Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38787418

ABSTRACT

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Subject(s)
DNA Methylation , Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Male , Female , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Child
2.
Am J Obstet Gynecol ; 230(3): 368.e1-368.e12, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37717890

ABSTRACT

BACKGROUND: The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE: This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN: This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS: A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION: Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.


Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , Infant , Infant, Newborn , Pregnancy , Female , Humans , Male , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Retrospective Studies , Prenatal Diagnosis , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Prenatal Care
3.
J Med Genet ; 60(6): 578-586, 2023 06.
Article in English | MEDLINE | ID: mdl-36319078

ABSTRACT

PURPOSE: In this study, we describe the phenotype and genotype of the largest cohort of patients with Joubert syndrome (JS) carrying pathogenic variants on one of the most frequent causative genes, CC2D2A. METHODS: We selected 53 patients with pathogenic variants on CC2D2A, compiled and analysed their clinical, neuroimaging and genetic information and compared it to previous literature. RESULTS: Developmental delay (motor and language) was nearly constant but patients had normal intellectual efficiency in 74% of cases (20/27 patients) and 68% followed mainstream schooling despite learning difficulties. Epilepsy was found in only 13% of cases. Only three patients had kidney cysts, only three had genuine retinal dystrophy and no subject had liver fibrosis or polydactyly. Brain MRIs showed typical signs of JS with rare additional features. Genotype-phenotype correlation findings demonstrate a homozygous truncating variant p.Arg950* linked to a more severe phenotype. CONCLUSION: This study contradicts previous literature stating an association between CC2D2A-related JS and ventriculomegaly. Our study implies that CC2D2A-related JS is linked to positive neurodevelopmental outcome and low rate of other organ defects except for homozygous pathogenic variant p.Arg950*. This information will help modulate patient follow-up and provide families with accurate genetic counselling.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Humans , Cerebellum/diagnostic imaging , Cerebellum/pathology , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Retina/diagnostic imaging , Retina/pathology , Cytoskeletal Proteins
4.
Genet Med ; 25(7): 100835, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36999555

ABSTRACT

PURPOSE: Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder. METHODS: Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae. RESULTS: We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans. CONCLUSION: This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.


Subject(s)
Classical Lissencephalies and Subcortical Band Heterotopias , Intellectual Disability , Lissencephaly , Neurodevelopmental Disorders , Humans , Animals , Mice , Brain/abnormalities , Lissencephaly/genetics , Intellectual Disability/genetics , 14-3-3 Proteins/genetics
5.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Article in English | MEDLINE | ID: mdl-36137615

ABSTRACT

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Subject(s)
DNA Copy Number Variations , Exome , Humans , DNA Copy Number Variations/genetics , Exome/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Prospective Studies
6.
J Med Genet ; 59(4): 377-384, 2022 04.
Article in English | MEDLINE | ID: mdl-33737400

ABSTRACT

INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of ß-galactosidase (ß-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management.


Subject(s)
Gangliosidosis, GM1 , Mucopolysaccharidosis IV , Female , G(M1) Ganglioside , Gangliosidosis, GM1/genetics , Humans , Mucopolysaccharidosis IV/genetics , Mutation , Pregnancy , beta-Galactosidase/genetics
7.
Genet Med ; 24(8): 1753-1760, 2022 08.
Article in English | MEDLINE | ID: mdl-35579625

ABSTRACT

PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Abnormalities, Multiple , Chromosomal Proteins, Non-Histone/genetics , Face/abnormalities , Genetic Association Studies , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Neck/abnormalities , Phenotype
8.
Clin Genet ; 101(2): 208-213, 2022 02.
Article in English | MEDLINE | ID: mdl-34708403

ABSTRACT

The YTH domain family member 3 gene (YTHDF3) encodes a reader of the abundant N6-methyladenosine (m6 A) modification of eukaryotic mRNA, which plays an essential role in regulating mRNA stability and is necessary to achieve normal development of the central nervous system in animal models. YTHDF3 has not previously been implicated in Mendelian disease despite a high probability of loss of function intolerance and statistical evidence of enrichment for gene-disruptive de novo variants in large-scale studies of individuals with intellectual disability and/or developmental delay. We report four individuals with deletion of 8q12.3, deletion size 1.38-2.60 Mb, encompassing YTHDF3, three of them were de novo, and in one case, the inheritance was unknown. Common features of the individuals (age range, 4-22 years) were developmental delay and/or intellectual disability. Two individuals underwent squint surgery. We suggest that haploinsufficiency of YTHDF3 causes a neurodevelopmental disorder with developmental delay and intellectual disability of variable degree.


Subject(s)
Alleles , Chromosome Deletion , Chromosomes, Human, Pair 8 , Genetic Predisposition to Disease , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , RNA-Binding Proteins/genetics , Adolescent , Child , Female , Genetic Association Studies , Humans , Loss of Heterozygosity , Male , Phenotype , Young Adult
9.
Clin Genet ; 101(3): 307-316, 2022 03.
Article in English | MEDLINE | ID: mdl-34866188

ABSTRACT

Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.


Subject(s)
Intellectual Disability , Leukoencephalopathies , Chromosome Deletion , Chromosome Inversion , Chromosomes, Human, Pair 8 , Corpus Callosum/diagnostic imaging , Genetic Association Studies , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Leukoencephalopathies/genetics , Phenotype , Trisomy
10.
Clin Genet ; 101(5-6): 494-506, 2022 05.
Article in English | MEDLINE | ID: mdl-35170016

ABSTRACT

Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.


Subject(s)
Corneal Opacity , Eye Abnormalities , Anterior Eye Segment/abnormalities , Comparative Genomic Hybridization , Corneal Opacity/diagnosis , Corneal Opacity/genetics , Corneal Opacity/pathology , DNA Copy Number Variations/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Humans , Mutation/genetics , SOXB1 Transcription Factors/genetics
11.
Clin Genet ; 100(2): 206-212, 2021 08.
Article in English | MEDLINE | ID: mdl-33890303

ABSTRACT

Periodontal Ehlers-Danlos syndrome (pEDS) is a rare condition caused by pathogenic variants in the C1R and C1S genes, encoding subunits C1r and C1s of the first component of the classical complement pathway. It is characterized by early-onset periodontitis with premature tooth loss, pretibial hyperpigmentation and skin fragility. Rare arterial complications have been reported, but venous insufficiency is rarely described. Here we report 13 novel patients carrying heterozygous pathogenic variants in C1R and C1S including three novel C1S variants (c.962G > C, c.961 T > G and c.961 T > A). In addition to the pEDS phenotype, three patients and one relative displayed widespread venous insufficiency leading to persistent varicose leg ulcers. One patient suffered an intracranial aneurysm with familial vascular complications including thoracic and abdominal aortic aneurysm and dissection and intracranial aneurysm rupture. This work confirms that vascular complications can occur, although they are not frequent, which leads us to propose to carry out a first complete non-invasive vascular evaluation at the time of the diagnosis in pEDS patients. However, larger case series are needed to improve our understanding of the link between complement pathway activation and connective tissue alterations observed in these patients, and to better assess the frequency, type and consequences of the vascular complications.


Subject(s)
Ehlers-Danlos Syndrome/etiology , Mutation , Adolescent , Adult , Aged , Aortic Aneurysm, Abdominal/genetics , Child, Preschool , Complement C1r/genetics , Complement C1s/genetics , Ehlers-Danlos Syndrome/genetics , Female , Heterozygote , Humans , Male , Middle Aged , Varicose Ulcer/etiology , Varicose Ulcer/genetics , Young Adult
12.
Am J Med Genet A ; 182(3): 446-453, 2020 03.
Article in English | MEDLINE | ID: mdl-31876365

ABSTRACT

Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Hematologic Diseases/physiopathology , Neoplasm Proteins/genetics , Vestibular Diseases/genetics , Vestibular Diseases/physiopathology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/physiopathology , Adolescent , Body Height , Body Mass Index , Body Weight , Child , Child, Preschool , Face/physiopathology , Female , Growth Charts , Hematologic Diseases/diagnosis , Histone Demethylases/genetics , Humans , Male , Mutation/genetics , Vestibular Diseases/diagnosis
13.
Epilepsia ; 61(3): 387-399, 2020 03.
Article in English | MEDLINE | ID: mdl-32090326

ABSTRACT

OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.


Subject(s)
Epileptic Syndromes/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.3 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Sodium Channels/genetics , Age of Onset , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Child , Child, Preschool , Codon, Nonsense , DNA Copy Number Variations , Electroencephalography , Epileptic Syndromes/drug therapy , Epileptic Syndromes/physiopathology , Female , Gain of Function Mutation , Gene Deletion , Gene Duplication , Gene Expression , Gene Expression Regulation, Developmental , Genotype , Humans , Infant , Infant, Newborn , Loss of Function Mutation , Male , Mutation, Missense , NAV1.1 Voltage-Gated Sodium Channel/metabolism , NAV1.2 Voltage-Gated Sodium Channel/metabolism , NAV1.3 Voltage-Gated Sodium Channel/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Sodium Channel Blockers/therapeutic use , Sodium Channels/metabolism
14.
Genet Med ; 21(9): 2015-2024, 2019 09.
Article in English | MEDLINE | ID: mdl-30739908

ABSTRACT

PURPOSE: Heritable thoracic aortic aneurysms and dissections (hTAAD) are life-threatening complications of well-known syndromic diseases or underdiagnosed nonsyndromic heritable forms (nshTAAD). Both have an autosomal dominant transmission and are genetically heterogeneous. Our objective was to describe the relevance of molecular diagnosis in these patients and the contribution of each gene in nshTAAD. METHODS: Two hundred twenty-six consecutive nshTAAD probands, either young (<45 years) sporadic or familial cases were included. A next-generation sequencing capture panel comprising 23 known disease-causing genes was performed. RESULTS: Class 4 or 5 variants were identified in 18% of the nshTAAD probands, while class 3 variants were found in 10% of them. The yield in familial cases was greater than in sporadic cases. SMAD3 and FBN1 genes were the major disease-causing genes. Unexpectedly, no premature termination codon variant was identified in the FBN1 gene. Furthermore, we report for the first time that aortic dissection or surgery occurred significantly more often and earlier in probands with a class 4 or 5 pathogenic variant. CONCLUSION: This study indicates that genetic screening using NGS is efficient in young and familial nshTAAD. The presence of a pathogenic variant has a possible predictive value, which needs to be further investigated because it may influence care.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/genetics , Fibrillin-1/genetics , Smad3 Protein/genetics , Adolescent , Adult , Aged , Aortic Dissection/diagnosis , Aortic Dissection/physiopathology , Aortic Aneurysm, Thoracic/diagnosis , Child , Codon, Nonsense/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Pathology, Molecular/methods , Pedigree , Young Adult
15.
Genet Med ; 21(7): 1667-1671, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30783266

ABSTRACT

The article has been corrected to account for one patient being investigated through genome sequencing rather than exome sequencing as originally published; thus amendments to the Abstract and Methods have been made as well as addition of the relevant authors and acknowledgment.

16.
Genet Med ; 21(6): 1308-1318, 2019 06.
Article in English | MEDLINE | ID: mdl-30356099

ABSTRACT

PURPOSE: Germline WWOX pathogenic variants have been associated with disorder of sex differentiation (DSD), spinocerebellar ataxia (SCA), and WWOX-related epileptic encephalopathy (WOREE syndrome). We review clinical and molecular data on WWOX-related disorders, further describing WOREE syndrome and phenotype/genotype correlations. METHODS: We report clinical and molecular findings in 20 additional patients from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants in the WWOX gene. Different molecular screening approaches were used (quantitative polymerase chain reaction/multiplex ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome sequencing), genome sequencing. RESULTS: Two copy-number variations (CNVs) or two single-nucleotide variations (SNVs) were found respectively in four and nine families, with compound heterozygosity for one SNV and one CNV in five families. Eight novel missense pathogenic variants have been described. By aggregating our patients with all cases reported in the literature, 37 patients from 27 families with WOREE syndrome are known. This review suggests WOREE syndrome is a very severe epileptic encephalopathy characterized by absence of language development and acquisition of walking, early-onset drug-resistant seizures, ophthalmological involvement, and a high likelihood of premature death. The most severe clinical presentation seems to be associated with null genotypes. CONCLUSION: Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic encephalopathy. We report here the largest cohort of individuals with WOREE syndrome.


Subject(s)
Epileptic Syndromes/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/physiology , Adolescent , Child , Child, Preschool , DNA Copy Number Variations/genetics , Epilepsy/genetics , Female , Genetic Association Studies/methods , Humans , Infant , Male , Mutation/genetics , Mutation, Missense/genetics , Syndrome , Tumor Suppressor Proteins/metabolism , WW Domain-Containing Oxidoreductase/metabolism
18.
Am J Med Genet A ; 179(12): 2365-2373, 2019 12.
Article in English | MEDLINE | ID: mdl-31509347

ABSTRACT

Fetal micrognathia can be detected early in pregnancy. Prognosis of micrognathia depends on the risk of respiratory distress at birth and on the long-term risk of intellectual disability. The purpose of this study was to evaluate the long-term prognosis of fetuses with prenatal diagnosis of micrognathia by estimating the prevalence and the severity of confirmed genetic diagnosis in our cohort. Our retrospective study included 41 fetuses with prenatal diagnosis of micrognathia referred to the multidisciplinary centers for prenatal diagnosis in Nice and Marseille, France, between 2006 and 2016. Fetal micrognathia was associated with cleft palate in 27 cases. A genetic cause was confirmed in 21 cases (67%). A chromosomal abnormality was present in 12 cases, including three copy-number variations diagnosed by array CGH. Monogenic disorders were identified in nine cases, most often after birth. Fetuses with family history of micrognathia or Pierre Robin sequence had a favorable outcome. Prognosis was good for the fetuses without associated findings and normal chromosomal analysis, with the exception of one case with a postnatal diagnosis of mandibulofacial dysostosis with microcephaly. Prognostic was poor for the fetuses with additional ultrasound anomalies, as only 5 out of 28 children had a good outcome. Prenatal diagnosis of micrognathia is an indicator of a possible fetal pathology justifying multidisciplinary management. Our study confirms the necessity of performing prenatal array CGH. Use of high-throughput gene sequencing in prenatal period could improve diagnostic performance, prenatal counseling, and adequate postnatal care.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Micrognathism/diagnosis , Micrognathism/genetics , Prenatal Diagnosis , Fetus/abnormalities , Genetic Association Studies/methods , Humans , Magnetic Resonance Imaging , Mandibulofacial Dysostosis/diagnosis , Mandibulofacial Dysostosis/genetics , Patient Outcome Assessment , Phenotype , Prenatal Diagnosis/methods , Retrospective Studies , Ultrasonography, Prenatal
19.
Am J Med Genet A ; 179(7): 1351-1356, 2019 07.
Article in English | MEDLINE | ID: mdl-31050392

ABSTRACT

Split-hand/foot malformation (SHFM) is a genetically heterogeneous congenital limb malformation typically limited to a defect of the central rays of the autopod, presenting as a median cleft of hands and feet. It can be associated with long bone deficiency or included in more complex syndromes. Among the numerous genetic causes, WNT10B homozygous variants have been recently identified in consanguineous families, but remain still rarely described (SHFM6; MIM225300). We report on three novel SHFM families harboring WNT10B variants and review the literature, allowing us to highlight some clinical findings. The feet are more severely affected than the hands and there is a frequent asymmetry without obvious side-bias. Syndactyly of third-fourth fingers was a frequent finding (62%). Polydactyly, which was classically described in SHFM6, was only present in 27% of patients. No genotype-phenotype correlation is delineated but heterozygous individuals might have mild features of SHFM, suggesting a dose-effect of the WNT10B loss-of-function.


Subject(s)
Limb Deformities, Congenital/genetics , Proto-Oncogene Proteins/genetics , Wnt Proteins/genetics , Female , Humans , Male , Pedigree
20.
Hum Mutat ; 39(7): 934-938, 2018 07.
Article in English | MEDLINE | ID: mdl-29663568

ABSTRACT

Early myoclonic epilepsy (EME) or Aicardi syndrome is one of the most severe epileptic syndromes affecting neonates. We performed whole exome sequencing in a sporadic case affected by EME and his parents. In the proband, we identified a homozygous missense variant in the ubiquitin-like modifier activating enzyme 5 (UBA5) gene, encoding a protein involved in post-translational modifications. Functional analysis of the UBA5 variant protein reveals that it is almost completely unable to perform its trans-thiolation activity. Although recessive variants in UBA5 have recently been associated with epileptic encephalopathy, variants in this gene have never been reported to cause EME. Our results further demonstrate the importance of post-translational modifications such as the addition of an ubiquitin-fold modifier 1 (UFM1) to target proteins (ufmylation) for normal neuronal networks activity, and reveal that the dysfunction of the ubiquitous UBA5 protein is a cause of EME.


Subject(s)
Epilepsies, Myoclonic/genetics , Genetic Predisposition to Disease , Spasms, Infantile/genetics , Ubiquitin-Activating Enzymes/genetics , Adult , Consanguinity , Epilepsies, Myoclonic/physiopathology , Epileptic Syndromes/genetics , Epileptic Syndromes/physiopathology , Female , Homozygote , Humans , Infant, Newborn , Male , Mutation, Missense/genetics , Spasms, Infantile/physiopathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL