Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569507

RESUMEN

Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.


Asunto(s)
Desinfectantes , Listeria monocytogenes , Desinfección , Compuestos de Benzalconio/farmacología , Microbiología de Alimentos , Simulación de Dinámica Molecular , Cinética , Desinfectantes/farmacología
2.
Crit Rev Food Sci Nutr ; 58(3): 436-449, 2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-27246577

RESUMEN

Mathematical models, in particular, physics-based models, are essential tools to food product and process design, optimization and control. The success of mathematical models relies on their predictive capabilities. However, describing physical, chemical and biological changes in food processing requires the values of some, typically unknown, parameters. Therefore, parameter estimation from experimental data is critical to achieving desired model predictive properties. This work takes a new look into the parameter estimation (or identification) problem in food process modeling. First, we examine common pitfalls such as lack of identifiability and multimodality. Second, we present the theoretical background of a parameter identification protocol intended to deal with those challenges. And, to finish, we illustrate the performance of the proposed protocol with an example related to the thermal processing of packaged foods.


Asunto(s)
Manipulación de Alimentos/métodos , Modelos Teóricos , Humanos , Proyectos de Investigación
3.
Environ Sci Technol ; 52(21): 12514-12525, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30251844

RESUMEN

Simultaneous presence of metals and parasites in fish might lead to potential risks to human health. Parasites might influence metal accumulation and disturb detoxification in fish, thereby affecting biomarkers of fish responses as well as metal biomagnification in humans. It is, therefore, of importance to take into account parasite infection when investigating metal accumulation in fish. However, mechanisms of metal accumulation and distribution in fish-parasite systems are not integrated into current approaches. The present study proposes a new physiologically based pharmacokinetic model for mechanistic simulation of metal partitioning between intestinal parasites and their hosts. As a particular case, Ag accumulation in the system of chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis was investigated. As a novelty, fish cardiac output and organ-specific blood flow distribution were incorporated in our model. This approach distinguishes the current model from the ones developed previously. It also facilitates model extrapolation and application to varying conditions. In general, the model explained Ag accumulation in the system well, especially in chub gill, storage (including skin, muscle, and carcass), and liver. The highest concentration of Ag was found in the liver. The accumulation of Ag in the storage, liver, and gill compartments followed a similar pattern, i.e., increasing during the exposure and decreasing during the depuration. The model also generated this observed trend. However, the model had a weaker performance for simulating Ag accumulation in the intestine and the kidney. Silver accumulation in these organs was less evident with considerable variations.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Helmintiasis Animal , Parásitos , Contaminantes Químicos del Agua , Animales , Humanos , Plata
4.
Foods ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928773

RESUMEN

Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.

5.
J Comput Neurosci ; 35(3): 295-316, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23686304

RESUMEN

Spontaneous oscillations in the mid-brain dopaminergic neurons are an important feature of motor control. The degeneration of these neurons is involved in movement disorders, particularly Parkinson's Disease. Modelling of this activity is an important part of developing an understanding of the pathogenic process. We develop a mathematical paradigm to describe this activity with a single compartment approach and a CellML version is made publicly available. The model explicitly describes the dynamics of the transmembrane potential with changes in the levels of important cations and is consistent with two major observations in the literature regarding its behaviour in the presence of channel blockers. Stability of the model behaviour is determined from the properties of its Monodromy matrix. We also discuss from the perspective of energy, a pharmacological intervention suggested in the treatment of Parkinson's Disease.


Asunto(s)
Relojes Biológicos/fisiología , Metabolismo Energético/fisiología , Modelos Neurológicos , Neuronas/fisiología , Sustancia Negra/fisiología , Algoritmos , Bloqueadores de los Canales de Calcio/farmacología , Calibración , Cationes/metabolismo , Humanos , Potenciales de la Membrana/fisiología , Modelos Estadísticos , Sustancia Negra/citología , Tetrodotoxina/farmacología
6.
Foods ; 12(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36766086

RESUMEN

Several factors influence consumers' choices of food products [...].

8.
J Theor Biol ; 301: 15-27, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22314407

RESUMEN

The IGF-1 mediated Akt/mTOR pathway has been recently proposed as mediator of skeletal muscle growth and a positive feedback between Akt and mTOR was suggested to induce homogeneous growth signals along the whole spatial extension of such long cells. Here we develop two biologically justified approximations which we study under the presence of four different initial conditions that describe different paradigms of IGF-1 receptor-induced Akt/mTOR activation. In first scenario the activation of the feedback cascade was assumed to be mild or protein turnover considered to be high. In turn, in the second scenario the transcriptional regulation was assumed to maintain defined levels of inactive pro-enzymes. For both scenarios, we were able to obtain closed-form formulas for growth signal progression in time and space and found that a localised initial signal maintains its Gaussian shape, but gets delocalised and exponentially degraded. Importantly, mathematical treatment of the reaction diffusion system revealed that diffusion filtered out high frequencies of spatially periodic initiator signals suggesting that the muscle cell is robust against fluctuations in spatial receptor expression or activation. However, neither scenario was consistent with the presence of stably travelling signal waves. Our study highlights the role of feedback loops in spatiotemporal signal progression and results can be applied to studies in cell proliferation, cell differentiation and cell death in other spatially extended cells.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Modelos Biológicos , Músculo Esquelético/citología , Proteínas Proto-Oncogénicas c-akt/fisiología , Serina-Treonina Quinasas TOR/fisiología , Algoritmos , Animales , Activación Enzimática/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/fisiología , Transducción de Señal/fisiología
9.
Front Microbiol ; 13: 758237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464917

RESUMEN

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are standard indexes for determining disinfection effectiveness. Nevertheless, they are static values disregarding the kinetics at sub-MIC concentrations where adaptation, growth, stationary, and death phases can be observed. The understanding of these dynamic mechanisms is crucial to designing effective disinfection strategies. In this study, we studied the 48 h kinetics of Bacillus cereus and Escherichia coli cells exposed to sub-MIC concentrations of didecyldimethylammonium chloride (DDAC). Two mathematical models were employed to reproduce the experiments: the only-growth classical logistic model and a mechanistic model including growth and death dynamics. Although both models reproduce the lag, exponential and stationary phases, only the mechanistic model is able to reproduce the death phase and reveals the concentration dependence of the bactericidal/bacteriostatic activity of DDAC. This model could potentially be extended to study other antimicrobials and reproduce changes in optical density (OD) and colony-forming units (CFUs) with the same parameters and mechanisms of action.

10.
Foods ; 11(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954077

RESUMEN

Fish freshness can be considered as the combination of different nutritional and organoleptic attributes that rapidly deteriorate after fish capture, i.e., during processing (cutting, gutting, packaging), storage, transport, distribution, and retail. The rate at which this degradation occurs is affected by several stress variables such as temperature, water activity, or pH, among others. The food industry is aware that fish freshness is a key feature influencing consumers' willingness to pay for the product. Therefore, tools that allow rapid and reliable assessment and prediction of the attributes related to freshness are gaining relevance. The main objective of this work is to provide a comprehensive review of the mathematical models used to describe and predict the changes in the key quality indicators in fresh fish and shellfish during storage. The work also briefly describes such indicators, discusses the most relevant stress factors affecting the quality of fresh fish, and presents a bibliometric analysis of the results obtained from a systematic literature search on the subject.

11.
Foods ; 10(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572531

RESUMEN

Industries of the food sector have made a great effort to control SARS-CoV-2 indirect transmission, through objects or surfaces, by updating cleaning and disinfection protocols previously focused on inactivating other pathogens, as well as food spoilage microorganisms. The information, although scarce at the beginning of the COVID-19 pandemic, has started to be sufficiently reliable to avoid over-conservative disinfection procedures. This work reviews the literature to propose a holistic view of the disinfection process where the decision variables, such as type and concentration of active substances, are optimised to guarantee the inactivation of SARS-CoV-2 and other usual pathogens and spoilage microorganisms while minimising possible side-effects on the environment and animal and human health.

12.
Aquat Toxicol ; 241: 106015, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34753109

RESUMEN

A toxicokinetic-toxicodynamic model based on subcellular metal partitioning is presented for simulating chronic toxicity of copper (Cu) from the estimated concentration in the fraction of potentially toxic metal (PTM). As such, the model allows for considering the significance of different pathways of metal sequestration in predicting metal toxicity. In the metabolically available pool (MAP), excess metals above the metabolic requirements and the detoxification and elimination capacity form the PTM fraction. The reversibly and irreversibly detoxified fractions were distinguished in the biologically detoxified compartment, while responses of organisms were related to Cu accumulation in the PTM fraction. The model was calibrated using the data on Cu concentrations in subcellular fractions and physiological responses measured by the glutathione S-transferase activity and the lipid peroxidation level during 24-day exposure of the Zebra mussel to Cu at concentrations of 25 and 50 µg/L and varying Na+ concentrations up to 4.0 mmol/L. The model was capable of explaining dynamics in the subcellular Cu partitioning, e.g. the trade-off between elimination and detoxification as well as the dependence of net accumulation, elimination, detoxification, and metabolism on the exposure level. Increases in the net accumulation rate in the MAP contributed to increased concentrations of Cu in this fraction. Moreover, these results are indicative of ineffective detoxification at high exposure levels and spill-over effects of detoxification.


Asunto(s)
Dreissena , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Metales , Toxicocinética , Contaminantes Químicos del Agua/toxicidad
13.
Environ Pollut ; 287: 117645, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426373

RESUMEN

Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na+/K+-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu2+ and Na + to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Cobre/análisis , Cobre/toxicidad , Homeostasis , Peroxidación de Lípido , Estrés Oxidativo , Toxicocinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
EFSA J ; 19(1): e06378, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33552296

RESUMEN

Superchilling entails lowering the fish temperature to between the initial freezing point of the fish and about 1-2°C lower. The temperature of superchilled fresh fishery products (SFFP) in boxes without ice was compared to that of products subject to the currently authorised practice in boxes with ice (CFFP) under the same conditions of on-land storage and/or transport. A heat transfer model was developed and made available as a tool to identify under which initial configurations of SFFP the fish temperature, at any time of storage/transport, is lower or equal to CFFP. A minimum degree of superchilling, corresponding to an ice fraction in the fish matrix of SFFP equal or higher than the proportion of ice added per mass of fish in CFFP, will ensure with 99-100% certainty (almost certain) that the fish temperature of SFFP and the consequent increase of relevant hazards will be lower or equal to that of CFFP. In practice, the degree of superchilling can be estimated using the fish temperature after superchilling and its initial freezing point, which are subject to uncertainties. The tool can be used as part of 'safety-by-design' approach, with the reliability of its outcome being dependent on the accuracy of the input data. An evaluation of methods capable of detecting whether a previously frozen fish is commercially presented as 'superchilled' was carried out based on, amongst others, their applicability for different fish species, ability to differentiate fresh fish from fish frozen at different temperatures, use as a stand-alone method, ease of use and classification performance. The methods that were considered 'fit for purpose' are Hydroxyacyl-coenzyme A dehydrogenase (HADH) test, α-glucosidase test, histology, ultraviolet-visible-near-infrared (UV-VIS/NIR) spectroscopy and hyperspectral imaging. These methods would benefit from standardisation, including the establishment of threshold values or classification algorithms to provide a practical routine test.

15.
Int J Biol Macromol ; 145: 788-794, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887382

RESUMEN

Hyaluronic acid (HA) is a glycosaminoglycan crucial for the homeostasis of tissues, and its role on cell signalling and regulation of tissue injury and repair largely depends on HA molecular weight. Therefore, HA application in a variety of fields requires HA of defined size. While a number of enzymatic, chemical and physical methods exist for HA depolymerization, limited information is currently available for accurate planning of experiments. In the present work, we propose a pseudo-mechanistic model to describe depolymerization kinetics of HA with hyaluronidase, chondroitinase ABC and phosphoric acid. Data to feed the model was provided by monitoring molecular weight reduction by gel permeation chromatography with light scattering detection over 24 h. Five enzyme to substrate ratios and three temperatures were used for enzymatic and chemical reactions respectively, allowing for selection of operational parameters in a range of conditions. The model adequately reproduces the resulting data providing flexibility in the planning of the reactions to obtain HA of the desired molecular weight.


Asunto(s)
Condroitina ABC Liasa/química , Ácido Hialurónico/química , Hialuronoglucosaminidasa/química , Ácidos Fosfóricos/química , Cromatografía en Gel/métodos , Cinética , Peso Molecular , Polimerizacion , Temperatura
16.
Carbohydr Polym ; 229: 115450, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826487

RESUMEN

Chondroitin sulfate (CS) is a sulfated glycosaminoglycan with diverse biological activities, which are influenced by molecular weight (Mw) and sulfation pattern. In the present work, we take advantage of the characteristic high Mw of fish CS (51-70 kDa) to obtain lower Mw fragments with hyaluronidase and chondroitinase ABC. With this aim, we present a pseudo-mechanistic model capable of reproducing the decrease in Mw of CS from five different fish species over 24 h at four enzyme to substrate ratios. The fitting parameters of the model for each species allow to establish conditions of reaction to produce CS of the desired Mw. Furthermore, the main features of the sulfation pattern of fish CS remain in the depolymerized fragments, highlighting the feasibility of the proposed approach.


Asunto(s)
Condroitina ABC Liasa/química , Sulfatos de Condroitina/química , Hialuronoglucosaminidasa/química , Animales , Peces , Hidrólisis , Cinética , Estructura Molecular , Peso Molecular
17.
Chemosphere ; 242: 124967, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31677506

RESUMEN

Mechanistic models based on chemical properties of metals and body size have received substantial attention for their potential application to various metals and to different conditions without required calibration. This advantage has been demonstrated for a number of metals, such as Cd and Ag. However, the capacity of metal-specific chemical properties to explain variations in the accumulation for platinum-group elements (PGEs) has not been investigated yet, although emission of these metals is of increasing concern. Once being released, PGEs exist in the environment in mixtures with other metals. The present study attempted to model the accumulation of Pd and Pt in mixtures with Ag and Cd in the zebra mussel (Dreissena polymorpha) from the aqueous phase; and to investigate the potential application of mechanistic models to Pd and Pt. The present study showed statistically insignificant differences in metal accumulation among size groups in a narrow range of shell length (16-22 mm). Kinetic models could simulate well the accumulation of Cd, Ag, and Pt when metal-specific responses of zebra mussels are taken into consideration. These responses include enhanced immobilisation as a detoxifying mechanism and exchange between soft tissues and shells via the extrapallial fluid. Environmental conditions, e.g. the presence of abiotic ligands such as chloride, might also play an important role in metal accumulation. Significant relationships between the absorption efficiency and the covalent index indicate the potential application of mechanistic models based on this chemical property to Pt.


Asunto(s)
Dreissena/metabolismo , Modelos Químicos , Contaminantes Químicos del Agua/farmacocinética , Animales , Bioacumulación , Cadmio/farmacocinética , Cinética , Paladio/farmacocinética , Platino (Metal)/farmacocinética , Plata/farmacocinética , Contaminantes Químicos del Agua/análisis
18.
EFSA J ; 18(4): e06091, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32874299

RESUMEN

On-land transport/storage of fresh fishery products (FFP) for up to 3 days in 'tubs' of three-layered poly-ethylene filled with freshwater and ice was compared to the currently authorised practice (fish boxes of high-density poly-ethylene filled with ice). The impact on the survival and growth of biological hazards in fish and the histamine production in fish species associated with a high amount of histidine was assessed. In different modelling scenarios, the FFP are stored on-board in freshwater or seawater/ice (in tubs) and once on-land they are 'handled' (i.e. sorted or gutted and/or filleted) and transferred to either tubs or boxes. The temperature of the FFP was assumed to be the most influential factor affecting relevant hazards. Under reasonably foreseeable 'abusive' scenarios and using a conservative modelling approach, the growth of the relevant hazards (i.e. Listeria monocytogenes, Aeromonas spp. and non-proteolytic Clostridium botulinum), is expected to be < 0.2 log10 units higher in tubs than in boxes after 3 days when the initial temperature of the fish is 0°C ('keeping' process). Starting at 7°C ('cooling-keeping' process), the expected difference in the growth potential is higher (< 1 log10 for A. hydrophila and < 0.5 log10 for the other two hazards) due to the poorer cooling capacity of water and ice (tub) compared with ice (box). The survival of relevant hazards is not or is negligibly impacted. Histamine formation due to growth of Morganella psychrotolerans under the 'keeping' or 'cooling-keeping' process can be up to 0.4 ppm and 1.5 ppm higher, respectively, in tubs as compared to boxes after 3 days, without reaching the legal limit of 100 ppm. The water uptake associated with the storage of the FFP in tubs (which may be up to 6%) does not make a relevant contribution to the differences in microbial growth potential compared to boxes.

19.
Front Microbiol ; 9: 1259, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997577

RESUMEN

Optimal disinfection protocols are fundamental to minimize bacterial resistance to the compound applied, or cross-resistance to other antimicrobials such as antibiotics. The objective is twofold: guarantee safe levels of pathogens and minimize the excess of disinfectant after a treatment. In this work, the disinfectant dose is optimized based on a mathematical model. The model explains and predicts the interplay between disinfectant and pathogen at different initial microbial densities (inocula) and dose concentrations. The study focuses on the disinfection of Escherichia coli with benzalkonium chloride, the most common quaternary ammonium compound. Interestingly, the specific benzalkonium chloride uptake (mean uptake per cell) decreases exponentially when the inoculum concentration increases. As a consequence, the optimal disinfectant dose increases exponentially with the initial bacterial concentration.

20.
Front Microbiol ; 9: 633, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29634041

RESUMEN

[This corrects the article on p. 2626 in vol. 8, PMID: 29354110.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA