Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Mol Cell ; 73(5): 1001-1014.e8, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30527540

ABSTRACT

In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.


Subject(s)
Antiparkinson Agents/pharmacology , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Lipid Metabolism/drug effects , Metabolomics/methods , Neurons/drug effects , Parkinson Disease/drug therapy , Stearoyl-CoA Desaturase/antagonists & inhibitors , alpha-Synuclein/toxicity , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Cell Line , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Cerebral Cortex/pathology , Diglycerides/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/enzymology , Dopaminergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/pathology , Lipid Droplets/drug effects , Lipid Droplets/enzymology , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Nerve Degeneration , Neural Stem Cells/drug effects , Neural Stem Cells/enzymology , Neural Stem Cells/pathology , Neurons/enzymology , Neurons/pathology , Oleic Acid/metabolism , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/pathology , Rats, Sprague-Dawley , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism , alpha-Synuclein/genetics
2.
EMBO Rep ; 24(12): e57145, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37870370

ABSTRACT

α-Synuclein phosphorylation at serine-129 (pS129) is a widely used surrogate marker of pathology in Parkinson's disease and other synucleinopathies. However, we recently demonstrated that phosphorylation of S129 is also a physiological activator of synaptic transmission. In a feed-forward fashion, neuronal activity triggers reversible pS129. Here, we show that Parkinson's disease-linked missense mutations in SNCA impact activity-dependent pS129. Under basal conditions, cytosol-enriched A30P, H50Q, and G51D mutant forms of α-synuclein exhibit reduced pS129 levels in rat primary cortical neurons. A53T pS129 levels are similar to wild-type, and E46K pS129 levels are higher. A30P and E46K mutants show impaired reversibility of pS129 after stimulation. For the engineered profoundly membrane-associated α-synuclein mutant "3K" (E35K + E46K + E61K), de-phosphorylation was virtually absent after blocking stimulation, implying that reversible pS129 is severely compromised. Importantly, pS129 excess resulting from proteasome inhibition is also associated with reduced reversibility by neuronal inhibition, kinase inhibition, or phosphatase activation. Our findings suggest that perturbed pS129 dynamics are probably a shared characteristic of pathology-associated α-synuclein, with possible implications for synucleinopathy treatment and diagnosis.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Serine/metabolism , Phosphorylation
3.
Bioorg Med Chem ; 100: 117613, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38330847

ABSTRACT

Tau and α-synuclein aggregates are the main histopathological hallmarks present in Alzheimer's disease (AD), Parkinson's disease (PD), and other neurodegenerative disorders. Intraneuronal hyperphosphorylated tau accumulation is significantly connected to the degree of cognitive impairment in AD patients. In particular, the longest 2N4R tau isoform has a propensity to rapidly form oligomers and mature fibrils. On the other hand, misfolding of α-synuclein (α-syn) is the characteristic feature in PD and dementia with Lewy bodies (DLB). There is a strong crosstalk between the two prone-to-aggregation proteins as they coprecipitated in some brains of AD, PD, and DLB patients. Simultaneous targeting of both proteinaceous oligomers and aggregates is still challenging. Here, we rationally designed and synthesized benzothiazole- and indole-based compounds using the structural hybridization strategy between the benzothiazole N744 cyanine dye and the diphenyl pyrazole Anle138b that showed anti-aggregation activity towards 2N4R tau and α-syn, respectively. The anti-aggregation effect of the prepared compounds was monitored using the thioflavin-T (ThT) fluorescence assay, while transmission electron microscopy (TEM) was employed to detect fibrils upon the completion of a time-course study with the ThT assay. Moreover, the photo-induced crosslinking of unmodified protein (PICUP) assay was used to determine the formation of oligomers. Specifically, compounds 46 and 48 demonstrated the highest anti-aggregation activity by decreasing the ThT fluorescence to 4.0 and 14.8%, respectively, against α-syn. Although no noticeable effect on 2N4R tau oligomers, 46 showed promising anti-oligomer activity against α-syn. Both compounds induced a significantly high anti-aggregation effect against the two protein fibrils as visualized by TEM. Moreover, compound 48 remarkably inhibited α-syn inclusion and cell confluence using M17D cells. Collectively, compounds 46 and 48 could serve as a basic structure for further optimization to develop clinically active AD and PD disease-modifying agents.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Benzothiazoles/pharmacology , Parkinson Disease/metabolism , tau Proteins/metabolism , Indoles/chemistry
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34326260

ABSTRACT

Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson's disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient-derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer-monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD-causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)-human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Glucosylceramidase/metabolism , alpha-Synuclein/metabolism , Animals , Animals, Newborn , Glucosylceramidase/genetics , Lipid Metabolism , Lipids/chemistry , Maze Learning , Mice , Motor Activity , Recombinant Proteins , alpha-Synuclein/chemistry
5.
J Neurosci ; 42(10): 2116-2130, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35086904

ABSTRACT

α-Synuclein (αS) plays a key role in Parkinson's disease. Although Parkinson's disease is typically "sporadic," inherited αS missense mutations provide crucial insights into molecular mechanisms. Here, we examine two clinical mutants, E46K and G51D, which are both in the conserved N-terminus that mediates transient αS-membrane interactions. However, E46K increases and G51D decreases αS-membrane interactions. Previously, we amplified E46K via the 11-residue repeat motifs, creating "3K" (E35K+E46K+E61K). Here, we engineered these motifs to amplify G51D (V40D+G51D+V66D = "3D") and systematically compared E46K/3K versus G51D/3D. We found that G51D increased cytosolic αS in neural cells and 3D aggravates this. G51D, and 3D even more, reduced αS multimer-to-monomer (αS60:αS14) ratio. Both amplified variants caused cellular stress in rat primary neurons and reduced growth in human neuroblastoma cells. Importantly, both 3K- and 3D-induced stress was ameliorated by pharmacologically inhibiting stearoyl-CoA desaturase or by conditioning the cells in palmitic (16:0) or myristic (14:0) acid. SCD inhibition lowered lipid-droplet accumulation in both 3D- and 3K-expressing cells and benefitted G51D by normalizing multimer:monomer ratio, as reported previously for E46K. Our findings suggest that, despite divergent cytosol/membrane partitioning, both G51D and E46K neurotoxicity can be prevented by decreasing fatty-acid unsaturation as a common therapeutic approach.SIGNIFICANCE STATEMENT α-Synuclein (αS) dyshomeostasis is linked to Parkinson's disease. Here we focus on two contrasting familial-Parkinson's disease αS mutants, E46K and G51D, that alter αS membrane association in opposite directions (E46K increases, G51D decreases it). Taking advantage of αS repeat structure, here we designed αS "3D," an amplified G51D variant (V40D+G51D+V66D). αS 3D further enhanced G51D's cytosolic enrichment. Systematic comparison of G51D/3D with membrane-enriched E46K/its amplified variant 3K revealed that both can elicit stress in human neural cells and primary rodent neurons. This toxicity can be ameliorated by inhibiting stearoyl-CoA desaturase or by saturated fatty acid conditioning. Thus, despite divergent membrane binding, both G51D and E46K αS dyshomeostasis are mitigated by altering fatty acid saturation as a shared target.


Subject(s)
Fatty Acids , Parkinson Disease , alpha-Synuclein , Animals , Cytosol/metabolism , Fatty Acids/metabolism , Homeostasis , Parkinson Disease/metabolism , Rats , Stearoyl-CoA Desaturase/metabolism , alpha-Synuclein/metabolism
6.
J Neurochem ; 165(2): 246-258, 2023 04.
Article in English | MEDLINE | ID: mdl-36625497

ABSTRACT

Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Solubility , Mutation , Parkinson Disease/metabolism , Amino Acid Sequence
7.
Hum Mol Genet ; 30(23): 2332-2346, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34254125

ABSTRACT

α-Synuclein (αS) has been well-documented to play a role in human synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). First, the lesions found in PD/DLB brains-Lewy bodies and Lewy neurites-are rich in aggregated αS. Second, genetic evidence links missense mutations and increased αS expression to familial forms of PD/DLB. Third, toxicity and cellular stress can be caused by αS under certain experimental conditions. In contrast, the homologs ß-synuclein (ßS) and γ-synuclein (γS) are not typically found in Lewy bodies/neurites, have not been clearly linked to brain diseases and have been largely non-toxic in experimental settings. In αS, the so-called non-amyloid-ß component of plaques (NAC) domain, constituting amino acids 61-95, has been identified to be critical for aggregation in vitro. This domain is partially absent in ßS and only incompletely conserved in γS, which could explain why both homologs do not cause disease. However, αS in vitro aggregation and cellular toxicity have not been firmly linked experimentally, and it has been proposed that excess αS membrane binding is sufficient to induce neurotoxicity. Indeed, recent characterizations of Lewy bodies have highlighted the accumulation of lipids and membranous organelles, raising the possibility that ßS and γS could also become neurotoxic if they were more prone to membrane/lipid binding. Here, we increased ßS and γS membrane affinity by strategic point mutations and demonstrate that these proteins behave like membrane-associated monomers, are cytotoxic and form round cytoplasmic inclusions that can be prevented by inhibiting stearoyl-CoA desaturase.


Subject(s)
Cell Membrane/metabolism , Inclusion Bodies/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , gamma-Synuclein/metabolism , Amino Acid Sequence , Conserved Sequence , Humans , Mutagenesis , Protein Aggregation, Pathological , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Solubility , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , beta-Synuclein/chemistry , beta-Synuclein/genetics , gamma-Synuclein/chemistry , gamma-Synuclein/genetics
8.
J Biol Chem ; 296: 100271, 2021.
Article in English | MEDLINE | ID: mdl-33428933

ABSTRACT

Aggregation of α-synuclein (αS) leads to the hallmark neuropathology of Parkinson's disease (PD) and related synucleinopathies. αS has been described to exist in both cytosolic and membrane-associated forms, the relative abundance of which has remained unsettled. To study αS under the most relevant conditions by a quantitative method, we cultured and matured rodent primary cortical neurons for >17 days and determined αS cytosol:membrane distribution via centrifugation-free sequential extractions based on the weak ionic detergent digitonin. We noticed that at lower temperatures (4 °C or room temperature), αS was largely membrane-associated. At 37 °C, however, αS solubility was markedly increased. In contrast, the extraction of control proteins (GAPDH, cytosolic; calnexin, membrane) was not affected by temperature. When we compared the relative distribution of the synuclein homologs αS and ß-synuclein (ßS) under various conditions that differed in temperature and digitonin concentration (200-1200 µg/ml), we consistently found αS to be more membrane-associated than ßS. Both proteins, however, exhibited temperature-dependent membrane binding. Under the most relevant conditions (37 °C and 800 µg/ml digitonin, i.e., the lowest digitonin concentration that extracted cytosolic GAPDH to near completion), cytosolic distribution was 49.8% ± 9.0% for αS and 63.6% ± 6.6% for ßS. PD-linked αS A30P was found to be largely cytosolic, confirming previous studies that had used different methods. Our work highlights the dynamic nature of cellular synuclein behavior and has important implications for protein-biochemical and cell-biological studies of αS proteostasis, such as testing the effects of genetic and pharmacological manipulations.


Subject(s)
Cell Membrane/genetics , Neurons/metabolism , Parkinson Disease/genetics , alpha-Synuclein/genetics , beta-Synuclein/genetics , Amino Acid Sequence/genetics , Animals , Cell Membrane/chemistry , Humans , Lentivirus/genetics , Neurons/chemistry , Parkinson Disease/immunology , Parkinson Disease/pathology , Primary Cell Culture , Protein Aggregates/genetics , Protein Aggregates/immunology , Protein Aggregation, Pathological/genetics , Protein Binding/genetics , Rats , Temperature , alpha-Synuclein/chemistry , alpha-Synuclein/immunology , alpha-Synuclein/isolation & purification , beta-Synuclein/chemistry , beta-Synuclein/immunology , beta-Synuclein/isolation & purification
9.
Ann Neurol ; 89(1): 74-90, 2021 01.
Article in English | MEDLINE | ID: mdl-32996158

ABSTRACT

OBJECTIVE: Parkinson disease (PD) has useful symptomatic treatments that do not slow the neurodegenerative process, and no significant disease-modifying treatments are approved. A key therapeutic target in PD is α-synuclein (αS), which is both genetically implicated and accumulates in Lewy bodies rich in vesicles and other lipid membranes. Reestablishing αS homeostasis is a central goal in PD. Based on previous lipidomic analyses, we conducted a mouse trial of a stearoyl-coenzyme A desaturase (SCD) inhibitor ("5b") that prevented αS-positive vesicular inclusions and cytotoxicity in cultured human neurons. METHODS: Oral dosing and brain activity of 5b were established in nontransgenic mice. 5b in drinking water was given to mice expressing wild-type human αS (WT) or an amplified familial PD αS mutation (E35K + E46K + E61K ["3K"]) beginning near the onset of nigral and cortical neurodegeneration and the robust PD-like motor syndrome in 3K. Motor phenotypes, brain cytopathology, and SCD-related lipid changes were quantified in 5b- versus placebo-treated mice. Outcomes were compared to effects of crossing 3K to SCD1-/- mice. RESULTS: 5b treatment reduced αS hyperphosphorylation in E46K-expressing human neurons, in 3K neural cultures, and in both WT and 3K αS mice. 5b prevented subtle gait deficits in WT αS mice and the PD-like resting tremor and progressive motor decline of 3K αS mice. 5b also increased αS tetramers and reduced proteinase K-resistant lipid-rich aggregates. Similar benefits accrued from genetically deleting 1 SCD allele, providing target validation. INTERPRETATION: Prolonged reduction of brain SCD activity prevented PD-like neuropathology in multiple PD models. Thus, an orally available SCD inhibitor potently ameliorates PD phenotypes, positioning this approach to treat human α-synucleinopathies. ANN NEUROL 2021;89:74-90.


Subject(s)
Parkinson Disease/prevention & control , alpha-Synuclein/genetics , Animals , Brain/pathology , Humans , Lewy Bodies/pathology , Mice, Transgenic , Neurons/metabolism , Parkinson Disease/genetics , Phenotype , alpha-Synuclein/metabolism
10.
Acta Neuropathol ; 143(4): 453-469, 2022 04.
Article in English | MEDLINE | ID: mdl-35141810

ABSTRACT

The protein α-synuclein, a key player in Parkinson's disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients. This disturbed equilibrium is decreased in a brain region-specific manner in patient samples pointing toward a possible "prion-like" propagation of the underlying pathology and forms distinct disease-specific patterns in the two different synucleinopathies. We are also able to show that a destabilization of multimers mechanistically leads to increased levels of insoluble, pathological α-synuclein, while pharmacological stabilization of multimers leads to a "prion-like" aggregation resistance. Together, our findings suggest that these disease-specific patterns of α-synuclein multimer destabilization in sporadic PD and DLB are caused by both regional neuronal vulnerability and "prion-like" aggregation transmission enabled by the destabilization of local endogenous α-synuclein protein.


Subject(s)
Lewy Body Disease , Parkinson Disease , Prions , Synucleinopathies , Brain/pathology , Humans , Lewy Bodies/pathology , Lewy Body Disease/pathology , Parkinson Disease/pathology , Prions/metabolism , alpha-Synuclein/metabolism
11.
Proc Natl Acad Sci U S A ; 116(41): 20760-20769, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548371

ABSTRACT

Microscopy of Lewy bodies in Parkinson's disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K. Here, we use the αS "3K" (E35K+E46K+E61K) engineered mutation to probe the mechanisms of reported small-molecule modifiers of αS biochemistry and then identify compounds via a medium-throughput automated screen. αS 3K, which forms round, vesicle-rich inclusions in cultured neurons and causes a PD-like, l-DOPA-responsive motor phenotype in transgenic mice, was fused to YFP, and fluorescent inclusions were quantified. Live-cell microscopy revealed the highly dynamic nature of the αS inclusions: for example, their rapid clearance by certain known modulators of αS toxicity, including tacrolimus (FK506), isradipine, nilotinib, nortriptyline, and trifluoperazine. Our automated 3K cellular screen identified inhibitors of stearoyl-CoA desaturase (SCD) that robustly prevent the αS inclusions, reduce αS 3K neurotoxicity, and prevent abnormal phosphorylation and insolubility of αS E46K. SCD inhibition restores the E46K αS multimer:monomer ratio in human neurons, and it actually increases this ratio for overexpressed wild-type αS. In accord, conditioning 3K cells in saturated fatty acids rescued, whereas unsaturated fatty acids worsened, the αS phenotypes. Our cellular screen allows probing the mechanisms of synucleinopathy and refining drug candidates, including SCD inhibitors and other lipid modulators.


Subject(s)
Inclusion Bodies/drug effects , Lipids/analysis , Mutation , Neuroblastoma/drug therapy , Small Molecule Libraries/pharmacology , Stearoyl-CoA Desaturase/antagonists & inhibitors , alpha-Synuclein/chemistry , Animals , Cell Line , High-Throughput Screening Assays , Humans , Mice , Mice, Transgenic , Models, Biological , Neuroblastoma/metabolism , Neuroblastoma/pathology , Stearoyl-CoA Desaturase/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
12.
J Mol Struct ; 12672022 Nov 05.
Article in English | MEDLINE | ID: mdl-36310922

ABSTRACT

In contrast to Aß plaques, the spatiotemporal distribution of neurofibrillary tangles of hyperphosphorylated tau (p-tau) predicts cognitive impairment in Alzheimer's disease (AD), underscoring the key pathological role of p-tau and the utmost need to develop AD therapeutics centering upon the control of p-tau aggregation and cytotoxicity. Our drug discovery program is focused on compounds that prevent the aggregation and cytotoxicity of p-tau moieties of the tau isoform 1N4R due to its prevalence (1 N) and long-distance trans-synaptic propagation (4R). We prepared and tested twenty-four newly synthesized small molecules representing the urea (1, 2, 3), sulfonylurea (4), and sulfonamide (5-24) series and evaluated their anti-aggregation effects with biophysical methods (thioflavin T and S fluorescence assays, transmission electron microscopy) and intracellular inclusion cell-based assays. Pre-evaluation was performed on alpha-synuclein (α-syn) to identify molecules to be challenged with p-tau. The sulfonamide derivatives 18 and 20 exhibited an anti-fribrillization activity on α-syn and p-tau. Sulfonamide compounds 18 and 20 reduced inclusion formation in M17D neuroblastoma cells that express inclusion-prone αSynuclein3K::YFP. This project advances new concepts in targeting prone-to-aggregate proteins such as α-syn and p-tau, and provides a molecular scaffold for further optimization and pre-clinical studies focused on AD drug development.

13.
Acta Neuropathol ; 141(4): 491-510, 2021 04.
Article in English | MEDLINE | ID: mdl-32607605

ABSTRACT

The neuronal protein α-synuclein (αS) is central to the pathogenesis of Parkinson's disease and other progressive brain diseases such as Lewy body dementia and multiple system atrophy. These diseases, collectively referred to as 'synucleinopathies', have long been considered purely proteinopathies: diseases characterized by the misfolding of a protein into small and large aggregates mainly consisting of that protein (in this case: α-synuclein). However, recent morphological insights into Lewy bodies, the hallmark neuropathology of human synucleinopathies, suggests these lesions are also rich in vesicles and other membranous organelles. Moreover, αS physiology and pathology are both strongly associated with various aspects of intracellular vesicle trafficking and lipid biology. αS physiologically binds to synaptic and other small vesicles, and several functions of αS in regulating vesicle biology have been proposed. Familial PD-linked αS excess and missense mutations have been shown to impair vesicle trafficking and alter lipid homeostasis. On the other hand, vesicle trafficking and lipid-related genes have emerged as Parkinson's risk factors, suggesting a bidirectional relationship. The answer to the question "Does abnormal αS accumulation cause impaired vesicle trafficking and lipid dyshomeostasis or is αS aggregation the consequence of such impairments?" may be "Both". Here, we review current knowledge of the αS-lipid and αS-vesicle trafficking interplay, with a special focus on Parkinson's disease and Lewy body dementia.


Subject(s)
Lipid Metabolism/physiology , Protein Aggregation, Pathological/pathology , Protein Transport/physiology , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Animals , Cytoplasmic Vesicles/metabolism , Cytoplasmic Vesicles/pathology , Humans , Protein Aggregation, Pathological/metabolism , Synucleinopathies/pathology
14.
Mov Disord ; 36(2): 348-359, 2021 02.
Article in English | MEDLINE | ID: mdl-33103814

ABSTRACT

BACKGROUND: Synucleinopathies, including Parkinson's disease (PD), are characterized by α-synuclein (αS) cytoplasmic inclusions. αS-dependent vesicle-trafficking defects are important in PD pathogenesis, but their mechanisms are not well understood. Protein palmitoylation, post-translational addition of the fatty acid palmitate to cysteines, promotes trafficking by anchoring specific proteins to the vesicle membrane. αS itself cannot be palmitoylated as it lacks cysteines, but it binds to membranes, where palmitoylation occurs, via an amphipathic helix. We hypothesized that abnormal αS membrane-binding impairs trafficking by disrupting palmitoylation. Accordingly, we investigated the therapeutic potential of increasing cellular palmitoylation. OBJECTIVES: We asked whether upregulating palmitoylation by inhibiting the depalmitoylase acyl-protein-thioesterase-1 (APT1) ameliorates pathologic αS-mediated cellular phenotypes and sought to identify the mechanism. METHODS: Using human neuroblastoma cells, rat neurons, and iPSC-derived PD patient neurons, we examined the effects of pharmacologic and genetic downregulation of APT1 on αS-associated phenotypes. RESULTS: APT1 inhibition or knockdown decreased αS cytoplasmic inclusions, reduced αS serine-129 phosphorylation (a PD neuropathological marker), and protected against αS-dependent neurotoxicity. We identified the APT1 substrate microtubule-associated-protein-6 (MAP6), which binds to vesicles in a palmitoylation-dependent manner, as a key mediator of these effects. Mechanistically, we found that pathologic αS accelerated palmitate turnover on MAP6, suggesting that APT1 inhibition corrects a pathological αS-dependent palmitoylation deficit. We confirmed the disease relevance of this mechanism by demonstrating decreased MAP6 palmitoylation in neurons from αS gene triplication patients. CONCLUSIONS: Our findings demonstrate a novel link between the fundamental process of palmitoylation and αS pathophysiology. Upregulating palmitoylation represents an unexplored therapeutic strategy for synucleinopathies. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Humans , Lipoylation , Neurons/metabolism , Rats , Up-Regulation , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
15.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707907

ABSTRACT

Genetic and biochemical evidence attributes neuronal loss in Parkinson's disease (PD) and related brain diseases to dyshomeostasis of the 14 kDa protein α-synuclein (αS). There is no consensus on how αS exerts toxicity. Explanations range from disturbed vesicle biology to proteotoxicity caused by fibrillar aggregates. To probe these mechanisms further, robust cellular toxicity models are needed, but their availability is limited. We previously reported that a shift from dynamic multimers to monomers is an early event in αS dyshomeostasis, as caused by familial PD (fPD)-linked mutants such as E46K. Excess monomers accumulate in round, lipid-rich inclusions. Engineered αS '3K' (E35K+E46K+E61K) amplifies E46K, causing a PD-like, L-DOPA-responsive motor phenotype in transgenic mice. Here, we present a cellular model of αS neurotoxicity after transducing human neuroblastoma cells to express yellow fluorescent protein (YFP)-tagged αS 3K in a doxycycline-dependent manner. αS-3K::YFP induction causes pronounced growth defects that accord with cell death. We tested candidate compounds for their ability to restore growth, and stearoyl-CoA desaturase (SCD) inhibitors emerged as a molecule class with growth-restoring capacity, but the therapeutic window varied among compounds. The SCD inhibitor MF-438 fully restored growth while exerting no apparent cytotoxicity. Our αS bioassay will be useful for elucidating compound mechanisms, for pharmacokinetic studies, and for compound/genetic screens.


Subject(s)
Cell Proliferation/drug effects , Neuroblastoma/metabolism , Pyridazines/pharmacology , Stearoyl-CoA Desaturase/antagonists & inhibitors , Thiadiazoles/pharmacology , alpha-Synuclein/genetics , alpha-Synuclein/toxicity , Bacterial Proteins , Cell Death/drug effects , Cell Line, Tumor , Humans , Lewy Body Disease/drug therapy , Lewy Body Disease/metabolism , Luminescent Proteins , Mutation , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Stearoyl-CoA Desaturase/metabolism , alpha-Synuclein/metabolism
16.
Neurobiol Dis ; 132: 104543, 2019 12.
Article in English | MEDLINE | ID: mdl-31351173

ABSTRACT

α-Synuclein (αS) and tau have a lot in common. Dyshomeostasis and aggregation of both proteins are central in the pathogenesis of neurodegenerative diseases: Parkinson's disease, dementia with Lewy bodies, multi-system atrophy and other 'synucleinopathies' in the case of αS; Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy and other 'tauopathies' in the case of tau. The aggregated states of αS and tau are found to be (hyper)phosphorylated, but the relevance of the phosphorylation in health or disease is not well understood. Both tau and αS are typically characterized as 'intrinsically disordered' proteins, while both engage in transient interactions with cellular components, thereby undergoing structural changes and context-specific folding. αS transiently binds to (synaptic) vesicles forming a membrane-induced amphipathic helix; tau transiently interacts with microtubules forming an 'extended structure'. The regulation and exact nature of the interactions are not fully understood. Here we review recent and previous insights into the dynamic, transient nature of αS and tau with regard to the mode of interaction with their targets, the dwell-time while bound, and the cis and trans factors underlying the frequent switching between bound and unbound states. These aspects are intimately linked to hypotheses on how subtle changes in the transient behaviors may trigger the earliest steps in the pathogenesis of the respective brain diseases. Based on a deeper understanding of transient αS and tau conformations in the cellular context, new therapeutic strategies may emerge, and it may become clearer why existing approaches have failed or how they could be optimized.


Subject(s)
Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Animals , Brain/metabolism , Humans , Neurodegenerative Diseases/therapy , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/therapy , Protein Folding
17.
Hum Mol Genet ; 26(18): 3466-3481, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28911198

ABSTRACT

α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers. We engineered αS mutants incapable of multimerization, leading to excess monomers at vesicle membranes. By EM, such mutants induced prominent vesicle clustering, leading to round cytoplasmic inclusions. Immunogold labeling revealed abundant αS intimately associated with vesicles of varied size. Fluorescence microscopy with marker proteins showed that the αS-associated vesicles were of diverse endocytic and secretory origin. An αS '3K' mutant (E35K + E46K + E61K) that amplifies the PD/DLB-causing E46K mutation induced αS-rich vesicle clusters resembling the vesicle-rich areas of Lewy bodies, supporting pathogenic relevance. Mechanistically, E46K can increase αS vesicle binding via membrane-induced amphipathic helix formation, and '3K' further enhances this effect. Another engineered αS variant added hydrophobicity to the hydrophobic half of αS helices, thereby stabilizing αS-membrane interactions. Importantly, substituting charged for uncharged residues within the hydrophobic half of the stabilized helix not only reversed the strong membrane interaction of the multimer-abolishing αS variant but also restored multimerization and prevented the aberrant vesicle interactions. Thus, reversible αS amphipathic helix formation and dynamic multimerization regulate a normal function of αS at vesicles, and abrogating multimers has pathogenic consequences.


Subject(s)
Inclusion Bodies/metabolism , Mutation , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Conserved Sequence , Humans , Inclusion Bodies/genetics , Lewy Bodies/genetics , Lewy Bodies/metabolism , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence/methods , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Structure, Secondary
18.
Proc Natl Acad Sci U S A ; 112(31): 9596-601, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26153422

ABSTRACT

α-Synuclein (αS) is a highly abundant neuronal protein that aggregates into ß-sheet-rich inclusions in Parkinson's disease (PD). αS was long thought to occur as a natively unfolded monomer, but recent work suggests it also occurs normally in α-helix-rich tetramers and related multimers. To elucidate the fundamental relationship between αS multimers and monomers in living neurons, we performed systematic mutagenesis to abolish self-interactions and learn which structural determinants underlie native multimerization. Unexpectedly, tetramers/multimers still formed in cells expressing each of 14 sequential 10-residue deletions across the 140-residue polypeptide. We postulated compensatory effects among the six highly conserved and one to three additional αS repeat motifs (consensus: KTKEGV), consistent with αS and its homologs ß- and γ-synuclein all forming tetramers while sharing only the repeats. Upon inserting in-register missense mutations into six or more αS repeats, certain mutations abolished tetramer formation, shown by intact-cell cross-linking and independently by fluorescent-protein complementation. For example, altered repeat motifs KLKEGV, KTKKGV, KTKEIV, or KTKEGW did not support tetramerization, indicating the importance of charged or small residues. When we expressed numerous different in-register repeat mutants in human neural cells, all multimer-abolishing but no multimer-neutral mutants caused frank neurotoxicity akin to the proapoptotic protein Bax. The multimer-abolishing variants became enriched in buffer-insoluble cell fractions and formed round cytoplasmic inclusions in primary cortical neurons. We conclude that the αS repeat motifs mediate physiological tetramerization, and perturbing them causes PD-like neurotoxicity. Moreover, the mutants we describe are valuable tools for studying normal and pathological properties of αS and screening for tetramer-stabilizing therapeutics.


Subject(s)
Mutation/genetics , Neurons/pathology , Protein Multimerization , Repetitive Sequences, Amino Acid , alpha-Synuclein/chemistry , alpha-Synuclein/toxicity , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Death/drug effects , Conserved Sequence , Cross-Linking Reagents/pharmacology , Humans , Inclusion Bodies/drug effects , Inclusion Bodies/metabolism , Microscopy, Fluorescence , Molecular Sequence Data , Mutant Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Rats, Sprague-Dawley , Sequence Deletion , Structure-Activity Relationship , alpha-Synuclein/genetics
19.
Neurobiol Dis ; 106: 191-204, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28711409

ABSTRACT

The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions.


Subject(s)
Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Nortriptyline/pharmacology , Protein Aggregation, Pathological/drug therapy , alpha-Synuclein/metabolism , Animals , Animals, Genetically Modified , Antidepressive Agents, Tricyclic/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Drosophila , Escherichia coli , Humans , Male , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Unfolding/drug effects , Random Allocation , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics
20.
Biochemistry ; 54(2): 279-92, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25490121

ABSTRACT

Despite two decades of research, the structure-function relationships of endogenous, physiological forms of α-synuclein (αSyn) are not well understood. Most in vitro studies of this Parkinson's disease-related protein have focused on recombinant αSyn that is unfolded and monomeric, assuming that this represents its state in the normal human brain. Recently, we have provided evidence that αSyn exists in considerable part in neurons, erythrocytes, and other cells as a metastable multimer that principally sizes as a tetramer. In contrast to recombinant αSyn, physiological tetramers purified from human erythrocytes have substantial α-helical content and resist pathological aggregation into ß-sheet rich fibers. Here, we report the first method to fully purify soluble αSyn from the most relevant source, human brain. We describe protocols that purify αSyn to homogeneity from nondiseased human cortex using ammonium sulfate precipitation, gel filtration, and ion exchange, hydrophobic interaction, and affinity chromatographies. Cross-linking of the starting material and the partially purified chromatographic fractions revealed abundant αSyn multimers, including apparent tetramers, but these were destabilized in large part to monomers during the final purification step. The method also fully purified the homologue ß-synuclein, with a similar outcome. Circular dichroism spectroscopy showed that purified, brain-derived αSyn can display more helical content than the recombinant protein, but this result varied. Collectively, our data suggest that purifying αSyn to homogeneity destabilizes native, α-helix-rich multimers that exist in intact and partially purified brain samples. This finding suggests existence of a stabilizing cofactor (e.g., a small lipid) present inside neurons that is lost during final purification.


Subject(s)
Brain Chemistry , Protein Stability , alpha-Synuclein/isolation & purification , Chemical Precipitation , Chromatography, Gel , Chromatography, Ion Exchange , Circular Dichroism , Humans , Mass Spectrometry , Protein Multimerization , Protein Structure, Secondary , alpha-Synuclein/chemistry , beta-Synuclein/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL