Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Antimicrob Agents Chemother ; 66(4): e0219221, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266826

ABSTRACT

Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , DNA Gyrase/genetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Humans , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy
2.
Article in English | MEDLINE | ID: mdl-30249687

ABSTRACT

The in vivo antimalarial efficacies of two phosphatidylinositol 4-kinase (PI4K) inhibitors, a 3,5-diaryl-2-aminopyrazine sulfoxide and its corresponding sulfone metabolite, were evaluated in the NOD-scid IL2Rγnull (NSG) murine malaria disease model of Plasmodium falciparum infection. We hypothesized that the sulfoxide would serve as a more soluble prodrug for the sulfone, which would lead to improved drug exposure with oral dosing. Both compounds had similar efficacy (90% effective dose [ED90], 0.1 mg kg-1 of body weight) across a quadruple-dose regimen. Pharmacokinetic profiling revealed rapid sulfoxide clearance via conversion to sulfone, with sulfone identified as the major active metabolite. When the sulfoxide was dosed, the exposure of the sulfone achieved was as much as 2.9-fold higher than when the sulfone was directly dosed, thereby demonstrating that the sulfoxide served as an effective prodrug for the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Prodrugs/pharmacology , Pyrazines/pharmacology , Sulfones/pharmacology , Sulfoxides/pharmacology , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Animals , Antimalarials/blood , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Biotransformation , Disease Models, Animal , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/parasitology , Gene Expression , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Parasitemia/pathology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Pyrazines/blood , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Sulfones/blood , Sulfones/chemical synthesis , Sulfones/pharmacokinetics , Sulfoxides/blood , Sulfoxides/chemical synthesis , Sulfoxides/pharmacokinetics , Treatment Outcome
3.
Article in English | MEDLINE | ID: mdl-29941635

ABSTRACT

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

4.
Xenobiotica ; 47(1): 31-49, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27122100

ABSTRACT

1. ETX0914 is a novel bacterial topoisomerase inhibitor that has a novel mode-of-inhibition and is in clinical development for the treatment of infections caused by Neisseria gonorrhoeae. 2. The in vitro biotransformation studies of ETX0914 using mouse, rat, dog and human hepatocytes showed moderate intrinsic clearance in mouse and rat and low intrinsic clearance in dog and human. 3. Following intravenous administration of [14C]-ETX0914 in rats, the mean recovery of administered dose in urine, bile and feces was approximately 15%, 55% and 24%, respectively. Unchanged ETX0914 recovered in urine and bile was less than 5% of the dose, indicating that ETX0914 underwent extensive metabolism in rats. Metabolites M1, M2, M4, M6 and M12 detected in both rat and mouse urine samples were not detected in mouse urine when predosed with 1-aminobenzotriazole, indicating that these metabolites were cytochrome P450 mediated products. The major fecal metabolites observed in rats were not formed when ETX0914 was incubated with fresh feces from germ free rats under sterile condition or in incubations with rat intestinal microsome and cytosol, suggesting that most likely ETX0914 was directly excreted into gut lumen where metabolites were formed as intestinal microflora-mediated products. The major sites of metabolism by CYP enzymes were in the morpholine and oxazolidinone rings while it was benzisoxazole reduction with the gut microflora.


Subject(s)
Barbiturates/pharmacokinetics , Spiro Compounds/pharmacokinetics , Topoisomerase Inhibitors/pharmacokinetics , Animals , DNA Topoisomerases, Type II/metabolism , Dogs , Humans , Isoxazoles , Mice , Morpholines , Oxazolidinones , Rats
5.
Proc Natl Acad Sci U S A ; 111(46): 16274-9, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368144

ABSTRACT

Negamycin is a natural product with broad-spectrum antibacterial activity and efficacy in animal models of infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace tetracycline. However, in contrast to tetracycline-class antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , RNA, Bacterial/drug effects , RNA, Ribosomal, 16S/drug effects , Ribosomes/drug effects , Amino Acids, Diamino/pharmacology , Anti-Bacterial Agents/metabolism , Base Pairing , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Minocycline/analogs & derivatives , Minocycline/pharmacology , Models, Molecular , Nucleic Acid Conformation , Point Mutation , Protein Biosynthesis/drug effects , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/physiology , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/physiology , RNA, Transfer/metabolism , Ribosomes/ultrastructure , Tetracycline Resistance/genetics , Tetracyclines/metabolism , Tetracyclines/pharmacology , Tigecycline
6.
J Biol Chem ; 290(34): 20984-20994, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26149691

ABSTRACT

We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467-474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and ß.


Subject(s)
Anti-Bacterial Agents/pharmacology , Barbiturates/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA, Bacterial/chemistry , Spiro Compounds/pharmacology , Topoisomerase II Inhibitors/pharmacology , Ciprofloxacin/pharmacology , Clinical Trials as Topic , DNA/chemistry , DNA/metabolism , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , DNA, Bacterial/metabolism , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Fluoroquinolones/pharmacology , Gene Expression , Humans , Isoxazoles , Morpholines , Mutation , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Oxazolidinones , Species Specificity
7.
Antimicrob Agents Chemother ; 59(1): 467-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25385112

ABSTRACT

AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, ß-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Barbiturates/pharmacology , DNA Gyrase/drug effects , Nucleic Acid Synthesis Inhibitors/pharmacology , Spiro Compounds/pharmacology , Topoisomerase II Inhibitors/pharmacology , Atypical Bacterial Forms/drug effects , Drug Resistance, Bacterial , Fluoroquinolones/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Isoxazoles , Microbial Sensitivity Tests , Morpholines , Oxazolidinones
8.
Xenobiotica ; 45(2): 158-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25142218

ABSTRACT

1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1H,1'H-spiro [isoxazolo[4,5-g][1,4]oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(3'H)-trione (AZ11) is a novel mode-of-inhibition bacterial topoisomerase inhibitor that entered preclinical development for the treatment of Gram-positive bacteria infection. 2. The in vitro biotransformation studies of AZ11 using mouse, rat, dog and human hepatocytes showed low-intrinsic clearance in all species attributed to microsomal metabolism. 3. After a single intravenous administration of [14C]AZ11 in bile duct cannulated rats, the mean percentage of dose recovered in rat urine, bile and feces was approximately 18, 36 and 42%, respectively. Unchanged AZ11 recovered in rat urine and bile was less than 9% of the dose, indicating that AZ11 underwent extensive metabolism in rats. 4. The most abundant in vivo metabolite detected in urine and bile was M1 formed via ring opening on the piperidine and morpholine rings accounting for 20% of the administered dose. The major fecal metabolite was M5, which accounted for approximately 32% of administered dose. M5 was not formed when AZ11 incubated with rat intestinal microsomes and cytosol but was formed when incubated with fresh rat feces, suggesting that unchanged AZ11 was directly excreted into gut lumen where M5 formed as an intestinal microflora-mediated product. This process could have significant impact on bioavailability or exposure of AZ11 in rat.


Subject(s)
Barbiturates/pharmacokinetics , DNA Gyrase/pharmacokinetics , Hepatocytes/metabolism , Spiro Compounds/pharmacokinetics , Topoisomerase Inhibitors/pharmacokinetics , Animals , Barbiturates/chemistry , Biotransformation , DNA Gyrase/chemistry , Dogs , Humans , Intestinal Mucosa/metabolism , Mice , Microsomes/metabolism , Rats , Spiro Compounds/chemistry , Topoisomerase Inhibitors/chemistry
9.
ACS Infect Dis ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082980

ABSTRACT

Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.

10.
J Med Chem ; 67(13): 11401-11420, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38918002

ABSTRACT

Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase ß (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Antimalarials , Hemeproteins , Naphthyridines , Plasmodium falciparum , Zebrafish , Plasmodium falciparum/drug effects , Animals , Naphthyridines/pharmacology , Naphthyridines/chemistry , Naphthyridines/chemical synthesis , Naphthyridines/therapeutic use , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/metabolism , Humans , Structure-Activity Relationship , Hemeproteins/antagonists & inhibitors , Hemeproteins/metabolism , Mice , Rats , Malaria, Falciparum/drug therapy , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis
12.
ACS Infect Dis ; 9(3): 706-715, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36802491

ABSTRACT

The rise in drug-resistant tuberculosis has necessitated the search for alternative antibacterial treatments. Spiropyrimidinetriones (SPTs) represent an important new class of compounds that work through gyrase, the cytotoxic target of fluoroquinolone antibacterials. The present study analyzed the effects of a novel series of SPTs on the DNA cleavage activity of Mycobacterium tuberculosis gyrase. H3D-005722 and related SPTs displayed high activity against gyrase and increased levels of enzyme-mediated double-stranded DNA breaks. The activities of these compounds were similar to those of the fluoroquinolones, moxifloxacin, and ciprofloxacin and greater than that of zoliflodacin, the most clinically advanced SPT. All the SPTs overcame the most common mutations in gyrase associated with fluoroquinolone resistance and, in most cases, were more active against the mutant enzymes than wild-type gyrase. Finally, the compounds displayed low activity against human topoisomerase IIα. These findings support the potential of novel SPT analogues as antitubercular drugs.


Subject(s)
Mycobacterium tuberculosis , Humans , DNA Cleavage , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Antitubercular Agents/pharmacology , Fluoroquinolones/pharmacology
13.
ACS Med Chem Lett ; 14(7): 875-878, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465315

ABSTRACT

This viewpoint outlines the case for developing new chemical entities (NCEs) as racemates in infectious diseases and where both enantiomers and racemate retain similar on- and off-target activities as well as similar PK profiles. There are not major regulatory impediments for the development of a racemic drug, and minimizing the manufacturing costs becomes a particularly important objective when bringing an anti-infective therapeutic to the marketplace in the endemic settings of infectious diseases.

14.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Article in English | MEDLINE | ID: mdl-36999404

ABSTRACT

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Subject(s)
Antimalarials , Lumefantrine , Malaria , Polymers , Animals , Mice , Administration, Intravenous , Antimalarials/administration & dosage , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/toxicity , Area Under Curve , Disease Models, Animal , Drug Combinations , Lumefantrine/administration & dosage , Lumefantrine/analogs & derivatives , Lumefantrine/chemical synthesis , Lumefantrine/pharmacokinetics , Lumefantrine/therapeutic use , Lumefantrine/toxicity , Malaria/drug therapy , Mice, Inbred BALB C , Parasitemia , Plasmodium falciparum , Polymers/chemistry , Polymers/pharmacology , Polymers/therapeutic use , Solubility , Water/chemistry , Male
15.
Bioorg Med Chem Lett ; 22(17): 5600-7, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22877632

ABSTRACT

Structure-activity relationships are presented around a series of pyrazolopyrimidinediones that inhibit the growth of Helicobacter pylori by targeting glutamate racemase, an enzyme that provides d-glutamate for the construction of N-acetylglucosamine-N-acetylmuramic acid peptidoglycan subunits assimilated into the bacterial cell wall. Substituents on the inhibitor scaffold were varied to optimize target potency, antibacterial activity and in vivo pharmacokinetic stability. By incorporating an imidazole ring at the 7-position of scaffold, high target potency was achieved due to a hydrogen bonding network that occurs between the 3-position nitrogen atom, a bridging water molecule and the side chains Ser152 and Trp244 of the enzyme. The lipophilicity of the scaffold series proved important for expression of antibacterial activity. Clearances in vitro and in vivo were monitored to identify compounds with improved plasma stability. The basicity of the imidazole may contribute to increased aqueous solubility at lower pH allowing for improved oral bioavailability.


Subject(s)
Amino Acid Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Helicobacter pylori/drug effects , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Administration, Oral , Amino Acid Isomerases/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Biological Availability , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter pylori/enzymology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Mice , Models, Molecular , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacokinetics , Structure-Activity Relationship
16.
J Med Chem ; 65(4): 3371-3387, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35113565

ABSTRACT

Selective inhibition of the angiotensin-converting enzyme C-domain (cACE) and neprilysin (NEP), leaving the ACE N-domain (nACE) free to degrade bradykinin and other peptides, has the potential to provide the potent antihypertensive and cardioprotective benefits observed for nonselective dual ACE/NEP inhibitors, such as omapatrilat, without the increased risk of adverse effects. We have synthesized three 1-carboxy-3-phenylpropyl dipeptide inhibitors with nanomolar potency based on the previously reported C-domain selective ACE inhibitor lisinopril-tryptophan (LisW) to probe the structural requirements for potent dual cACE/NEP inhibition. Here we report the synthesis, enzyme kinetic data, and high-resolution crystal structures of these inhibitors bound to nACE and cACE, providing valuable insight into the factors driving potency and selectivity. Overall, these results highlight the importance of the interplay between the S1' and S2' subsites for ACE domain selectivity, providing guidance for future chemistry efforts toward the development of dual cACE/NEP inhibitors.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Neprilysin/pharmacology , Peptidyl-Dipeptidase A/drug effects , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Binding Sites/drug effects , Bradykinin/metabolism , Computer Simulation , Crystallography, X-Ray , Humans , Kinetics , Lisinopril/pharmacology , Peptidyl-Dipeptidase A/chemistry , Pyridines/pharmacology , Thiazepines/pharmacology
17.
J Med Chem ; 65(9): 6903-6925, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35500229

ABSTRACT

New antibiotics with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new spiropyrimidinetriones (SPTs), DNA gyrase inhibitors having activity against drug-resistant Mycobacterium tuberculosis (Mtb), the causative agent of TB. While the clinical candidate zoliflodacin has progressed to phase 3 trials for the treatment of gonorrhea, compounds herein demonstrated higher inhibitory potency against Mtb DNA gyrase (e.g., compound 42 with IC50 = 2.0) and lower Mtb minimum inhibitor concentrations (0.49 µM for 42). Notably, 42 and analogues showed selective Mtb activity relative to representative Gram-positive and Gram-negative bacteria. DNA gyrase inhibition was shown to involve stabilization of double-cleaved DNA, while on-target activity was supported by hypersensitivity against a gyrA hypomorph. Finally, a docking model for SPTs with Mtb DNA gyrase was developed, and a structural hypothesis was built for structure-activity relationship expansion.


Subject(s)
Mycobacterium tuberculosis , Topoisomerase II Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , DNA Gyrase/genetics , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use
18.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33395287

ABSTRACT

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Subject(s)
Antitubercular Agents/chemistry , Pyrimidinones/chemistry , Animals , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Half-Life , Humans , Iron/metabolism , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Microsomes/metabolism , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Pyrazoles/chemistry , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Rats , Structure-Activity Relationship
19.
J Med Chem ; 64(17): 12790-12807, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34414766

ABSTRACT

Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against Mycobacterium tuberculosis (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide 1 as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 µM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds. Compounds are bactericidal in vitro against replicating Mtb and retained activity against multidrug-resistant clinical isolates. Initial biology triage assays indicated cell wall biosynthesis as a plausible mode-of-action for the series. However, no cross-resistance with known cell wall targets such as MmpL3, DprE1, InhA, and EthA was detected, suggesting a potentially novel mode-of-action or inhibition. The in vitro and in vivo drug metabolism and pharmacokinetics profiles of several active compounds from the series were established leading to the identification of a compound for in vivo efficacy proof-of-concept studies.


Subject(s)
Antitubercular Agents/pharmacology , Cell Wall/metabolism , Mycobacterium tuberculosis/drug effects , Sulfonamides/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Drug Discovery , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry
20.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33573376

ABSTRACT

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Spiro Compounds/pharmacology , Animals , Anopheles/drug effects , Antimalarials/chemical synthesis , Antimalarials/metabolism , Female , Germ Cells/drug effects , High-Throughput Screening Assays , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL