Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Blood ; 137(1): 126-137, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32785680

RESUMEN

Graft-versus-host disease (GVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (AHSCT). Definitive diagnosis of GVHD is invasive, and biopsies of involved tissues pose a high risk of bleeding and infection. T cells are central to GVHD pathogenesis, and our previous studies in a chronic GVHD mouse model showed that alloreactive CD4+ T cells traffic to the target organs ahead of overt symptoms. Because increased glycolysis is an early feature of T-cell activation, we hypothesized that in vivo metabolic imaging of glycolysis would allow noninvasive detection of liver GVHD as activated CD4+ T cells traffic into the organ. Indeed, hyperpolarized 13C-pyruvate magnetic resonance imaging detected high rates of conversion of pyruvate to lactate in the liver ahead of animals becoming symptomatic, but not during subsequent overt chronic GVHD. Concomitantly, CD4+ T effector memory cells, the predominant pathogenic CD4+ T-cell subset, were confirmed to be highly glycolytic by transcriptomic, protein, metabolite, and ex vivo metabolic activity analyses. Preliminary data from single-cell sequencing of circulating T cells in patients undergoing AHSCT also suggested that increased glycolysis may be a feature of incipient acute GVHD. Metabolic imaging is being increasingly used in the clinic and may be useful in the post-AHSCT setting for noninvasive early detection of GVHD.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Enfermedad Injerto contra Huésped/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Glucólisis , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Activación de Linfocitos/inmunología , Ratones , Análisis de la Célula Individual/métodos , Trasplante Homólogo
2.
Genes Chromosomes Cancer ; 60(6): 434-446, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33527590

RESUMEN

Renal cell carcinoma (RCC) is not a single disease but is made up of several different histologically defined subtypes that are associated with distinct genetic alterations which require subtype specific management and treatment. Papillary renal cell carcinoma (pRCC) is the second most common subtype after conventional/clear cell RCC (ccRCC), representing ~20% of cases, and is subcategorized into type 1 and type 2 pRCC. It is important for preclinical studies to have cell lines that accurately represent each specific RCC subtype. This study characterizes seven cell lines derived from both primary and metastatic sites of type 1 pRCC, including the first cell line derived from a hereditary papillary renal carcinoma (HPRC)-associated tumor. Complete or partial gain of chromosome 7 was observed in all cell lines and other common gains of chromosomes 16, 17, or 20 were seen in several cell lines. Activating mutations of MET were present in three cell lines that all demonstrated increased MET phosphorylation in response to HGF and abrogation of MET phosphorylation in response to MET inhibitors. CDKN2A loss due to mutation or gene deletion, associated with poor outcomes in type 1 pRCC patients, was observed in all cell line models. Six cell lines formed tumor xenografts in athymic nude mice and thus provide in vivo models of type 1 pRCC. These type 1 pRCC cell lines provide a comprehensive representation of the genetic alterations associated with pRCC that will give insight into the biology of this disease and be ideal preclinical models for therapeutic studies.


Asunto(s)
Carcinoma de Células Renales/genética , Autenticación de Línea Celular/métodos , Neoplasias Renales/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Inestabilidad Cromosómica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Neoplasias Renales/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
3.
Genes Chromosomes Cancer ; 59(8): 472-483, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259323

RESUMEN

Renal medullary carcinoma (RMC) is a rare, aggressive disease that predominantly afflicts individuals of African or Mediterranean descent with sickle cell trait. RMC comprises 1% of all renal cell carcinoma diagnoses with a median overall survival of 13 months. Patients are typically young (median age-22) and male (male:female ratio of 2:1) and tumors are characterized by complete loss of expression of the SMARCB1 tumor suppressor protein. Due to the low incidence of RMC and the disease's aggressiveness, treatment decisions are often based on case reports. Thus, it is critical to develop preclinical models of RMC to better understand the pathogenesis of this disease and to identify effective forms of therapy. Two novel cell line models, UOK353 and UOK360, were derived from primary RMCs that both demonstrated the characteristic SMARCB1 loss. Both cell lines overexpressed EZH2 and other members of the polycomb repressive complex and EZH2 inhibition in RMC tumor spheroids resulted in decreased viability. High throughput drug screening of both cell lines revealed several additional candidate compounds, including bortezomib that had both in vitro and in vivo antitumor activity. The activity of bortezomib was shown to be partially dependent on increased oxidative stress as addition of the N-acetyl cysteine antioxidant reduced the effect on cell proliferation. Combining bortezomib and cisplatin further decreased cell viability both in vitro and in vivo that single agent bortezomib treatment. The UOK353 and UOK360 cell lines represent novel preclinical models for the development of effective forms of therapy for RMC patients.


Asunto(s)
Carcinoma Medular/patología , Neoplasias Renales/patología , Cultivo Primario de Células/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Carcinoma Medular/tratamiento farmacológico , Carcinoma Medular/genética , Autenticación de Línea Celular/métodos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Ratones , Ratones Desnudos , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Células Tumorales Cultivadas
4.
BMC Cancer ; 19(1): 917, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519159

RESUMEN

BACKGROUND: Renal cell carcinomas (RCC) harboring a TFE3 gene fusion (TfRCC) represent an aggressive subset of kidney tumors. Key signaling pathways of TfRCC are unknown and preclinical in vivo data are lacking. We investigated Akt/mTOR pathway activation and the preclinical efficacy of dual mTORC1/2 versus selective mTORC1 inhibition in TfRCC. METHODS: Levels of phosphorylated Akt/mTOR pathway proteins were compared by immunoblot in TfRCC and clear cell RCC (ccRCC) cell lines. Effects of the mTORC1 inhibitor, sirolimus, and the dual mTORC1/2 inhibitor, AZD8055, on Akt/mTOR activation, cell cycle progression, cell viability and cytotoxicity were compared in TfRCC cells. TfRCC xenograft tumor growth in mice was evaluated after 3-week treatment with oral AZD8055, intraperitoneal sirolimus and respective vehicle controls. RESULTS: The Akt/mTOR pathway was activated to a similar or greater degree in TfRCC than ccRCC cell lines and persisted partly during growth factor starvation, suggesting constitutive activation. Dual mTORC1/2 inhibition with AZD8055 potently inhibited TfRCC viability (IC50 = 20-50 nM) due at least in part to cell cycle arrest, while benign renal epithelial cells were relatively resistant (IC50 = 400 nM). Maximal viability reduction was greater with AZD8055 than sirolimus (80-90% versus 30-50%), as was the extent of Akt/mTOR pathway inhibition, based on significantly greater suppression of P-Akt (Ser473), P-4EBP1, P-mTOR and HIF1α. In mouse xenograft models, AZD8055 achieved significantly better tumor growth inhibition and prolonged mouse survival compared to sirolimus or vehicle controls. CONCLUSIONS: Akt/mTOR activation is common in TfRCC and a promising therapeutic target. Dual mTORC1/2 inhibition suppresses Akt/mTOR signaling more effectively than selective mTORC1 inhibition and demonstrates in vivo preclinical efficacy against TFE3-fusion renal cell carcinoma.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Carcinoma de Células Renales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Morfolinas/farmacología , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cell Mol Life Sci ; 75(5): 939-963, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29071385

RESUMEN

The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Pirimidinas/farmacología , Neoplasias de la Vejiga Urinaria/patología , Animales , División Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Desnudos , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Proc Natl Acad Sci U S A ; 112(36): 11282-7, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305952

RESUMEN

The liver has an exceptional replicative capacity following partial hepatectomy or chemical injuries. Cellular proliferation requires increased production of energy and essential metabolites, which critically depend on the mitochondria. To determine whether Top1mt, the vertebrate mitochondrial topoisomerase, is involved in this process, we studied liver regeneration after carbon tetrachloride (CCl4) administration. TOP1mt knockout (KO) mice showed a marked reduction in regeneration and hepatocyte proliferation. The hepatic mitochondrial DNA (mtDNA) failed to increase during recovery from CCl4 exposure. Reduced glutathione was also depleted, indicating increased reactive oxygen species (ROS). Steady-state levels of ATP, O2 consumption, mtDNA, and mitochondrial mass were also reduced in primary hepatocytes from CCl4-treated KO mice. To further test whether Top1mt acted by enabling mtDNA regeneration, we tested TOP1mt KO fibroblasts and human colon carcinoma HCT116 cells and measured mtDNA after 3-d treatment with ethidium bromide. Both types of TOP1mt knockout cells showed defective mtDNA regeneration following mtDNA depletion. Our study demonstrates that Top1mt is required for normal mtDNA homeostasis and for linking mtDNA expansion with hepatocyte proliferation.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Hepatocitos/metabolismo , Regeneración Hepática/fisiología , Mitocondrias Hepáticas/enzimología , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Tetracloruro de Carbono/toxicidad , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , ADN-Topoisomerasas de Tipo I/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Glutatión/metabolismo , Células HCT116 , Hepatocitos/efectos de los fármacos , Hepatocitos/ultraestructura , Humanos , Regeneración Hepática/genética , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Genes Chromosomes Cancer ; 56(10): 719-729, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28736828

RESUMEN

Chromophobe renal cell carcinoma (ChRCC) represents 5% of all RCC cases and frequently demonstrates multiple chromosomal losses and an indolent pattern of local growth, but can demonstrate aggressive features and resistance to treatment in a metastatic setting. Cell line models are an important tool for the investigation of tumor biology and therapeutic drug efficacy. Currently, there are few ChRCC-derived cell lines and none is well characterized. This study characterizes a novel ChRCC-derived cell line model, UOK276. A large ChRCC tumor with regions of sarcomatoid differentiation was used to establish a spontaneously immortal cell line, UOK276. UOK276 was evaluated for chromosomal, mutational, and metabolic aberrations. The UOK276 cell line is hyperdiploid with a modal number of 49 chromosomes per cell, and evidence of copy-neutral loss of heterozygosity, as opposed to the classic pattern of ChRCC chromosomal losses. UOK276 demonstrated a TP53 missense mutation, expressed mutant TP53 protein, and responded to treatment with a small-molecule therapeutic agent, NSC319726, designed to reactivate mutated TP53. Xenograft tumors grew in nude mice and provide an in vivo animal model for the investigation of potential therapeutic regimes. The xenograft pathology and genetic analysis suggested that UOK276 was derived from the sarcomatoid region of the original tumor. In summary, UOK276 represents a novel in vitro and in vivo cell line model for aggressive, sarcomatoid-differentiated, TP53 mutant ChRCC. This preclinical model system could be used to investigate the novel biology of aggressive, sarcomatoid ChRCC and evaluate the new therapeutic regimes.


Asunto(s)
Carcinoma de Células Renales/genética , Cariotipo , Neoplasias Renales/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Mutación Missense , Proteína p53 Supresora de Tumor/genética
8.
J Am Chem Soc ; 138(49): 15813-15816, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960310

RESUMEN

Dysregulated metabolism is a hallmark of many diseases, including cancer. Methods to fluorescently detect metabolites have the potential to enable new approaches to cancer detection and imaging. However, fluorescent sensing methods for naturally occurring cellular metabolites are relatively unexplored. Here we report the development of a chemical approach to detect the oncometabolite fumarate. Our strategy exploits a known bioorthogonal reaction, the 1,3-dipolar cycloaddition of nitrileimines and electron-poor olefins, to detect fumarate via fluorescent pyrazoline cycloadduct formation. We demonstrate hydrazonyl chlorides serve as readily accessible nitrileimine precursors, whose reactivity and spectral properties can be tuned to enable detection of fumarate and other dipolarophile metabolites. Finally, we show this reaction can be used to detect enzyme activity changes caused by mutations in fumarate hydratase, which underlie the familial cancer predisposition syndrome hereditary leiomyomatosis and renal cell cancer. Our studies define a novel intersection of bioorthogonal chemistry and metabolite reactivity that may be harnessed to enable biological profiling, imaging, and diagnostic applications.


Asunto(s)
Alquenos/metabolismo , Carcinoma de Células Renales/metabolismo , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Iminas/metabolismo , Neoplasias Renales/metabolismo , Alquenos/química , Carcinoma de Células Renales/patología , Fumaratos/análisis , Humanos , Iminas/química , Neoplasias Renales/patología , Estructura Molecular
9.
Hepatology ; 62(4): 1122-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26058814

RESUMEN

UNLABELLED: The cell fate determinant Numb is aberrantly expressed in cancer. Numb is alternatively spliced, with one isoform containing a long proline-rich region (PRR(L) ) compared to the other with a short PRR (PRR(S) ). Recently, PRR(L) was reported to enhance proliferation of breast and lung cancer cells. However, the importance of Numb alternative splicing in hepatocellular carcinoma (HCC) remains unexplored. We report here that Numb PRR(L) expression is increased in HCC and associated with early recurrence and reduced overall survival after surgery. In a panel of HCC cell lines, PRR(L) generally promotes and PRR(S) suppresses proliferation, migration, invasion, and colony formation. Knockdown of PRR(S) leads to increased Akt phosphorylation and c-Myc expression, and Akt inhibition or c-Myc silencing dampens the proliferative impact of Numb PRR(S) knockdown. In the cell models explored in this study, alternative splicing of Numb PRR isoforms is coordinately regulated by the splicing factor RNA-binding Fox domain containing 2 (RbFox2) and the kinase serine/arginine protein-specific kinase 2 (SRPK2). Knockdown of the former causes accumulation of PRR(L) , while SRPK2 knockdown causes accumulation of PRR(S) . The subcellular location of SRPK2 is regulated by the molecular chaperone heat shock protein 90, and heat shock protein 90 inhibition or knockdown phenocopies SRPK2 knockdown in promoting accumulation of Numb PRR(S) . Finally, HCC cell lines that predominantly express PRR(L) are differentially sensitive to heat shock protein 90 inhibition. CONCLUSION: Alternative splicing of Numb may provide a useful prognostic biomarker in HCC and is pharmacologically tractable.


Asunto(s)
Empalme Alternativo , Carcinoma Hepatocelular/genética , Diferenciación Celular/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Humanos , Células Tumorales Cultivadas
11.
Proc Natl Acad Sci U S A ; 110(17): E1604-12, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23564345

RESUMEN

TRAP1 (TNF receptor-associated protein), a member of the HSP90 chaperone family, is found predominantly in mitochondria. TRAP1 is broadly considered to be an anticancer molecular target. However, current inhibitors cannot distinguish between HSP90 and TRAP1, making their utility as probes of TRAP1-specific function questionable. Some cancers express less TRAP1 than do their normal tissue counterparts, suggesting that TRAP1 function in mitochondria of normal and transformed cells is more complex than previously appreciated. We have used TRAP1-null cells and transient TRAP1 silencing/overexpression to show that TRAP1 regulates a metabolic switch between oxidative phosphorylation and aerobic glycolysis in immortalized mouse fibroblasts and in human tumor cells. TRAP1-deficiency promotes an increase in mitochondrial respiration and fatty acid oxidation, and in cellular accumulation of tricarboxylic acid cycle intermediates, ATP and reactive oxygen species. At the same time, glucose metabolism is suppressed. TRAP1-deficient cells also display strikingly enhanced invasiveness. TRAP1 interaction with and regulation of mitochondrial c-Src provide a mechanistic basis for these phenotypes. Taken together with the observation that TRAP1 expression is inversely correlated with tumor grade in several cancers, these data suggest that, in some settings, this mitochondrial molecular chaperone may act as a tumor suppressor.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Células COS , Proteína Tirosina Quinasa CSK , Chlorocebus aethiops , Glucólisis , Proteínas HSP90 de Choque Térmico , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Células 3T3 NIH , Invasividad Neoplásica/genética , Fosforilación Oxidativa , Interferencia de ARN , Transfección , Familia-src Quinasas/metabolismo
12.
Cell Cycle ; 23(1): 43-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38263737

RESUMEN

Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Carcinoma de Células Renales/patología , Antígeno B7-H1 , Neoplasias Renales/patología , Proteínas Quinasas Activadas por AMP , Línea Celular Tumoral , Resistencia a Antineoplásicos
13.
Methods Protoc ; 6(2)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37104015

RESUMEN

Insulin is a hormone produced by ß-cells of the pancreas and controls the amount of sugar in the blood. Since its discovery over 100 years ago, insulin has been used as a life-saving treatment for people with diabetes. Historically, the biological activity or bioidentity of insulin products has been assessed using an in vivo model. However, reduction in animal experiments is a goal for many worldwide, and there is a need to develop in vitro bioassays to reliably test the biological activity of insulin products. This article describes an in vitro cell-based method to assess the biological activity of insulin glargine, insulin aspart, and insulin lispro in a step-by-step manner.

14.
Life (Basel) ; 13(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240841

RESUMEN

Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.

15.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37095531

RESUMEN

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Inhibidores mTOR , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Translocación Genética , Fosfatidilinositol 3-Quinasa , Glicoproteínas de Membrana/genética
16.
MAbs ; 14(1): 2139886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36334035

RESUMEN

Immune checkpoint inhibitors (ICIs) have changed the therapeutic landscape for cancer patients, but diabetes, a rare, severe immune-related endocrinopathy, is linked to ICI therapy. It is unclear whether glycosylation of ICIs may play a role in the development of this adverse event and how the physiological effects of different ICIs on pancreatic cells should be evaluated. We used a mouse pancreatic organoid model to compare three PD-L1 blocking antibodies in the presence or absence of IFNγ using a metabolic bioanalyzer. Modulation of ICI glycosylation altered its metabolic effects on mouse pancreatic organoids, suggesting that this model could be used to monitor and compare ICIs and to study the mechanisms underlying the development of IC-mediated diabetes.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Ratones , Animales , Antígeno B7-H1 , Anticuerpos Bloqueadores , Organoides , Antineoplásicos Inmunológicos/uso terapéutico
17.
Cancers (Basel) ; 14(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681624

RESUMEN

BACKGROUND: The mechanism of action of romidepsin and other histone deacetylase inhibitors is still not fully explained. Our goal was to gain a mechanistic understanding of the RAS-linked phenotype associated with romidepsin sensitivity. METHODS: The NCI60 dataset was screened for molecular clues to romidepsin sensitivity. Histone acetylation, DNA damage, ROS production, metabolic state (real-time measurement and metabolomics), and gene expression alterations (transcriptomics) were determined in KRAS-WT versus KRAS-mutant cell groups. The search for biomarkers in response to HDACi was implemented by supervised machine learning analysis on a 608-cell transcriptomic dataset and validated in a clinical dataset. RESULTS: Romidepsin treatment induced depletion in acetyl-CoA in all tested cell lines, which led to oxidative stress, metabolic stress, and increased death-particularly in KRAS-mutant cell lines. Romidepsin-induced stresses and death were rescued by acetyl-CoA replenishment. Two acetyl-CoA gene expression signatures associated with HDACi sensitivity were derived from machine learning analysis in the CCLE (Cancer Cell Line Encyclopedia) cell panel. Signatures were then validated in the training cohort for seven HDACi, and in an independent 13-patient cohort treated with belinostat. CONCLUSIONS: Our study reveals the importance of acetyl-CoA metabolism in HDAC sensitivity, and it highlights acetyl-CoA generation pathways as potential targets to combine with HDACi.

18.
Front Oncol ; 12: 858379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656514

RESUMEN

The immune checkpoint programmed death-ligand 1 (PD-L1) is expressed on the cell surface of tumor cells and is key for maintaining an immunosuppressive microenvironment through its interaction with the programmed death 1 (PD-1). Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic cancer characterized by an aberrant aerobic glycolytic metabolism and is known to overexpress PD-L1. Multiple immunotherapies have been approved for the treatment of ccRCC, including cytokines and immune checkpoint inhibitors. Recently the intrinsic role of PD-L1 and interferon gamma (IFNγ) signaling have been studied in several types of tumor cells, yet it remains unclear how they affect the metabolism and signaling pathways of ccRCC. Using metabolomics, metabolic assays and RNAseq, we showed that IFNγ enhanced aerobic glycolysis and tryptophan metabolism in ccRCC cells in vitro and induced the transcriptional expression of signaling pathways related to inflammation, cell proliferation and cellular energetics. These metabolic and transcriptional effects were partially reversed following transient PD-L1 silencing. Aerobic glycolysis, as well as signaling pathways related to inflammation, were not induced by IFNγ when PD-L1 was silenced, however, tryptophan metabolism and activation of Jak2 and STAT1 were maintained. Our data demonstrate that PD-L1 expression is required to mediate some of IFNγ's effect in ccRCC cells and highlight the importance of PD-L1 signaling in regulating the metabolism of ccRCC cells in response to inflammatory signals.

19.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132958

RESUMEN

Immune cells express an array of inhibitory checkpoint receptors that are upregulated upon activation and limit tissue damage associated with excessive response to pathogens or allergens. Mouse leukocyte immunoglobulin like receptor B4 (LILRB4), also known as glycoprotein 49B (gp49B), is an inhibitory checkpoint receptor constitutively expressed in myeloid cells and upregulated in B cells, T cells, and NK cells upon activation. Here, we report that expression of LILRB4, which binds Zika virus (ZIKV), was increased in microglia and myeloid cells infiltrating the brains of neonatal mice with ZIKV-associated meningoencephalitis. Importantly, while C57BL/6 mice developed transient neurological symptoms but survived infection, mice lacking LILRB4/gp49B (LILRB4 KO) exhibited more severe signs of neurological disease and succumbed to disease. Their brains showed increased cellular infiltration but reduced control of viral burden. The reduced viral clearance was associated with altered NK cell function in the absence of LILRB4/gp49B. In naive animals, this manifested as reduced granzyme B responses to stimulation, but in ZIKV-infected animals, NK cells showed phenotypic changes that suggested altered maturation, diminished glucose consumption, reduced IFN-γ and granzyme B production, and impaired cytotoxicity. Together, our data reveal LILRB4/gp49B as an important regulator of NK cell function during viral infections.


Asunto(s)
Linfocitos B/inmunología , Regulación de la Expresión Génica , Células Asesinas Naturales/inmunología , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Infección por el Virus Zika/inmunología , Virus Zika , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Modelos Animales de Enfermedad , Femenino , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Masculino , Glicoproteínas de Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN/genética , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/metabolismo , Linfocitos T/metabolismo , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo
20.
Carcinogenesis ; 31(6): 1018-26, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20219773

RESUMEN

Human conventional renal cell carcinoma (CRCC) remains resistant to therapy. The RNA-binding protein HuR regulates the stability and/or translation of multiple messenger RNAs involved in malignant transformation. In this study, we aimed to evaluate the potential role of HuR in this pathology. Using seven human CRCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene as well as 15 normal/renal cell carcinoma tumor pairs, we showed that HuR is overexpressed in all tumors independently of the VHL status. Futhermore, HuR cytoplasmic presence appears to be more common in early tumor stages, suggesting a role in tumor promotion. We then assessed the effect of HuR knockdown using small interfering RNA in cultured cell and in tumor-bearing mice. Both in vitro and in vivo, we observed that cell growth was inhibited by 60% and that this effect was obtained through an inhibition of cell proliferation and an induction of cell apoptosis. Finally, we found that expression of vascular endothelium growth factor, tumor growth factor-beta and of the hypoxia-induced transcription factor-2alpha as well as the constitutive activation of the oncogenic phosphoinositide 3-kinase/Akt, nuclear factor-kappaB and mitogen-activated protein kinase pathways were decreased in HuR-depleted cells and tumors. All these results suggest a pivotal role for HuR in human CRCC.


Asunto(s)
Antígenos de Superficie/fisiología , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Antígenos de Superficie/genética , Western Blotting , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proteínas ELAV , Proteína 1 Similar a ELAV , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Renales/patología , Ratones , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA