4-Difluorobenzylidene Curcumin; CDF) encapsulated bovine serum albumin (BSA) nanoparticle for tumor targeting. For tumor targeting, we conjugated Acetazolamide (ATZ) with CDF and encapsulated it in the BSA to form a nanoparticle (namely BSA-CDF-ATZ). The in vitro cytotoxicity study suggested that BSA-CDF-ATZ is more efficient when compared to free CDF. The BSA-CDF-ATZ nanoparticles showed significantly higher cell killing in hypoxic conditions compared to normoxic conditions, suggesting better internalization of the nanoparticles into cancer cells under hypoxia. Fluorescent-dye labeled BSA-CDF-ATZ revealed higher cell uptake of the nanoparticle compared to free dye indicative of better delivery, substantiated by a high rate of apoptosis-mediated cell death compared to free CDF. The significantly higher tumor accumulation and low liver and spleen uptake in TNBC patient-derived tumor xenograft models confirm the significant potential of BSA-CDF-ATZ for targeted TNBC imaging and therapy.


Asunto(s)
Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/genética , Proliferación Celular/efectos de los fármacos , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Albúminas/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Curcumina/análogos & derivados , Curcumina/química , Curcumina/farmacología , Diarilheptanoides/química , Diarilheptanoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Hipoxia Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Acc Chem Res ; 50(7): 1679-1691, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28665582

RESUMEN

The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H2O2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.

8.
J Org Chem ; 83(16): 9403-9411, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015486

RESUMEN

This work describes the dehydrogenative coupling of heteroarenes using a dimeric halo-bridged palladium(II) catalyst bearing an abnormal NHC ( aNHC) backbone. The catalyst can successfully activate the C-H bond of a wide range of heteroarenes, which include benzothiazole, benzoxazole, thiophene, furan, and N-methylbenzimidazole. Further, it exhibited good activity for heteroarenes bearing various functional groups such as CN, CHO, Me, OMe, OAc, and Cl. Additionally, we isolated the active catalyst by performing stoichiometric reaction and characterized it as the acetato-bridged dimer of ( aNHC)PdOAc by single-crystal X-ray study.

9.
Nanomedicine ; 14(4): 1441-1454, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29678787

RESUMEN

Triple negative breast cancer (TNBC) is a highly aggressive tumor subtype, lacking estrogen, progesterone and human epidermal growth factor-2 (HER-2) receptors. Thus, early detection and targeted therapy of TNBC is an urgent need. Herein, we have developed a CD44 targeting Hyaluronic Acid (HA) decorated biocompatible oligomer, containing FDA approved vitamin E TPGS and Styrene Maleic Anhydride (SMA) (HA-SMA-TPGS) for targeting TNBC. The self-assembling HA-SMA-TPGS was encapsulated with poorly water soluble, potent curcumin analogue (CDF) to form nanomicelles (NM), HA-SMA-TPGS-CDF has demonstrated excellent nanoparticle characteristics for parenteral delivery. The targeted NM can selectively kill TNBC cells through CD44 mediated apoptosis pathway. Tumor imaging using phase-2 clinical trial near infrared (NIR)-fluorescent dye (S0456) conjugate, HA-SMA-TPGS-S0456 showed excellent TNBC tumor accumulation with minimum liver and spleen uptake. To our best of knowledge, for the first time, we are reporting a promising platform for CD44 mediated multimodal NIR imaging and cytotoxin delivery to TNBC.


Asunto(s)
Receptores de Hialuranos/metabolismo , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Apoptosis , Línea Celular Tumoral , Curcumina/química , Portadores de Fármacos/química , Femenino , Humanos , Micelas , Neoplasias de la Mama Triple Negativas/metabolismo
10.
Int J Mol Sci ; 19(3)2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534020

RESUMEN

Triple negative breast cancer (TNBC) is a difficult to treat disease due to the absence of the three unique receptors estrogen, progesterone and herceptin-2 (HER-2). To improve the current therapy and overcome the resistance of TNBC, there is unmet need to develop an effective targeted therapy. In this regard, one of the logical and economical approaches is to develop a tumor hypoxia-targeting drug formulation platform for selective delivery of payload to the drug-resistant and invasive cell population of TNBC tumors. Toward this, we developed a Carbonic Anhydrase IX (CA IX) receptor targeting human serum albumin (HSA) carriers to deliver the potent anticancer drug, Paclitaxel (PTX). We used Acetazolamide (ATZ), a small molecule ligand of CA IX to selectively deliver HSA-PTX in TNBC cells. A novel method of synthesis involving copper free 'click' chemistry (Dibenzocyclooctyl, DBCO) moiety with an azide-labeled reaction partner, known as Strain-Promoted Alkyne Azide Cycloaddition (SPAAC) along with a desolvation method for PTX loading were used in the present study to arrive at the CA IX selective nano-carriers, HSA-PTX-ATZ. The anticancer effect of HSA-PTX-ATZ is higher compared to HSA, PTX and non-targeted HSA-PTX in MDA-MB-231 and MDA-MB-468 cells. The cell killing effect is associated with induction of early and late phases of apoptosis. Overall, our proof-of-concept study shows a promising avenue for hypoxia-targeted drug delivery that can be adapted to several types of cancers.


Asunto(s)
Acetazolamida/química , Antineoplásicos/administración & dosificación , Inhibidores de Anhidrasa Carbónica/química , Química Clic/métodos , Nanopartículas/química , Paclitaxel/administración & dosificación , Acetazolamida/farmacología , Albúminas/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Cobre/química , Liberación de Fármacos , Humanos , Paclitaxel/farmacología
11.
Mol Cell Biochem ; 436(1-2): 119-136, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28585089

RESUMEN

Glucocorticoid, such as dexamethasone (Dex) is often used along with chemotherapy to antagonize side effects of chemotherapy. However, sustained use of Dex frequently develops drug resistance in patients. As a strategy to re-induce drug sensitivity, we planned to modify Dex by chemically conjugating it with twin ten carbon aliphatic chain containing cationic lipid. The resultant molecule, DX10, inhibited STAT3 activation through lowering the production of IL-6. To enhance the STAT3 inhibitory effect of DX10, we used WP (a commercially available STAT3 inhibitor) along with DX10. Combination treatment of both significantly inhibited STAT3 activation when compared to either of the individual treatment. The effect of DX10, either in combination or alone, was mediated through glucocorticoid receptor (GR), thereby repurposing the role of GR in the context of p-STAT3 inhibition-mediated cancer treatment. Cellular viability study proved the synergistic effect of WP and DX10. Further, combination treatment led to induction of early stage of apoptosis and cell cycle arrest. In vivo melanoma tumor regression study confirmed the enhanced anti-tumor activity of co-treatment over individual treatment of DX10 or WP. Thus, together our result demonstrates that DX10 may be used in combination therapy with STAT3 inhibitor like WP for combating cancer with constitutively active STAT3.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Melanoma/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Células A549 , Animales , Células CHO , Ensayos Clínicos Fase I como Asunto , Cricetulus , Dexametasona/análogos & derivados , Dexametasona/farmacología , Humanos , Células MCF-7 , Melanoma/metabolismo , Melanoma/patología , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Piridinas/farmacología , Tirfostinos/farmacología
12.
Biomacromolecules ; 18(4): 1197-1209, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28245646

RESUMEN

The low therapeutic index of conventional chemotherapy and poor prognosis of patients diagnosed with metastatic cancers are prompting clinicians to adopt newer strategies to simultaneously detect cancer lesions at an early stage and to precisely deliver anticancer drugs to tumor sites. In this study, we employed a novel strategy to engineer a polyvalent theranostic nanocarrier consisting of superparamagnetic iron oxide nanoparticle core (SPIONs) decorated with folic acid-polyamidoamine dendrimers surface (FA-PAMAM). In addition, a highly potent hydrophobic anticancer agent 3,4-difluorobenzylidene-curcumin (CDF) was coloaded in the FA-PAMAM dendrimer to increase its solubility and assess its therapeutic potentials. The resulting targeted nanoparticles (SPIONs@FA-PAMAM-CDF) exhibited high MR contrast. When tested on folate receptor overexpressing ovarian (SKOV3) and cervical (HeLa) cancer cells, the CDF loaded targeted nanoformulations showed higher accumulation with a better anticancer activity as compared to the nontargeted counterparts, possibly due to multivalent folate receptor binding interaction with cells overexpressing the target. The results were corroborated by observation of a larger population of cells undergoing apoptosis due to upregulation of tumor suppressor phosphatase and tensis homologue (PTEN), caspase 3, and inhibition of NF-κB in groups treated with the targeted formulations, which further confirmed the ability of the multivalent theranostic nanoparticles for simultaneous imaging and therapy of cancers.


Asunto(s)
Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Antineoplásicos/química , Materiales Biocompatibles/química , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Curcumina/análogos & derivados , Curcumina/química , Dendrímeros/química , Diarilheptanoides , Compuestos Férricos/química , Ácido Fólico/química , Células HeLa , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Poliaminas/química , Regulación hacia Arriba
13.
Bioorg Med Chem ; 25(17): 4595-4613, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28734664

RESUMEN

Site specific drug delivery with desired therapeutic effect still remains challenging task due to suboptimal release, tissue toxicity, low selectivity and meager therapeutic efficacy in skin cancers. The aim of the current study was to fabricate pH responsive, self-assembled, chemically cross-linked biodegradable chitosan nanogel loaded with bleomycin to target the dermal area of the skin. The nanogel synthesized by ion gelation technique and was characterized for drug loading, swelling and thermal stability followed by in vitro analysis. HaCaT (Human Keratinocyte cell) and HDF (Human dermal fibroblast) cell line were used for the biocompatibility and cytocompatibility evaluation prior to the hemolysis assay and coagulation assessment. The nanogel had a size range of 150nm as determined by TEM and DLS. The nanogel possessed optimum thermal stability as analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). Biodegradation was confirmed by lysozyme enzyme degradation assays. The drug entrapment efficacy was about 55% in the swollen state. The In vitro drug release profile revealed sustained release pattern. The hemolysis of 2.39% and prothrombin time (PT) and activated partial thromboplastin time (APTT) of 12.9 and 31s revealed the biocompatibility of nanogels. The cell uptake and localization profile was validated by fluorescence and confocal microscopy using HDF and HaCaT cell lines. Finally, the MTT assay demonstrated the cytocompatibility of nanogels. In conclusion, the present findings suggest that biodegradable chitosan nanogels with stimuli responsive nature can release the anticancer drug cargo in a sustained and controlled manner and offer promising potentials for treating skin cancers. STATEMENT OF SIGNIFICANCE: Drug delivery to the targeted site is a major challenge in clinical medicine. The newly constructed pH responsive biodegradable nanogel consisting of bleomycin revealed pH triggered drug release in a sustained manner to the dermal area offering novel approach against skin cancer. The nanogel system is biodegradable in nature possessing high drug entrapment efficiency and offers patient compliance with biocompatible and cytocompatible characteristics. This nanogel system can thus be highly useful for delivery of anticancer drugs to the skin in a controlled and sustained manner.


Asunto(s)
Bleomicina/química , Portadores de Fármacos/química , Polietilenglicoles/química , Polietileneimina/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Materiales Biocompatibles/química , Bleomicina/metabolismo , Bleomicina/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Portadores de Fármacos/farmacología , Liberación de Fármacos , Dispersión Dinámica de Luz , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Microscopía Fluorescente , Nanogeles , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Org Chem ; 81(6): 2432-41, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26840833

RESUMEN

Open-shell phenalenyl chemistry has widely been explored in the last five decades demonstrating its potential in various applications including molecular switch, spin memory device, molecular battery, cathode material, etc. In this article, we have explored another new direction of open-shell phenalenyl chemistry toward transition metal-free catalytic C-H functionalization process. A phenalenyl ligand, namely, 9-methylamino-phenalen-1-one (4a), promoted chelation-assisted single electron transfer (SET) process, which facilitates the C-H functionalization of unactivated arenes to form the biaryl products. The present methodology offers a diverse substrate scope, which can be operated without employing any dry or inert conditions and under truly transition metal based catalyst like loading yet avoiding any expensive or toxic transition metal. This not only is the first report on the application of phenalenyl chemistry in C-H functionalization process but also provides a low-catalyst loading organocatalytic system (up to 0.5 mol % catalyst loading) as compared to the existing ones (mostly 20-40 mol %), which has taken advantage of long known phenalenyl based radical stability through the presence of its low-lying nonbonding molecular orbital.

15.
Angew Chem Int Ed Engl ; 55(48): 15147-15151, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27860175

RESUMEN

An abnormal N-heterocyclic carbene (aNHC) based homogeneous catalyst has been used for the reduction of carbon dioxide to methoxyborane in the presence of a range of hydroboranes under ambient conditions and resulted in the highest turnover number of 6000. A catalytically active reaction intermediate, [aNHC-H⋅9BBN(OCOH)2 ] was structurally characterized and authenticated by NMR spectroscopy. A detailed mechanistic cycle of this catalytic process via borondiformate formation has been proposed from tandem experimental and computational experiments.

16.
J Org Chem ; 79(19): 9150-60, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25188382

RESUMEN

Herein we report the chemoselective reduction of the carbonyl functionality via hydrosilylation using a copper(I) catalyst bearing the abnormal N-heterocyclic carbene 1 with low (0.25 mol %) catalyst loading at ambient temperature in excellent yield within a very short reaction time. The hydrosilylation reaction of α,ß-unsaturated carbonyl compounds takes place selectively toward 1,2-addition (C═O) to yield the corresponding allyl alcohols in good yields. Moreover, when two reducible functional groups such as imine and ketone groups are present in the same molecule, this catalyst selectively reduces the ketone functionality. Further, 1 was used in a consecutive fashion by combining the Huisgen cycloaddition and hydrosilylation reactions in one pot, yielding a range of functionalized triazole substituted alcohols in excellent yields.

17.
Drug Discov Today ; 27(6): 1554-1559, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35247592

RESUMEN

Pancreatic cancer is the second leading cause of cancer-related death in the USA. The 5-year survival rate for pancreatic cancer is as low as 10%, making it one of the most deadly cancers. This dismal prognosis is caused, in part, by the lack of early detection and screening options, leading to late-stage detection of the disease, at a point at which chemotherapy is no longer effective. However, nanoparticle (NP) drug delivery systems have increased the efficacy of chemotherapeutics by improving the targeting ability of drugs to the tumor site, while also decreasing the risk of local and systemic toxicity. Such efforts can contribute to the development of early diagnosis and routine screening tests, which will drastically improve the survival rates and prognosis of patients with pancreatic cancer.


Asunto(s)
Nanomedicina , Neoplasias Pancreáticas , Detección Precoz del Cáncer , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamiento farmacológico , Preparaciones Farmacéuticas , Neoplasias Pancreáticas
18.
Drug Discov Today ; 27(2): 585-611, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34715356

RESUMEN

In this review, we emphasize on evolving therapeutic strategies and advances in the treatment of breast cancer (BC). This includes small-molecule inhibitors under preclinical and clinical investigation, phytoconstituents with antiproliferative potential, targeted therapies as antibodies and antibody-drug conjugates (ADCs), vaccines as immunotherapeutic agents and peptides as a novel approach inhibiting the interaction of oncogenic proteins. We provide an update of molecules under different phases of clinical investigation which aid in the identification of loopholes or shortcomings that can be overcomed with future breast cancer research.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Inmunoconjugados , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Inmunoconjugados/farmacología , Estudios Prospectivos
19.
Drug Discov Today ; 26(8): 1944-1952, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33865978

RESUMEN

Gliomas constitute about 80% of brain tumors and have a meager two-year survival rate. The treatment options available are very few because of poor prognosis and a lack of targeted nanodelivery systems that can cross the blood-brain barrier (BBB) and the blood-tumor barrier. This short review attempts to clarify the challenges for delivery systems designed to cross the BBB, and provides a brief description of the different types of targeted nanodelivery system that have shown potential for success in delivering drugs to the brain. Further, this review describes the most recent studies that have developed nanoparticles for brain delivery in the past five years. We also provide an insight into the most recent clinical trials designed to assess the efficacy of these nanodelivery systems for glioma.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Desarrollo de Medicamentos , Humanos , Distribución Tisular
20.
View (Beijing) ; 2(3): 20200155, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34766165

RESUMEN

The coronaviruses have caused severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS), and the more recent coronavirus pneumonia (COVID-19). The global COVID-19 pandemic requires urgent action to develop anti-virals, new therapeutics, and vaccines. In this review, we discuss potential therapeutics including human recombinant ACE2 soluble, inflammatory cytokine inhibitors, and direct anti-viral agents such as remdesivir and favipiravir, to limit their fatality. We also discuss the structure of the SARS-CoV-2, which is crucial to the timely development of therapeutics, and previous attempts to generate vaccines against SARS-CoV and MERS-CoV. Finally, we provide an overview of the role of nanotechnology in the development of therapeutics as well as in the diagnosis of the infection. This information is key for computational modeling and nanomedicine-based new therapeutics by counteracting the variable proteins in the virus. Further, we also try to effectively share the latest information about many different aspects of COVID-19 vaccine developments and possible management to further scientific endeavors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA