Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746151

RESUMEN

While genome sequencing has transformed medicine by elucidating the genetic underpinnings of both rare and common complex disorders, its utility to predict clinical outcomes remains understudied. Here, we used artificial intelligence (AI) technologies to explore the predictive value of genome sequencing in forecasting clinical outcomes following surgery for congenital heart defects (CHD). We report results for a cohort of 2,253 CHD patients from the Pediatric Cardiac Genomics Consortium with a broad range of complex heart defects, pre- and post-operative clinical variables and exome sequencing. Damaging genotypes in chromatin-modifying and cilia-related genes were associated with an elevated risk of adverse post-operative outcomes, including mortality, cardiac arrest and prolonged mechanical ventilation. The impact of damaging genotypes was further amplified in the context of specific CHD phenotypes, surgical complexity and extra-cardiac anomalies. The absence of a damaging genotype in chromatin-modifying and cilia-related genes was also informative, reducing the risk for adverse postoperative outcomes. Thus, genome sequencing enriches the ability to forecast outcomes following congenital cardiac surgery.

2.
Am J Med Genet A ; 194(2): 301-310, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37827855

RESUMEN

Treatment-resistant epilepsy is among the most serious complications of cardiofaciocutaneous syndrome (CFCS), a rare disorder caused by germline variants in the RAS-MAPK signaling pathway. This study analyzed the clinical characteristics of epilepsy and response to anti-seizure medications (ASMs) in a multinational CFCS cohort. A caregiver survey provided data regarding seizure history, use of ASMs and other treatment approaches, adverse effects, caregiver perception of treatment response, and neurological disease burden impact among individuals with CFCS. Results from 138 survey responses were quantitatively analyzed in conjunction with molecular genetic results and neurological records. The disease burden impact of CFCS was higher among individuals with epilepsy (n = 74/138), especially those with more severe seizure presentation. Oxcarbazepine, a sodium-channel blocker, had the best seizure control profile with relatively infrequent adverse effects. The most commonly prescribed ASM, levetiracetam, demonstrated comparatively poor seizure control. ASM efficacy was generally similar for individuals with BRAF and MAP2K1 gene variants. The high proportion of patients with CFCS who experienced poor seizure control despite use of multiple ASMs highlights a substantial unmet treatment need. Prospective study of ASM efficacy and clinical trials of therapies to attenuate RAS-MAPK signaling may improve avenues for clinical management.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Displasia Ectodérmica , Epilepsia , Facies , Insuficiencia de Crecimiento , Cardiopatías Congénitas , Humanos , Estudios Prospectivos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Levetiracetam , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Anticonvulsivantes/uso terapéutico
3.
Am J Med Genet C Semin Med Genet ; 190(4): 501-509, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36448195

RESUMEN

Gene variants that dysregulate signaling through the RAS-MAPK pathway cause cardiofaciocutaneous syndrome (CFCS), a rare multi-system disorder. Infantile epileptic spasms syndrome (IESS) and other forms of epilepsy are among the most serious complications. To investigate clinical presentation, treatment outcomes, and genotype-phenotype associations in CFCS patients with IESS, molecular genetics and clinical neurological history were reviewed across two large clinical research cohorts (n = 180). IESS presented in 18/180 (10%) cases, including 16 patients with BRAF variants and 2 with MAP2K1 variants. Among IESS patients with BRAF variants, 16/16 (100%) had sequence changes affecting the protein kinase domain (exons 11-16), although only 57% of total BRAF variants occurred in this domain. Clinical onset of spasms occurred at a median age of 5.4 months (range: 1-24 months). Among 13/18 patients whose IESS resolved with anti-seizure medications, 10 were treated with ACTH and/or vigabatrin. A substantial majority of CFCS patients with IESS subsequently developed other epilepsy types (16/18; 89%). In terms of neurodevelopmental outcomes, gross motor function and verbal communication were more limited in patients with a history of IESS compared to those without IESS. These findings can inform clinical neurological care guidelines for CFCS and development of relevant pre-clinical models for severe epilepsy phenotypes.


Asunto(s)
Epilepsia , Espasmos Infantiles , Humanos , Espasmos Infantiles/genética , Espasmos Infantiles/complicaciones , Espasmos Infantiles/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , Epilepsia/genética , Genotipo , Síndrome , Espasmo/complicaciones
4.
Genet Med ; 24(7): 1556-1566, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524774

RESUMEN

PURPOSE: Dysregulation of RAS or its major effector pathway is the molecular mechanism of RASopathies, a group of multisystemic congenital disorders. Neurologic complications are especially challenging in the management of the rare RASopathy cardiofaciocutaneous (CFC) syndrome. This study evaluated clinical neurologic and neurodevelopmental features and their associations with CFC syndrome gene variants. METHODS: A multinational cohort of 138 individuals with CFC syndrome (BRAF = 90, MAP2K1 = 36, MAP2K2 = 10, KRAS = 2) was recruited. Neurologic presentation was captured via clinician review of medical records and caregiver-completed electronic surveys. Validated measures of seizure severity, adaptive function, and gross motor function were obtained. RESULTS: The overall frequency of intellectual disability and seizures was 82% and 55%, respectively. The frequency and severity of seizures was higher among individuals with BRAF or MAP2K1 variants than in those with MAP2K2 variants. A disproportionate incidence of severe, treatment-resistant seizures was observed in patients with variants in the catalytic protein kinase domain of BRAF and at the common p.Y130 site of MAP2K1. Neurodevelopmental outcomes were associated with genotype as well as seizure severity. CONCLUSION: Molecular genetic testing can aid in prediction of epilepsy and neurodevelopmental phenotypes in CFC syndrome. Study results identified potential CFC syndrome-associated variants in the development of relevant animal models for neurologic, neurocognitive, and motor function impairment.


Asunto(s)
Cardiopatías Congénitas , Proteínas Proto-Oncogénicas B-raf , Estudios de Cohortes , Displasia Ectodérmica , Facies , Insuficiencia de Crecimiento , Genotipo , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Convulsiones/genética
5.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266292

RESUMEN

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Asunto(s)
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Síndrome de Noonan/genética , Transducción de Señal , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Circ Genom Precis Med ; 13(4): e002836, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812804

RESUMEN

BACKGROUND: De novo genic and copy number variants are enriched in patients with congenital heart disease, particularly those with extra-cardiac anomalies. The impact of de novo damaging variants on outcomes following cardiac repair is unknown. METHODS: We studied 2517 patients with congenital heart disease who had undergone whole-exome sequencing as part of the CHD GENES study (Congenital Heart Disease Genetic Network). RESULTS: Two hundred ninety-four patients (11.7%) had clinically significant de novo variants. Patients with de novo damaging variants were 2.4 times more likely to have extra-cardiac anomalies (P=5.63×10-12). In 1268 patients (50.4%) who had surgical data available and underwent open-heart surgery exclusive of heart transplantation as their first operation, we analyzed transplant-free survival following the first operation. Median follow-up was 2.65 years. De novo variants were associated with worse transplant-free survival (hazard ratio, 3.51; P=5.33×10-04) and longer times to final extubation (hazard ratio, 0.74; P=0.005). As de novo variants had a significant interaction with extra-cardiac anomalies for transplant-free survival (P=0.003), de novo variants conveyed no additional risk for transplant-free survival for patients with these anomalies (adjusted hazard ratio, 1.96; P=0.06). By contrast, de novo variants in patients without extra-cardiac anomalies were associated with worse transplant-free survival during follow-up (hazard ratio, 11.21; P=1.61×10-05) than that of patients with no de novo variants. Using agnostic machine-learning algorithms, we identified de novo copy number variants at 15q25.2 and 15q11.2 as being associated with worse transplant-free survival and 15q25.2, 22q11.21, and 3p25.2 as being associated with prolonged time to final extubation. CONCLUSIONS: In patients with congenital heart disease undergoing open-heart surgery, de novo variants were associated with worse transplant-free survival and longer times on the ventilator. De novo variants were most strongly associated with adverse outcomes among patients without extra-cardiac anomalies, suggesting a benefit for preoperative genetic testing even when genetic abnormalities are not suspected during routine clinical practice. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01196182.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cardiopatías Congénitas/patología , Adolescente , Niño , Preescolar , Cromosomas Humanos Par 15 , Cromosomas Humanos Par 3 , Femenino , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/mortalidad , Cardiopatías Congénitas/cirugía , Trasplante de Corazón , Humanos , Lactante , Estimación de Kaplan-Meier , Aprendizaje Automático , Masculino , Oportunidad Relativa , Fenotipo , Modelos de Riesgos Proporcionales , Secuenciación del Exoma
7.
Circulation ; 140(3): 207-224, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31163979

RESUMEN

BACKGROUND: More than 90% of individuals with Noonan syndrome (NS) with mutations clustered in the CR2 domain of RAF1 present with severe and often lethal hypertrophic cardiomyopathy (HCM). The signaling pathways by which NS RAF1 mutations promote HCM remain elusive, and so far, there is no known treatment for NS-associated HCM. METHODS: We used patient-derived RAF1S257L/+ and CRISPR-Cas9-generated isogenic control inducible pluripotent stem cell (iPSC)-derived cardiomyocytes to model NS RAF1-associated HCM and to further delineate the molecular mechanisms underlying the disease. RESULTS: We show that mutant iPSC-derived cardiomyocytes phenocopy the pathology seen in hearts of patients with NS by exhibiting hypertrophy and structural defects. Through pharmacological and genetic targeting, we identify 2 perturbed concomitant pathways that, together, mediate HCM in RAF1 mutant iPSC-derived cardiomyocytes. Hyperactivation of mitogen-activated protein kinase kinase 1/2 (MEK1/2), but not extracellular regulated kinase 1/2, causes myofibrillar disarray, whereas the enlarged cardiomyocyte phenotype is a direct consequence of increased extracellular regulated kinase 5 (ERK5) signaling, a pathway not previously known to be involved in NS. RNA-sequencing reveals genes with abnormal expression in RAF1 mutant iPSC-derived cardiomyocytes and identifies subsets of genes dysregulated by aberrant MEK1/2 or ERK5 pathways that could contribute to the NS-associated HCM. CONCLUSIONS: Taken together, the results of our study identify the molecular mechanisms by which NS RAF1 mutations cause HCM and reveal downstream effectors that could serve as therapeutic targets for treatment of NS and perhaps other, more common, congenital HCM disorders.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Células Madre Pluripotentes Inducidas/fisiología , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-raf/genética , Adolescente , Sistemas CRISPR-Cas/fisiología , Cardiomiopatía Hipertrófica/metabolismo , Células Cultivadas , Niño , Femenino , Células HEK293 , Humanos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Masculino , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/fisiología , Síndrome de Noonan/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo
9.
Hum Mutat ; 36(11): 1080-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26173643

RESUMEN

The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.


Asunto(s)
Estudios de Asociación Genética , Mutación , Síndrome de Noonan/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Alelos , Sustitución de Aminoácidos , Niño , Análisis Mutacional de ADN , Exoma , Facies , Femenino , Genotipo , Humanos , Masculino , Modelos Moleculares , Síndrome de Noonan/diagnóstico , Fenotipo , Conformación Proteica , Proteínas Son Of Sevenless/química , Adulto Joven
10.
Hum Mol Genet ; 24(8): 2375-89, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25574029

RESUMEN

Cardiac left ventricular outflow tract (LVOT) defects represent a common but heterogeneous subset of congenital heart disease for which gene identification has been difficult. We describe a 46,XY,t(1;5)(p36.11;q31.2)dn translocation carrier with pervasive developmental delay who also exhibited LVOT defects, including bicuspid aortic valve (BAV), coarctation of the aorta (CoA) and patent ductus arteriosus (PDA). The 1p breakpoint disrupts the 5' UTR of AHDC1, which encodes AT-hook DNA-binding motif containing-1 protein, and AHDC1-truncating mutations have recently been described in a syndrome that includes developmental delay, but not congenital heart disease [Xia, F., Bainbridge, M.N., Tan, T.Y., Wangler, M.F., Scheuerle, A.E., Zackai, E.H., Harr, M.H., Sutton, V.R., Nalam, R.L., Zhu, W. et al. (2014) De Novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet., 94, 784-789]. On the other hand, the 5q translocation breakpoint disrupts the 3' UTR of MATR3, which encodes the nuclear matrix protein Matrin 3, and mouse Matr3 is strongly expressed in neural crest, developing heart and great vessels, whereas Ahdc1 is not. To further establish MATR3 3' UTR disruption as the cause of the proband's LVOT defects, we prepared a mouse Matr3(Gt-ex13) gene trap allele that disrupted the 3' portion of the gene. Matr3(Gt-ex13) homozygotes are early embryo lethal, but Matr3(Gt-ex13) heterozygotes exhibit incompletely penetrant BAV, CoA and PDA phenotypes similar to those in the human proband, as well as ventricular septal defect (VSD) and double-outlet right ventricle (DORV). Both the human MATR3 translocation breakpoint and the mouse Matr3(Gt-ex13) gene trap insertion disturb the polyadenylation of MATR3 transcripts and alter Matrin 3 protein expression, quantitatively or qualitatively. Thus, subtle perturbations in Matrin 3 expression appear to cause similar LVOT defects in human and mouse.


Asunto(s)
Coartación Aórtica/genética , Válvula Aórtica/anomalías , Conducto Arterioso Permeable/genética , Enfermedades de las Válvulas Cardíacas/genética , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas de Unión al ARN/genética , Adolescente , Animales , Coartación Aórtica/metabolismo , Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica Bicúspide , Preescolar , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Conducto Arterioso Permeable/metabolismo , Femenino , Silenciador del Gen , Enfermedades de las Válvulas Cardíacas/metabolismo , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/metabolismo , Humanos , Recién Nacido , Masculino , Ratones , Mutagénesis Insercional , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Translocación Genética
11.
Pediatrics ; 134(4): e1149-62, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25180280

RESUMEN

Cardio-facio-cutaneous syndrome (CFC) is one of the RASopathies that bears many clinical features in common with the other syndromes in this group, most notably Noonan syndrome and Costello syndrome. CFC is genetically heterogeneous and caused by gene mutations in the Ras/mitogen-activated protein kinase pathway. The major features of CFC include characteristic craniofacial dysmorphology, congenital heart disease, dermatologic abnormalities, growth retardation, and intellectual disability. It is essential that this condition be differentiated from other RASopathies, as a correct diagnosis is important for appropriate medical management and determining recurrence risk. Children and adults with CFC require multidisciplinary care from specialists, and the need for comprehensive management has been apparent to families and health care professionals caring for affected individuals. To address this need, CFC International, a nonprofit family support organization that provides a forum for information, support, and facilitation of research in basic medical and social issues affecting individuals with CFC, organized a consensus conference. Experts in multiple medical specialties provided clinical management guidelines for pediatricians and other care providers. These guidelines will assist in an accurate diagnosis of individuals with CFC, provide best practice recommendations, and facilitate long-term medical care.


Asunto(s)
Manejo de la Enfermedad , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/terapia , Insuficiencia de Crecimiento/diagnóstico , Insuficiencia de Crecimiento/terapia , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/terapia , Guías de Práctica Clínica como Asunto/normas , Diagnóstico Diferencial , Displasia Ectodérmica/genética , Facies , Insuficiencia de Crecimiento/genética , Pruebas Genéticas/métodos , Cardiopatías Congénitas/genética , Humanos
12.
Proc Natl Acad Sci U S A ; 111(31): 11473-8, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049390

RESUMEN

Noonan syndrome (NS) is a relatively common genetic disorder, characterized by typical facies, short stature, developmental delay, and cardiac abnormalities. Known causative genes account for 70-80% of clinically diagnosed NS patients, but the genetic basis for the remaining 20-30% of cases is unknown. We performed next-generation sequencing on germ-line DNA from 27 NS patients lacking a mutation in the known NS genes. We identified gain-of-function alleles in Ras-like without CAAX 1 (RIT1) and mitogen-activated protein kinase kinase 1 (MAP2K1) and previously unseen loss-of-function variants in RAS p21 protein activator 2 (RASA2) that are likely to cause NS in these patients. Expression of the mutant RASA2, MAP2K1, or RIT1 alleles in heterologous cells increased RAS-ERK pathway activation, supporting a causative role in NS pathogenesis. Two patients had more than one disease-associated variant. Moreover, the diagnosis of an individual initially thought to have NS was revised to neurofibromatosis type 1 based on an NF1 nonsense mutation detected in this patient. Another patient harbored a missense mutation in NF1 that resulted in decreased protein stability and impaired ability to suppress RAS-ERK activation; however, this patient continues to exhibit a NS-like phenotype. In addition, a nonsense mutation in RPS6KA3 was found in one patient initially diagnosed with NS whose diagnosis was later revised to Coffin-Lowry syndrome. Finally, we identified other potential candidates for new NS genes, as well as potential carrier alleles for unrelated syndromes. Taken together, our data suggest that next-generation sequencing can provide a useful adjunct to RASopathy diagnosis and emphasize that the standard clinical categories for RASopathies might not be adequate to describe all patients.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación/genética , Síndrome de Noonan/genética , Alelos , Estudios de Asociación Genética , Humanos , MAP Quinasa Quinasa 1/genética , Sistema de Señalización de MAP Quinasas/genética , Neurofibromina 1/genética , Proteínas ras/genética , Proteínas ras/metabolismo
13.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24705357

RESUMEN

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Asunto(s)
Carcinogénesis/genética , Mutación/fisiología , Fenotipo , Proteínas ras/genética , Animales , Caenorhabditis elegans , Estudios de Cohortes , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Síndrome de Noonan/genética , Proteína Oncogénica v-akt/metabolismo , Transducción de Señal/genética , Proteínas ras/química , Proteínas ras/metabolismo
14.
Heart Fail Clin ; 10(1): 219-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24275306

RESUMEN

Heart failure (HF) is a common cause of morbidity and mortality in congenital heart disease (CHD), with increasing prevalence because of improved treatment options and outcomes. Genetic factors and acquired postnatal factors in CHD might play a major role in the progression to HF. This article proposes 3 routes that lead to HF in CHD: rare monogenic entities that cause both CHD and HF; severe CHD lesions in which acquired hemodynamic effects of CHD or surgery result in HF; and, most commonly, a combined effect of complex genetics in overlapping pathways and acquired stressors caused by the primary lesion.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , Terapias en Investigación , Adulto , Manejo de la Enfermedad , Progresión de la Enfermedad , Epigenómica , Interacción Gen-Ambiente , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Hemodinámica , Humanos , Medicina de Precisión , Terapias en Investigación/métodos , Terapias en Investigación/tendencias
15.
Am J Med Genet A ; 152A(3): 591-600, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20186801

RESUMEN

Cardiofaciocutaneous syndrome (CFC) and Noonan syndrome (NS) are two phenotypically overlapping genetic disorders whose underlying molecular etiologies affect a common signaling pathway. Mutations in the BRAF, MEK1, and MEK2 genes cause most cases of CFC and mutations in PTPN11, SOS1, KRAS, and RAF1 typically cause NS. Although both syndromes are associated with developmental delays of varying severity, the extent to which the behavioral profiles differ may shed light on the different roles these respective genes play in development of skills necessary for everyday functioning. In this study, profiles of adaptive behavior of individuals with CFC and NS who had confirmed pathogenic mutations in Ras/mitogen-activated protein kinase (MAPK) pathway genes were investigated. Patterns of strengths and weaknesses, age-related differences, and risk factors for difficulties in adaptive skills were assessed. Although genes acting more downstream in the Ras/MAPK pathway were associated with more difficulties in adaptive functioning than genes more upstream in the pathway, several inconsistencies highlight the wide spectrum of possible developmental courses in CFC and NS. Along with clinical and genetic factors, variables such as chronological age, gestational age at birth, and parental education levels accounted for significant variance in adaptive skills. Results indicate that there is wide heterogeneity in adaptive functioning in CFC and NS, but that these abilities are correlated to some extent with the specific disease-causing genes.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/psicología , Anomalías Craneofaciales/genética , Displasia Ectodérmica/genética , Genes ras , Mutación de Línea Germinal , Cardiopatías Congénitas/genética , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Noonan/genética , Síndrome de Noonan/psicología , Anomalías Múltiples/metabolismo , Adaptación Psicológica , Adolescente , Factores de Edad , Niño , Preescolar , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/psicología , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/psicología , Femenino , Estudios de Asociación Genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/psicología , Humanos , Lactante , Masculino , Síndrome de Noonan/metabolismo , Síndrome , Adulto Joven
16.
Am J Med Genet A ; 152A(1): 4-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20014119

RESUMEN

The RASopathies are a group of genetic syndromes caused by germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway. Some of these syndromes are neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, LEOPARD syndrome and Legius syndrome. Their common underlying pathogenetic mechanism brings about significant overlap in phenotypic features and includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, GI and ocular abnormalities, and a predisposition to cancer. The proceedings from the symposium "Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back" chronicle the timely and typical research symposium which brought together clinicians, basic scientists, physician-scientists, advocate leaders, trainees, students and individuals with Ras syndromes and their families. The goals, to discuss basic science and clinical issues, to set forth a solid framework for future research, to direct translational applications towards therapy and to set forth best practices for individuals with RASopathies were successfully meet with a commitment to begin to move towards clinical trials.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas ras/metabolismo , Humanos , Síndrome
17.
Nat Genet ; 42(1): 27-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19966803

RESUMEN

Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced stimulus-dependent MAPK activation account for some cases of this disorder. These findings provide evidence for an obligate dependency on proper NRAS function in human development and growth.


Asunto(s)
Genes ras , Mutación , Síndrome de Noonan/genética , Proteínas ras/genética , Adolescente , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Niño , Preescolar , Chlorocebus aethiops , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patología , Fosforilación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transfección , Adulto Joven , Proteínas ras/química
18.
Am J Hum Genet ; 82(5): 1171-7, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18423521

RESUMEN

Branchio-oculo-facial syndrome (BOFS) is a rare autosomal-dominant cleft palate-craniofacial disorder with variable expressivity. The major features include cutaneous anomalies (cervical, infra- and/or supra-auricular defects, often with dermal thymus), ocular anomalies, characteristic facial appearance (malformed pinnae, oral clefts), and, less commonly, renal and ectodermal (dental and hair) anomalies. The molecular basis for this disorder is heretofore unknown. We detected a 3.2 Mb deletion by 500K SNP microarray in an affected mother and son with BOFS at chromosome 6p24.3. Candidate genes in this region were selected for sequencing on the basis of their expression patterns and involvement in developmental pathways associated with the clinical findings of BOFS. Four additional BOFS patients were found to have de novo missense mutations in the highly conserved exons 4 and 5 (basic region of the DNA binding domain) of the TFAP2A gene in the candidate deleted region. We conclude BOFS is caused by mutations involving TFAP2A. More patients need to be studied to determine possible genetic heterogeneity and to establish whether there are genotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples/genética , Síndrome Branquio Oto Renal/genética , Factor de Transcripción AP-2/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos Par 6/genética , Femenino , Ligamiento Genético , Humanos , Masculino , Mutación
19.
Nat Genet ; 39(1): 70-4, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17143285

RESUMEN

Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.


Asunto(s)
Mutación de Línea Germinal , Síndrome de Noonan/genética , Proteína SOS1/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Modelos Biológicos , Modelos Moleculares , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/genética , Proteína SOS1/química
20.
N Engl J Med ; 355(8): 788-98, 2006 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-16928994

RESUMEN

BACKGROUND: The Loeys-Dietz syndrome is a recently described autosomal dominant aortic-aneurysm syndrome with widespread systemic involvement. The disease is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate and is caused by heterozygous mutations in the genes encoding transforming growth factor beta receptors 1 and 2 (TGFBR1 and TGFBR2, respectively). METHODS: We undertook the clinical and molecular characterization of 52 affected families. Forty probands presented with typical manifestations of the Loeys-Dietz syndrome. In view of the phenotypic overlap between this syndrome and vascular Ehlers-Danlos syndrome, we screened an additional cohort of 40 patients who had vascular Ehlers-Danlos syndrome without the characteristic type III collagen abnormalities or the craniofacial features of the Loeys-Dietz syndrome. RESULTS: We found a mutation in TGFBR1 or TGFBR2 in all probands with typical Loeys-Dietz syndrome (type I) and in 12 probands presenting with vascular Ehlers-Danlos syndrome (Loeys-Dietz syndrome type II). The natural history of both types was characterized by aggressive arterial aneurysms (mean age at death, 26.0 years) and a high incidence of pregnancy-related complications (in 6 of 12 women). Patients with Loeys-Dietz syndrome type I, as compared with those with type II, underwent cardiovascular surgery earlier (mean age, 16.9 years vs. 26.9 years) and died earlier (22.6 years vs. 31.8 years). There were 59 vascular surgeries in the cohort, with one death during the procedure. This low rate of intraoperative mortality distinguishes the Loeys-Dietz syndrome from vascular Ehlers-Danlos syndrome. CONCLUSIONS: Mutations in either TGFBR1 or TGFBR2 predispose patients to aggressive and widespread vascular disease. The severity of the clinical presentation is predictive of the outcome. Genotyping of patients presenting with symptoms like those of vascular Ehlers-Danlos syndrome may be used to guide therapy, including the use and timing of prophylactic vascular surgery.


Asunto(s)
Anomalías Múltiples/genética , Receptores de Activinas Tipo I/genética , Aneurisma de la Aorta/genética , Anomalías Craneofaciales/genética , Mutación Missense , Receptores de Factores de Crecimiento Transformadores beta/genética , Anomalías Múltiples/mortalidad , Anomalías Múltiples/terapia , Adulto , Disección Aórtica/genética , Arterias/anomalías , Colágeno Tipo III/biosíntesis , Análisis Mutacional de ADN , Síndrome de Ehlers-Danlos/genética , Femenino , Mutación de Línea Germinal , Humanos , Masculino , Fenotipo , Embarazo , Complicaciones del Embarazo/genética , Proteínas Serina-Treonina Quinasas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Análisis de Supervivencia , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA