Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102912, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649910

RESUMEN

Daptomycin (DAP) is an antibiotic frequently used as a drug of last resort against vancomycin-resistant enterococci. One of the major challenges when using DAP against vancomycin-resistant enterococci is the emergence of resistance, which is mediated by the cell-envelope stress system LiaFSR. Indeed, inhibition of LiaFSR signaling has been suggested as a strategy to "resensitize" enterococci to DAP. In the absence of LiaFSR, alternative pathways mediating DAP resistance have been identified, including adaptive mutations in the enolpyruvate transferase MurAA (MurAAA149E), which catalyzes the first committed step in peptidoglycan biosynthesis; however, how these mutations confer resistance is unclear. Here, we investigated the biochemical basis for MurAAA149E-mediated adaptation to DAP to determine whether such an alternative pathway would undermine the potential efficacy of therapies that target the LiaFSR pathway. We found cells expressing MurAAA149E had increased susceptibility to glycoside hydrolases, consistent with decreased cell wall integrity. Furthermore, structure-function studies of MurAA and MurAAA149E using X-ray crystallography and biochemical analyses indicated only a modest decrease in MurAAA149E activity, but a 16-fold increase in affinity for MurG, which performs the last intracellular step of peptidoglycan synthesis. Exposure to DAP leads to mislocalization of cell division proteins including MurG. In Bacillus subtilis, MurAA and MurG colocalize at division septa and, thus, we propose MurAAA149E may contribute to DAP nonsusceptibility by increasing the stability of MurAA-MurG interactions to reduce DAP-induced mislocalization of these essential protein complexes.


Asunto(s)
Daptomicina , Enterococcus faecium , Transferasas , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Daptomicina/metabolismo , Daptomicina/farmacología , Farmacorresistencia Bacteriana , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/metabolismo , Pruebas de Sensibilidad Microbiana , Peptidoglicano/metabolismo , Transferasas/metabolismo
2.
Antimicrob Agents Chemother ; 68(3): e0108323, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349158

RESUMEN

Infective endocarditis (IE) caused by Enterococcus spp. represents the third most common cause of IE, with high rates of relapse compared with other bacteria. Interestingly, late relapses (>6 months) have only been described in Enterococcus faecalis, but here we describe the first reported IE relapse with Enterococcus faecium more than a year (17 months) after the initial endocarditis episode. Firstly, by multi locus sequence typing (MLST), we demonstrated that both isolates (EF646 and EF641) belong to the same sequence type (ST117). Considering that EF641 was able to overcome starvation and antibiotic treatment conditions surviving for a long period of time, we performed bioinformatic analysis in identifying potential genes involved in virulence and stringent response. Our results showed a 13-nucleotide duplication (positions 1638-1650) in the gene relA, resulting in a premature stop codon, with a loss of 167 amino acids from the C-terminal domains of the RelA enzyme. RelA mediates the stringent response in bacteria, modulating levels of the alarmone guanosine tetraphosphate (ppGpp). The relA mutant (EF641) was associated with lower growth capacity, the presence of small colony variants, and higher capacity to produce biofilms (compared with the strain EF646), but without differences in antimicrobial susceptibility patterns according to standard procedures during planktonic growth. Instead, EF641 demonstrated tolerance to high doses of teicoplanin when growing in a biofilm. We conclude that all these events would be closely related to the long-term survival of the E. faecium and the late relapse of the IE. These data represent the first clinical evidence of mutations in the stringent response (relA gene) related with E. faecium IE relapse.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Humanos , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Tipificación de Secuencias Multilocus , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Endocarditis/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Guanosina Tetrafosfato/metabolismo , Enterococcus faecalis/metabolismo , Recurrencia , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología
3.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570789

RESUMEN

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Asunto(s)
Ácidos y Sales Biliares , Enterococcus faecium , Ácidos y Sales Biliares/farmacología , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Ácido Desoxicólico/farmacología , Proteómica , Ácido Cólico , Ácido Quenodesoxicólico/metabolismo , Enterococcus
4.
Antonie Van Leeuwenhoek ; 117(1): 40, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393447

RESUMEN

Enterococci are ubiquitous microorganisms in almost all environments, from the soil we step on to the food we eat. They are frequently found in naturally fermented foods, contributing to ripening through protein, lipid, and sugar metabolism. On the other hand, these organisms are also leading the current antibiotic resistance crisis. In this study, we performed whole-genome sequencing and comparative genomics of an Enterococcus faecium strain isolated from an artisanal Mexican Cotija cheese, namely QD-2. We found clear genomic differences between commensal and pathogenic strains, particularly in their carbohydrate metabolic pathways, resistance to vancomycin and other antibiotics, bacteriocin production, and bacteriophage and CRISPR content. Furthermore, a bacteriocin transcription analysis performed by RT-qPCR revealed that, at the end of the log phase, besides enterocins A and X, two putative bacteriocins not reported previously are also transcribed as a bicistronic operon in E. faecium QD-2, and are expressed 1.5 times higher than enterocin A when cultured in MRS broth.


Asunto(s)
Bacteriocinas , Queso , Enterococcus faecium , Bacteriocinas/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Enterococcus/genética , Genómica
5.
J Biol Chem ; 298(11): 102593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244452

RESUMEN

Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum-expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Proteínas de Escherichia coli , Bacteriocinas/genética , Bacteriocinas/farmacología , Proteínas de Escherichia coli/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Enterococcus faecium/metabolismo , Metaloproteasas
6.
PLoS Biol ; 18(12): e3000987, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332354

RESUMEN

The antimicrobial resistance crisis has persisted despite broad attempts at intervention. It has been proposed that an important driver of resistance is selection imposed on bacterial populations that are not the intended target of antimicrobial therapy. But to date, there has been limited quantitative measure of the mean and variance of resistance following antibiotic exposure. Here we focus on the important nosocomial pathogen Enterococcus faecium in a hospital system where resistance to daptomycin is evolving despite standard interventions. We hypothesized that the intravenous use of daptomycin generates off-target selection for resistance in transmissible gastrointestinal (carriage) populations of E. faecium. We performed a cohort study in which the daptomycin resistance of E. faecium isolated from rectal swabs from daptomycin-exposed patients was compared to a control group of patients exposed to linezolid, a drug with similar indications. In the daptomycin-exposed group, daptomycin resistance of E. faecium from the off-target population was on average 50% higher than resistance in the control group (n = 428 clones from 22 patients). There was also greater phenotypic diversity in daptomycin resistance within daptomycin-exposed patients. In patients where multiple samples over time were available, a wide variability in temporal dynamics were observed, from long-term maintenance of resistance to rapid return to sensitivity after daptomycin treatment stopped. Sequencing of isolates from a subset of patients supports the argument that selection occurs within patients. Our results demonstrate that off-target gastrointestinal populations rapidly respond to intravenous antibiotic exposure. Focusing on the off-target evolutionary dynamics may offer novel avenues to slow the spread of antibiotic resistance.


Asunto(s)
Daptomicina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/fisiología , Adulto , Antibacterianos/uso terapéutico , Estudios de Cohortes , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/metabolismo , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Filogenia , Vancomicina/farmacología , Enterococos Resistentes a la Vancomicina/metabolismo
7.
Protein Expr Purif ; 210: 106325, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37354924

RESUMEN

The family of ATP-binding cassette F proteins (ABC-F) is mainly made up of cytosolic proteins involved in regulating protein synthesis, and they are often part of a mechanism that confers resistance to ribosome-targeting antibiotics. The existing literature has emphasized the difficulty of purifying these recombinant proteins because of their very low solubility and stability. Here, we describe a rapid and efficient three-step purification procedure that allows for the production of untagged ABC-F proteins from Enterococcus faecium in the heterologous host Escherichia coli. After four purified ABC-F proteins were produced using this protocol, their biological activities were validated by in vitro experiment. In conclusion, our study provides an invaluable tool for obtaining large amounts of untagged and soluble ABC-F proteins that can then be used for in vitro experiments.


Asunto(s)
Enterococcus faecium , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Biosíntesis de Proteínas , Antibacterianos/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
8.
Arch Microbiol ; 204(8): 533, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35906438

RESUMEN

Three-phase partitioning (TPP) is a simple, fast, cost-effective, and highly efficient process that can be used in the purification of laccases. In this study, microorganisms with laccase activity were isolated from water samples collected from the Agri-Diyadin hot spring. The isolate with the highest laccase activity was found to be the A2 strain. As a result of molecular (16S rRNA sequence) and conventional (morphological, biochemical, and physiological) analyses, it was determined that the A2 isolate was 99% similar to Enterococcus faecium (Genbank number: MH424896). The laccase was purified to 4.9-fold with 110% recovery using the TPP. The molecular mass of the enzyme was found by SDS-PAGE to be 50.11 kDa. Optimum pH 6.0 and optimum temperature for laccase were determined as 80 °C. The laccase exhibited pH stability over a wide range (pH 3.0-9.0) and a high thermostability, retaining over 90% of its activity after 1 h of incubation at 20-90 °C. The laccase exhibited high thermostability, with a heat inactivation half-life of approximately 24 h at 80 °C. The enzyme remained highly stable in the presence of surfactants and increased its activity in the presence of organic solvents, Cr2+, Cu2+, and Ag+ metal ions. The Km, Vmax, kcat, and kcat/Km values of laccase for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate were 0.68 mM, 5.29 µmol mL-1 min-1, 110.2 s-1, and 162.1 s-1 mM-1, respectively.


Asunto(s)
Enterococcus faecium , Lacasa , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Lacasa/genética , Lacasa/metabolismo , ARN Ribosómico 16S/genética , Especificidad por Sustrato , Temperatura
9.
Arch Microbiol ; 204(12): 709, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36383290

RESUMEN

Microbes within an infection impact neighbors' pathogenicity. This study aimed to address in vitro virulence activity of Pseudomonas aeruginosa under the binary interaction with Acinetobacter baumannii or Enterococcus faecium, co-isolated from two chronic wound infections. The biofilm formation of Pseudomonas was enhanced 1.5- and 1.4-fold when it was simultaneously cultured with Acinetobacter and Enterococcus, respectively. Pseudomonas motility was increased by 1.9- and 1.5-fold (swimming), 3.6- and 1.9-fold (swarming), and 1.5- and 1.5-fold (twitching) in the dual cultures with Acinetobacter and Enterococcus, respectively. The synergistic hemolysis activity of Pseudomonas was observed with the heat-killed Acinetobacter and Enterococcus cells. The minimum inhibitory concentration of ciprofloxacin against Pseudomonas was increased from (µg mL-1) 25 to 400 in the individual and mixed cultures, respectively. The pyocyanin production by Pseudomonas in the single and mixed cultures with Acinetobacter and Enterococcus was (µg/mL) 1.8, 2.3, and 2.9, respectively. The expression of lasI, rhlI, and pqsR genes was up-regulated by 1.0-, 1.9-, and 16.3-fold, and 4.9-, 1.0-, and 9.3-fold when Pseudomonas was incubated with Acinetobacter and Enterococcus, respectively. Considering the entire community instead of a single pathogen may lead to a more effective therapeutic design for persistent infections caused by Pseudomonas.


Asunto(s)
Acinetobacter baumannii , Enterococcus faecium , Pseudomonas aeruginosa , Virulencia , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Biopelículas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Enterococcus/metabolismo , Percepción de Quorum , Antibacterianos/farmacología
10.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430310

RESUMEN

Enterococcus belongs to a group of microorganisms known as lactic acid bacteria (LAB), which constitute a broad heterogeneous group of generally food-grade microorganisms historically used in food preservation. Enterococci live as commensals of the gastrointestinal tract of warm-blooded animals, although they also are present in food of animal origin (milk, cheese, fermented sausages), vegetables, and plant materials because of their ability to survive heat treatments and adverse environmental conditions. The biotechnological traits of enterococci can be applied in the food industry; however, the emergence of enterococci as a cause of nosocomial infections makes their food status uncertain. Recent advances in high-throughput sequencing allow the subtyping of bacterial pathogens, but it cannot reflect the temporal dynamics and functional activities of microbiomes or bacterial isolates. Moreover, genetic analysis is based on sequence homologies, inferring functions from databases. Here, we used an end-to-end proteomic workflow to rapidly characterize two bacteriocin-producing Enterococcus faecium (Efm) strains. The proteome analysis was performed with liquid chromatography coupled to a trapped ion mobility spectrometry-time-of-flight mass spectrometry instrument (TimsTOF) for high-throughput and high-resolution characterization of bacterial proteins. Thus, we identified almost half of the proteins predicted in the bacterial genomes (>1100 unique proteins per isolate), including quantifying proteins conferring resistance to antibiotics, heavy metals, virulence factors, and bacteriocins. The obtained proteomes were annotated according to function, resulting in 22 complete KEGG metabolic pathway modules for both strains. The workflow used here successfully characterized these bacterial isolates and showed great promise for determining and optimizing the bioengineering and biotechnology properties of other LAB strains in the food industry.


Asunto(s)
Bacteriocinas , Queso , Enterococcus faecium , Animales , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Bacteriocinas/metabolismo , Proteómica , Enterococcus , Queso/microbiología
11.
Molecules ; 27(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458671

RESUMEN

Aloe vera has been medicinally used for centuries. Its bioactive compounds have been shown to be very effective in the treatment of numerous diseases. In this work, a novel functional beverage was developed and characterized to combine the health benefits of probiotic bacteria with the Aloe vera plant itself. Two Aloe vera juices were obtained by fermentation either by a novel isolated Enterococcus faecium or a commercial Lactococcus lactis. The extraction of Aloe vera biocompounds for further fermentation was optimized. Extraction with water plus cellulase enhanced the carbohydrates and phenolic compounds in the obtained extracts. The biotransformation of the bioactive compounds from the extracts during fermentation was assessed. Both probiotic bacteria were able to grow on the Aloe vera extract. Lactic acid and short-chain fatty acids (SCFA) together with fourteen individual phenolic compounds were quantified in the produced Aloe vera juice, mainly epicatechin, aloin, ellagic acid, and hesperidin. The amount of total phenolic compounds was maintained through fermentation. The antioxidant activity was significantly increased in the produced juice by the ABTS method. The novel produced Aloe vera juice showed great potential as a functional beverage containing probiotics, prebiotics, SCFA, and phenolic compounds in its final composition.


Asunto(s)
Aloe , Enterococcus faecium , Probióticos , Aloe/metabolismo , Bebidas , Enterococcus faecium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Lactobacillus , Fenoles/metabolismo , Extractos Vegetales/metabolismo
12.
J Bacteriol ; 203(16): e0023021, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34060906

RESUMEN

Resistance in VanA-type vancomycin-resistant Enterococcus faecium (VREfm) is due to an inducible gene cassette encoding seven proteins (vanRSHAXYZ). This provides for an alternative peptidoglycan (PG) biosynthesis pathway whereby D-Ala-D-Ala is replaced by D-Ala-d-lactate (Lac), to which vancomycin cannot bind effectively. This study aimed to quantify cytoplasmic levels of normal and alternative pathway PG intermediates in VanA-type VREfm by liquid chromatography-tandem mass spectrometry before and after vancomycin exposure and to correlate these changes with changes in vanA operon mRNA levels measured by real-time quantitative PCR (RT-qPCR). Normal pathway intermediates predominated in the absence of vancomycin, with low levels of alternative pathway intermediates. Extended (18-h) vancomycin exposure resulted in a mixture of the terminal normal (UDP-N-acetylmuramic acid [NAM]-l-Ala-D-Glu-l-Lys-D-Ala-D-Ala [UDP-Penta]) and alternative (UDP-NAM-l-Ala-γ-D-Glu-l-Lys-D-Ala-D-Lac [UDP-Pentadepsi]) pathway intermediates (2:3 ratio). Time course analyses revealed normal pathway intermediates responding rapidly (peaking in 3 to 10 min) and alternative pathway intermediates responding more slowly (peaking in 15 to 45 min). RT-qPCR demonstrated that vanA operon mRNA transcript levels increased rapidly after exposure, reaching maximal levels in 15 min. To resolve the effect of increased van operon protein expression on PG metabolite levels, linezolid was used to block protein biosynthesis. Surprisingly, linezolid dramatically reduced PG intermediate levels when used alone. When used in combination with vancomycin, linezolid only modestly reduced alternative UDP-linked PG intermediate levels, indicating substantial alternative pathway presence before vancomycin exposure. Comparison of PG intermediate levels between VREfm, vancomycin-sensitive Enterococcus faecium, and methicillin-resistant Staphylococcus aureus after vancomycin exposure demonstrated substantial differences between S. aureus and E. faecium PG biosynthesis pathways. IMPORTANCE VREfm is highly resistant to vancomycin due to the presence of a vancomycin resistance gene cassette. Exposure to vancomycin induces the expression of genes in this cassette, which encode enzymes that provide for an alternative PG biosynthesis pathway. In VanA-type resistance, these alternative pathway enzymes replace the D-Ala-D-Ala terminus of normal PG intermediates with D-Ala-D-Lac terminated intermediates, to which vancomycin cannot bind. While the general features of this resistance mechanism are well known, the details of the choreography between vancomycin exposure, vanA gene induction, and changes in the normal and alternative pathway intermediate levels have not been described previously. This study comprehensively explores how VREfm responds to vancomycin exposure at the mRNA and PG intermediate levels.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Oxígeno/metabolismo , Enterococcus faecium/efectos de los fármacos , Peptidoglicano/metabolismo , ARN Mensajero/genética , Vancomicina/farmacología , Proteínas Bacterianas/genética , Ligasas de Carbono-Oxígeno/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/metabolismo , Enterococcus faecium/enzimología , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Operón/efectos de los fármacos , ARN Mensajero/metabolismo , Resistencia a la Vancomicina
13.
BMC Microbiol ; 21(1): 39, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541292

RESUMEN

BACKGROUND: Increase in the number of infections caused by Gram-negative bacteria in neutropenic cancer patients has prompted the search for novel therapeutic agents having dual anticancer and antimicrobial properties. Bacteriocins are cationic proteins of prokaryotic origin that have emerged as one of the most promising alternative antimicrobial agents with applications as food preservatives and therapeutic agents. Apart from their antimicrobial activities, bacteriocins are also being explored for their anticancer potential. RESULTS: In this study, a broad-spectrum, cell membrane-permeabilizing enterocin with a molecular weight of 65 kDa was purified and characterized from the culture supernatant of vaginal Enterococcus faecium 12a. Enterocin 12a inhibited multidrug-resistant strains of various Gram-negative pathogens such as Salmonella enterica, Shigella flexneri, Vibrio cholerae, Escherichia coli and Gram-positive, Listeria monocytogenes, but had no activities against different strains of gut lactobacilli. The mass spectrometric analysis showed that the enterocin 12a shared partial homology with 4Fe-4S domain-containing redox protein of E. faecalis R712. Further, enterocin 12a selectively inhibited the proliferation of various human cancer cell lines in a dose-dependent manner but not that of normal human peripheral blood mononuclear cells. Enterocin 12a-treated cancer cells showed apoptosis-like morphological changes. CONCLUSION: Enterocin 12a is a novel bacteriocin that has anticancer properties against human cell lines and negligible activity towards non-malignant cells. Therefore, it should be further evaluated for its anticancer potential in animal models.


Asunto(s)
Antibacterianos/farmacología , Anticarcinógenos/farmacología , Proliferación Celular/efectos de los fármacos , Enterococcus faecium/química , Apoptosis/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/aislamiento & purificación , Hidrocarburos Aromáticos con Puentes/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Enterococcus faecium/metabolismo , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Vagina/microbiología
14.
Exp Physiol ; 106(9): 1961-1970, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216158

RESUMEN

NEW FINDINGS: What is the central question of this study? Does Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch by altering the autonomic nervous system in atrophied skeletal muscles? What is the main finding and its importance? R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres by upregulating peroxisome proliferator-activated receptor-γ coactivator-1α and activating the calcineurin-nuclear factor of activated T-cells signalling pathway, thus ameliorating the decrease in muscle endurance associated with disuse. ABSTRACT: Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, was hypothesized to attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres in atrophied skeletal muscles. We further postulated that the prevention of slow-to-fast fibre shifts would suppress the decreased muscle endurance associated with atrophy. To evaluate the protective effects of R30, we analysed slow-to-fast fibre shifts and disuse-associated reduced muscle endurance. R30 was administered to rats with an acclimation period of 7 days before hindlimb unloading (HU) for 2 weeks. The composition ratio of the fibre type and the expression levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), calcineurin and nuclear factor of activated T-cells (NFAT) were measured. Muscle endurance was evaluated at the end of the 2-week HU period in an in situ environment. R30 supplementation suppressed the slow-to-fast fibre switch and decreased the HU-induced expression of PGC-1α proteins and the deactivation of the calcineurin-NFAT pathway. Furthermore, R30 prevented a decrease in HU-associated muscle endurance in calf muscles. These results indicate that R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres via the upregulation of PGC-1α and the activation of the calcineurin-NFAT signalling pathway, thereby ameliorating the decrease in muscle endurance associated with disuse.


Asunto(s)
Enterococcus faecium , Animales , Suplementos Dietéticos , Enterococcus faecium/metabolismo , Suspensión Trasera/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas
15.
Arch Microbiol ; 203(6): 2831-2841, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33743024

RESUMEN

This study is aimed at evaluating the probiotic potential of three Enterococcus faecium strains (called 29-P2, 168-P6 and 277-S3) isolated from 'pastirma', a Turkish traditional dry-cured meat product. For this, key probiotic properties and some functional characteristics of strains were tested in vitro. Antimicrobial activity of 3 E. faecium strains was evaluated against 18 indicator microorganisms consisting of 13 foodborne pathogens and 5 lactic acid bacteria and all strains were found as the producer of antimicrobial substance. Especially one strain 168-P6 showed a remarkable activity spectrum and inhibited all of the used foodborne pathogen indicators. Antimicrobial compounds produced by strains were identified by determining the effect of enzyme, pH and temperature on antimicrobial activity. All strains exhibited tolerance to acidic conditions and a simulated gastric environment. Also, strains exhibited high adhesion capacity. The safety of the strains was assessed by determining hemolytic activity and the resistance to 14 different antibiotics. None of the three strains exhibited hemolytic activity, also strains were found reliable in terms of clinically relevant antibiotics, only one strain 29-P2 was found resistant to vancomycin. In addition, metabolic activities of strains including lactic acid, hydrogen peroxide, exopolysaccharide production and proteolytic activity were determined and amounts of all metabolic products were found low. When evaluated all data obtained, it is believed that the strains have enviable characteristics as a probiotic candidate.


Asunto(s)
Enterococcus faecium , Productos de la Carne/microbiología , Probióticos/farmacología , Antibacterianos/farmacología , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/metabolismo
16.
Arch Microbiol ; 203(2): 579-595, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32990771

RESUMEN

Consumer's vigilance towards health-promoting foods beyond only taste and nutrition has increased the recognition for probiotic products. In the present study, various parameters have been studied to define the probiotic properties of cultures isolated from different fermented products. Around 118 samples were selectively screened for antimicrobial compound (AMC) producing isolates by overlay-plate assay using Micrococcus luteus ATCC9341. Among 134 zone producing isolates, 48 cultures showing Gram-positive, catalase negative, non-spore forming and non-motile rods and cocci were selected. Subsequently, 18 strains were chosen based on non-hemolytic, absence of biogenic amine production, gelatinase and lecithinase negative trait for safer isolates. These were identified by biochemical assays and then subjected to RAPD-PCR. The selected cultures DB-1aa, DB-b2-15b, Cu2-PM7, Cu3-PM8 and IB-pM15 were identified by 16S rDNA sequencing as Enterococcus durans, Enterococcus faecium, Lactobacillus plantarum, and two Lactobacillus fermentum, respectively. Several in vitro experiments were carried out including acid and bile tolerance, survival under simulated gastrointestinal condition, adhesion assay to evaluate the probiotic potential of the isolates. In addition, the isolates were studied for competent properties such as antibacterial, antioxidant activity, and enzyme production for their functional application. The results of the study prove the efficiency of selected isolates as potential probiotic cultures and hence can be recommended for application in any functional food formulations.


Asunto(s)
Alimentos Fermentados/microbiología , Lactobacillales/clasificación , Probióticos/clasificación , Proteínas Bacterianas/metabolismo , Enterococcus/genética , Enterococcus/aislamiento & purificación , Enterococcus/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/aislamiento & purificación , Enterococcus faecium/metabolismo , Fermentación , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Lactobacillales/metabolismo , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/aislamiento & purificación , Limosilactobacillus fermentum/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo , Probióticos/aislamiento & purificación , Probióticos/metabolismo , ARN Ribosómico 16S/genética , Técnica del ADN Polimorfo Amplificado Aleatorio
17.
Food Microbiol ; 99: 103828, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119113

RESUMEN

In this study, a composite film was prepared with bacterial cellulose (BC) of Gluconacetobacter xylinus and cell-free supernatant (CFS) of Enterococcus faecium TJUQ1, which was named BC-E. The optimum conditions for the preparation of the composite film with a minimal antibacterial activity were the soak of BC in 80 AU/mL CFS for 6 h. By scanning electron microscope observation, the surface network structure of BC-E was denser than that of BC. The tensile strength of BC and BC-E was 4.65 ± 0.88 MPa and 16.30 ± 0.92 MPa, the elongation at break of BC and BC-E was 3.33 ± 0.89% and 31.60 ± 1.15%, respectively, indicating the mechanical properties of BC-E were significantly higher than that of BC (P < 0.05). The swelling ratio of BC-E (456.67 ± 7.20%) was lower than that of BC (1377.78 ± 9.07%), demonstrating BC-E films presented better water resistance. BC-E films were soaked with 320 AU/mL CFS, and then used to pack the ground meat with 6.55 log10 CFU/g of Listeria monocytogenes. After 8 days of storage, the number of bacteria decreased by 3.16 log10 CFU/g. Similarly, total mesophilic bacterial levels in the ground meat decreased by 2.41 log10 CFU/g compared to control groups.


Asunto(s)
Antibacterianos/química , Celulosa/química , Enterococcus faecium/metabolismo , Embalaje de Alimentos/instrumentación , Gluconacetobacter xylinus/metabolismo , Polímeros/química , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/farmacología , Celulosa/metabolismo , Enterococcus faecium/química , Gluconacetobacter xylinus/química , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Carne/análisis , Carne/microbiología , Polímeros/farmacología , Porcinos , Resistencia a la Tracción
18.
J Dairy Sci ; 104(1): 198-210, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33189289

RESUMEN

While the increase in thermal resistance of microorganisms at reduced water activity is demonstrated for low-moisture food products, the effect of storage time on the thermal resistance of microorganisms in low-moisture foods is not well established. As low-moisture foods are stored for long periods and are used as ingredients, cross-contamination can occur at any time period before the lethality step. Therefore, this study was designed to investigate the effect of storage time (30, 60, and 90 d) on the thermal resistance of Salmonella and Enterococcus faecium NRRL B-2354 in milk powders at a low water activity of 0.10 (conservative level). In this study, 2 milk powders, whole milk powder (WMP) and nonfat dry milk (NFDM), were inoculated with a 5-serotype Salmonella cocktail or E. faecium and equilibrated to a water activity of 0.10. The thermal resistance of Salmonella and E. faecium in WMP and NFDM were determined at different storage times (30, 60, and 90 d) at 85°C. The storage time had no effect on the thermal inactivation kinetics of Salmonella within 90 d of storage at 85°C. In the second part of this study, isothermal treatments were also conducted at higher temperatures (90 and 95°C) to evaluate the suitability of E. faecium as a surrogate for Salmonella in milk powders. The D-values of Salmonella in WMP with 30 d of storage at 85, 90, and 95°C were 7.98, 3.35, and 1.68 min. The corresponding values for E. faecium were 16.96, 7.90, and 4.16 min. Higher D-values of E. faecium indicates that it is a conservative surrogate. Similar results were found for NFDM. In general, D-values of both microorganisms are slightly higher in NFDM than WMP. Two primary models (log-linear and Weibull) were compared for their goodness-of-fit. The Weibull model was found to be more appropriate than the log-linear model. This study provides valuable information for establishing process validation for the pasteurization of milk powders.


Asunto(s)
Enterococcus faecium/metabolismo , Microbiología de Alimentos , Leche/microbiología , Salmonella enterica/metabolismo , Animales , Cinética , Leche/química , Pasteurización , Polvos , Temperatura
19.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948189

RESUMEN

The axe-txe type II toxin-antitoxin (TA) system is characterized by a complex and multilayered mode of gene expression regulation. Precise and tight control of this process is crucial to keep the toxin in an appropriate balance with the cognate antitoxin until its activation is needed for the cell. In this report, we provide evidence that a minigene encoded within the axe-txe operon influences translation of the Txe toxin. This is the first example to date of such a regulatory mechanism identified in the TA modules. Here, in a series of genetic studies, we employed translational reporter gene fusions to establish the molecular basis of this phenomenon. Our results show that translation of the two-codon mini-ORF displays an in cis mode of action, and positively affects the expression of txe, possibly by increasing its mRNA stability through protection from an endonuclease attack. Moreover, we established that the reading frame in which the two cistrons are encoded, as well as the distance between them, are critical parameters that affect the level of such regulation. In addition, by searching for two-codon ORFs we found sequences of several potential minigenes in the leader sequences of several other toxins belonging to the type II TA family. These findings suggest that this type of gene regulation may not only apply for the axe-txe cassette, but could be more widespread among other TA systems.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sistemas Toxina-Antitoxina/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Expresión Génica/genética , Sistemas de Lectura Abierta/genética , Operón/genética , Regiones Promotoras Genéticas/genética
20.
Molecules ; 26(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361691

RESUMEN

Lactobacillus crispatus is the dominant species in the vagina of many women. With the potential for strains of this species to be used as a probiotic to help prevent and treat dysbiosis, we investigated isolates from vaginal swabs with Lactobacillus-dominated and a dysbiotic microbiota. A comparative genome analysis led to the identification of metabolic pathways for synthesis and degradation of three major biogenic amines in most strains. However, targeted metabolomic analysis of the production and degradation of biogenic amines showed that certain strains have either the ability to produce or to degrade these compounds. Notably, six strains produced cadaverine, one produced putrescine, and two produced tyramine. These biogenic amines are known to raise vaginal pH, cause malodour, and make the environment more favourable to vaginal pathogens. In vitro experiments confirmed that strains isolated from women with a dysbiotic vaginal microbiota have higher antimicrobial effects against the common urogenital pathogens Escherichia coli and Enterococcus faecium. The results indicate that not all L. crispatus vaginal strains appear suitable for probiotic application and the basis for selection should not be only the overall composition of the vaginal microbiota of the host from which they came, but specific biochemical and genetic traits.


Asunto(s)
Antiinfecciosos/metabolismo , Aminas Biogénicas/metabolismo , Enfermedades Urogenitales Femeninas/metabolismo , Enfermedades Urogenitales Femeninas/microbiología , Lactobacillus crispatus/metabolismo , Microbiota , Vagina/microbiología , Candida albicans/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Enterococcus faecium/metabolismo , Escherichia coli/metabolismo , Femenino , Genómica/métodos , Humanos , Lactobacillus crispatus/clasificación , Lactobacillus crispatus/genética , Metaboloma , Metabolómica/métodos , Filogenia , Prevotella/metabolismo , Probióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA