Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 43(5): 2489-98, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25712102

RESUMO

In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a 'protagonist' in different scenarios. This review will present and discuss an up-to-date view regarding the 'non-canonical' H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing 'non-canonical' functions to be carried out in different cell types.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/genética , Feminino , Histonas/metabolismo , Humanos , Masculino , Mitose/genética , Fosforilação , Fenômenos Fisiológicos/genética , Inativação do Cromossomo X/genética
2.
Int J Mol Sci ; 18(9)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28902128

RESUMO

Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations.


Assuntos
Reprogramação Celular/fisiologia , Instabilidade Genômica , Células-Tronco Pluripotentes Induzidas/fisiologia , Técnicas de Reprogramação Celular/métodos , Instabilidade Cromossômica , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Dosagem de Genes , Variação Genética , Humanos , Mutação , Estresse Oxidativo/fisiologia
3.
Mol Carcinog ; 55(11): 1833-1842, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27439749

RESUMO

Bladder cancer (BC) has a typical aetiology characterized by a multistep carcinogenesis due to environmental exposures, genetic susceptibility, and their interaction. Several lines of evidence suggest that DNA repair plays a role in the development and progression of BC. In particular, the study of individual susceptibility to DNA double strand breaks (DSBs) may provide valuable information on BC risk, and help to identify those patients at high-risk of either recurrence or progression of the disease, possibly personalizing both surveillance and treatment. Among the different DSB markers, the most well characterized is phosphorylation of the histone H2AX (γ-H2AX). We assessed any potential role of γ-H2AX as a molecular biomarker in a case-control study (146 cases and 146 controls) to identify individuals with increased BC risk and at high-risk of disease recurrence or progression. We investigated γ-H2AX levels in peripheral blood mononuclear cells before and after their exposure to ionizing radiation (IR). We did not find any significant difference among cases and controls. However, we observed a significant association between γ-H2AX basal levels and risk of disease recurrence or progression. In particular, both BC patients as a whole and the subgroup of non-muscle invasive BC (NMIBC) with high basal H2AX phosphorylation levels had a decreased risk of recurrence or progression (for all BC HR 0.70, 95%CI 0.52-0.94, P = 0.02; for NMIBC HR 0.68, 95%CI 0.50-0.92, P = 0.01), suggesting a protective effect of basal DSB signaling. Our data suggest that γ-H2AX can be considered as a potential molecular biomarker to identify patients with a higher risk of BC recurrence. © 2015 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/sangue , Histonas/sangue , Leucócitos Mononucleares/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Adulto , Idoso , Estudos de Casos e Controles , Progressão da Doença , Intervalo Livre de Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Análise de Sobrevida
4.
Int J Mol Sci ; 17(7)2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27447618

RESUMO

Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Senescência Celular/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Humanos
5.
J Cell Mol Med ; 19(4): 734-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619736

RESUMO

Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well-known anti-tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated ß-galactosidase activity and enlarged γH2AX foci co-localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence-associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour-promoting behaviour.


Assuntos
Senescência Celular/genética , Dano ao DNA , DNA/genética , Células-Tronco Mesenquimais/metabolismo , Antibióticos Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/metabolismo , Dactinomicina/farmacologia , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Immunoblotting , Interleucina-6/genética , Interleucina-8/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , beta-Galactosidase/metabolismo
6.
J Nanobiotechnology ; 13: 77, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510588

RESUMO

BACKGROUND: Treatment of myocardial infarction with mesenchymal stem cells (MSCs) has proven beneficial effects in both animal and clinical studies. Engineered silica nanoparticles (SiO2-NPs) have been extensively used as contrast agents in regenerative medicine, due to their resistance to degradation and ease of functionalization. However, there are still controversies on their effective biosafety on cellular systems. In this perspective, the aims of the present study are: 1) to deeply investigate the impact of amorphous 50 nm SiO2-NPs on viability and function of human bone marrow-derived MSCs (hMSCs); 2) to optimize a protocol of harmless hMSCs labelling and test its feasibility in a beating heart model. RESULTS: Optimal cell labelling is obtained after 16 h exposure of hMSCs to fluorescent 50 nm SiO2-NPs (50 µg mL(-1)); interestingly, lysosomal activation consequent to NPs storage is not associated to oxidative stress. During prolonged culture hMSCs do not undergo cyto- or genotoxicity, preserve their proliferative potential and their stemness/differentiation properties. Finally, the bright fluorescence emitted by internalized SiO2-NPs allows both clear visualization of hMSCs in normal and infarcted rat hearts and ultrastructural analysis of cell engraftment inside myocardial tissue. CONCLUSIONS: Overall, 50 nm SiO2-NPs display elevated compatibility with hMSCs in terms of lack of cyto- and genotoxicity and maintenance of important features of these cells. The demonstrated biosafety, combined with proper cell labelling and visualization in histological sections, make these SiO2-NPs optimal candidates for the purpose of stem cell tracking inside heart tissue.


Assuntos
Corantes/metabolismo , Coração/fisiologia , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Dióxido de Silício/metabolismo , Coloração e Rotulagem , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Dano ao DNA , Endocitose , Humanos , Lisossomos/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Imagem Molecular , Estresse Oxidativo
7.
Stem Cells ; 30(7): 1414-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22628289

RESUMO

Phosphorylation of histone H2AX (γH2AX) is known to be the earliest indicator of DNA double-strand breaks. Recently, it has been shown that mouse embryonic stem cells (mESCs) have very high basal levels of γH2AX, even when they have not been exposed to genotoxic agents. As the specialized role of high basal γH2AX levels in pluripotent stem cells is still debated, we investigated whether H2AX phosphorylation is important in maintaining self-renewal of these cells. Here, we report that not only mESCs but also mouse-induced pluripotent stem cells (miPSCs), have high basal levels of γH2AX. We show that basal γH2AX levels decrease upon ESC and iPSC differentiation and increase when the cells are treated with self-renewal-enhancing small molecules. We observe that self-renewal activity is highly compromised in H2AX-/- cells and that it can be restored in these cells through reconstitution with a wild-type, but not a phospho-mutated, H2AX construct. Taken together, our findings suggest a novel function of H2AX that expands the knowledge of this histone variant beyond its role in DNA damage and into a new specialized biological function in mouse pluripotent stem cells.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Dano ao DNA/genética , Citometria de Fluxo , Histonas/genética , Camundongos , Microscopia Confocal , Fosforilação
8.
Int J Mol Sci ; 14(2): 2617-36, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23358251

RESUMO

Recent studies have shown that mouse embryonic stem cells (mESCs) rely on a distinctive genome caretaking network. In this review, we will discuss how mESCs functionally respond to DNA damage and describe several modifications in mESC DNA damage response, which accommodate dynamic cycling and preservation of genetic information. Subsequently, we will discuss how the transition from mESCs to adult stem/progenitor cells can be involved in the decline of tissue integrity and function in the elderly.

9.
Small ; 8(20): 3192-200, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22821625

RESUMO

Highly bright and photostable cyanine dye-doped silica nanoparticles, IRIS Dots, are developed, which can efficiently label human mesenchymal stem cells (hMSCs). The application procedure used to label hMSCs is fast (2 h), the concentration of IRIS Dots for efficient labeling is low (20 µg mL(-1) ), and the labeled cells can be visualized by flow cytometry, confocal microscopy, and transmission electron microscopy. Labeled hMSCs are unaffected in their viability and proliferation, as well as stemness surface marker expression and differentiation capability into osteocytes. Moreover, this is the first report that shows nonfunctionalized IRIS Dots can discriminate between live and early-stage apoptotic stem cells (both mesenchymal and embryonic) through a distinct external cell surface distribution. On the basis of biocompatibility, efficient labeling, and apoptotic discrimination potential, it is suggested that IRIS Dots can serve as a promising stem cell tracking agent.


Assuntos
Nanopartículas/química , Imagem Óptica/métodos , Dióxido de Silício/química , Células-Tronco , Apoptose/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Microscopia Confocal
10.
Mutat Res ; 684(1-2): 98-105, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20035771

RESUMO

As first task of a comprehensive investigation on DNA repair genotype-phenotype correlations, the suitability of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) as surrogate of cryopreserved peripheral blood mononuclear cells (PBMCs) in DNA repair phenotypic assays was evaluated. To this aim the amount of DNA damage induced by gamma-rays and DNA repair capacity were evaluated in unstimulated (G(0)) and mitogen-simulated (G(2)) PBMC from 20 healthy subjects and in EBV-transformed LCL obtained from the same individuals. Phosphorylation of histone H2AX, micronuclei and chromosomal aberrations were the end-points investigated. The results obtained show higher basal frequencies of binucleated cells bearing micronuclei and nucleoplasmic bridge (NPB) in LCL with respect to PBMC, suggesting that EBV transformation may be associated with chromosomal instability. After irradiation, higher levels of micronuclei were induced in G(0)-treated PBMC compared to cycling LCL; conversely, NPB were more frequent in LCL than in PBMC. Moreover, higher levels of chromosomal aberrations were observed in G(2)-treated PBMC compared to LCL. Concerning gamma-H2AX measurements, phosphorylation levels 1h after treatment and dephosphorylation kinetics were basically similar in LCL and in PBMC. However, while Spearman's test showed a strong correlation between the results obtained in replicated experiments with PBMC, high inter-experimental variability and poor reproducibility was observed in the experiments performed with LCL, possibly due to the intrinsic instability of LCL. In summary, both the analysis of gamma-H2AX and the evaluation of chromosome damage highlighted a larger inter-experimental variability in the results obtained with LCL compared to PBMC. Noteworthy, the two set of results proved to lack any significant correlation at the individual level. These results indicate that LCL may be unsuitable for investigating genotype-phenotype correlations with phenotypic DNA repair assays, especially when low impact functional genetic variants are involved.


Assuntos
Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Leucócitos Mononucleares/efeitos da radiação , Linfócitos , Linhagem Celular Transformada/efeitos da radiação , Transformação Celular Viral , Aberrações Cromossômicas , Citometria de Fluxo/métodos , Fase G2 , Estudos de Associação Genética , Histonas/metabolismo , Linfócitos/efeitos da radiação , Fosforilação
11.
BMC Cancer ; 9: 281, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19674456

RESUMO

BACKGROUND: Current chemotherapy of human cancers focuses on the DNA damage pathway to induce a p53-mediated cellular response leading to either G1 arrest or apoptosis. However, genotoxic treatments may induce mutations and translocations that result in secondary malignancies or recurrent disease. In addition, about 50% of human cancers are associated with mutations in the p53 gene. Nongenotoxic activation of apoptosis by targeting specific molecular pathways thus provides an attractive therapeutic approach. METHODS: Normal and leukemic cells were evaluated for their sensitivity to 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) through cell viability and caspase activation tests. The apoptotic pathway induced by DRB was analysed by immunfluorescence and immunoblot analysis. H2AX phosphorylation and cell cycle analysis were performed to study the dependance of apoptosis on DNA damage and DNA replication, respectively. To investigate the role of p53 in DRB-induced apoptosis, specific p53 inhibitors were used. Statistical analysis on cell survival was performed with the test of independence. RESULTS: Here we report that DRB, an inhibitor of the transcriptional cyclin-dependent kinases (CDKs) 7 and 9, triggers DNA replication-independent apoptosis in normal and leukemic human cells regardless of their p53 status and without inducing DNA damage. Our data indicate that (i) in p53-competent cells, apoptosis induced by DRB relies on a cytosolic accumulation of p53 and subsequent Bax activation, (ii) in the absence of p53, it may rely on p73, and (iii) it is independent of ATM and NBS1 proteins. Notably, even apoptosis-resistant leukemic cells such as Raji were sensitive to DRB. CONCLUSION: Our results indicate that DRB represents a potentially useful cancer chemotherapeutic strategy that employs both the p53-dependent and -independent apoptotic pathways without inducing genotoxic stress, thereby decreasing the risk of secondary malignancies.


Assuntos
Apoptose/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Replicação do DNA/efeitos dos fármacos , Diclororribofuranosilbenzimidazol/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/metabolismo , Leucemia/fisiopatologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
12.
Mol Immunol ; 45(2): 328-37, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17659780

RESUMO

V(D)J recombination is a mechanism peculiar to the somatic rearrangement of antigen receptor genes. It requires both expression of the RAG-1 and RAG-2 recombinases and accessibility of the substrate to its recombinase and post-cleavage/DNA repair stage. TCR revision is a genetic correction mechanism that changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. This process is now well described in both normal or pathological murine and human settings. Many of its features, such as the question of whether it occurs in truly mature T cells, remain to be elucidated. Its occurrence in human CD8+ T cells is also an open question. We have therefore established an in vitro model of TCR revision in mature human CD8+ T cells to determine whether down-regulation of the TCR/CD3 complex from the cell surface in the presence of IL7 as a factor favouring chromatin remodelling initiates a TCR revision pathway. Only mature CD8+ T cells carrying already-formed antigen receptors were used. CD8+ T cells treated with anti-CD3 and IL7 showed rearrangement intermediates and expressed new Vbeta-chains on their surface. Investigation of the molecular pathway thus induced disclosed up-regulation of the RAG-2 transcript, but absence of the 'canonical' RAG-1 mRNA. A surprising finding was the demonstration of alternative splice forms of this mRNA, already expressed in untreated CD8+ T cells, encoding for the full-length RAG-1 protein, which was increased three-fold in the treated cells. All the V(D)J requirements were thus fulfilled when mature human CD8+ T cells were stimulated with anti-CD3 and IL7. Induction of TCR revision in vitro in mature T cells is an easily controllable system that could be employed in further studies to elucidate the molecular pathways involved in secondary V(D)J rearrangements in peripheral cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T/imunologia , Anticorpos/farmacologia , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular , Células Clonais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Enterotoxinas/farmacologia , Imunofluorescência , Rearranjo Gênico do Linfócito T/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Interleucina-7/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
13.
Cytometry A ; 73(6): 508-16, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18431795

RESUMO

Ataxia telangiectasia (A-T) is a progressive neurodegenerative disease with onset in early childhood, caused by mutations in the ATM (ataxia-telangiectasia mutated) gene. Diagnosis relies on laboratory tests showing high levels of serum alphafetoprotein, cell sensitivity to ionizing radiation (IR) and absence or reduced levels of ATM protein. Many tests, however, are not sufficiently sensitive or specific for A-T, have long turnaround times, or require large blood samples. This prompted us to develop a new flow cytometry method for the diagnosis of A-T based on the measurement of histone H2AX phosphorylation. We established normal ranges of histone H2AX phosphorylation after 2 Gy IR by testing T-cell lines, lymphoblastoid cell lines (LCLs) and/or peripheral blood mononuclear cells (PBMCs) or both from 20 genetically proven A-T and 46 control donors. To further evaluate the specificity and sensitivity of the test, we analyzed cells from 19 patients suspected of having A-T, and from one Friedreich Ataxia, one Ataxia with Oculomotor Apraxia type 2, and one Nijmegen Breakage Syndrome patients. Phosphorylated histone H2AX mean fluorescence intensity of irradiated A-T cells was significantly lower than that of healthy donors. The intrastaining, intraassay, and interassay imprecisions were

Assuntos
Ataxia Telangiectasia/diagnóstico , Citometria de Fluxo/métodos , Histonas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Diagnóstico Diferencial , Histonas/efeitos da radiação , Humanos , Immunoblotting , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Proteínas Supressoras de Tumor/genética
14.
Nanomedicine (Lond) ; 13(10): 1121-1138, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882732

RESUMO

AIM: To assess functional effects of silica nanoparticles (SiO2-NPs) on human mesenchymal stem cell (hMSC) cardiac integration potential. METHODS: SiO2-NPs were synthesized and their internalization effects on hMSCs analyzed with particular emphasis on interaction of hMSCs with the cardiac environment Results: SiO2-NP internalization affected the area and maturation level of hMSC focal adhesions, accounting for increased in vitro adhesion capacity and augmented engraftment in the myocardial tissue upon cell injection in infarcted isolated rat hearts. SiO2-NP treatment also enhanced hMSC expression of Connexin-43, favoring hMSC interaction with cocultured cardiac myoblasts in an ischemia-like environment. CONCLUSION: These findings provide strong evidence that SiO2-NPs actively engage in mediating biological effects, ultimately resulting in augmented hMSC acute cardiac integration potential.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Dióxido de Silício/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Conexina 43/genética , Adesões Focais/efeitos dos fármacos , Adesões Focais/genética , Adesões Focais/patologia , Regulação da Expressão Gênica , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Ratos , Dióxido de Silício/química
15.
DNA Repair (Amst) ; 5(8): 904-13, 2006 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-16765653

RESUMO

The repair of DNA double-strand breaks is critical for genome integrity and tumor suppression. Here we show that following treatment with the DNA-intercalating agent actinomycin D (ActD), normal quiescent T cells accumulate double-strand breaks and die, whereas T cells from ataxia telangiectasia (AT) and Nijmegen breakage syndrome (NBS) patients are resistant to this death pathway despite a comparable amount of DNA damage. We demonstrate that the ActD-induced death pathway in quiescent T lymphocytes follows DNA damage and H2AX phosphorylation, is ATM- and NBS1-dependent and due to p53-mediated cellular apoptosis. In response to genotoxic 2-Gy gamma-irradiation, on the other hand, quiescent T cells from normal donors survive following complete resolution of the damage thus induced. T cells from AT and NBS patients also survive, but retain foci of phosphorylated H2AX due to a subtle double-strand break (DSB) repair defect. A common consequence of these two genetic defects in the DSB response is the apparent tolerance of cells containing DNA breaks. We suggest that this tolerance makes a major contribution to the oncogenic risk of patients with chromosome instability syndromes.


Assuntos
Apoptose/genética , Ataxia Telangiectasia/genética , Dano ao DNA , Reparo do DNA/genética , Síndrome de Quebra de Nijmegen/genética , Linfócitos T/efeitos da radiação , Primers do DNA , Dactinomicina/toxicidade , Citometria de Fluxo , Raios gama , Histonas/metabolismo , Humanos , Immunoblotting , Microscopia de Fluorescência , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
16.
Hum Mutat ; 27(10): 1061, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16941484

RESUMO

In patients affected by Ataxia-Telangiectasia (A-T), mutations in the ATM gene lead to loss-of-function alleles. Nonsense, splice-site variants, small insertions or deletions (frameshifts) and missense are the most commonly found mutations. Large genomic deletions (LGDs) are rare (approximately 1%) but can lead to the same phenotype. In compound heterozygotes, deletions are not detected by most screening strategies. We analysed the ATM gene in 12 unrelated Italian A-T patients and identified all 24 mutated alleles. Twelve mutations were novel. Standardized SNP and STR haplotyping followed by DHPLC screening of genomic DNA, allowed all but three mutations to be detected (approximately 87.5%). The remaining mutations required RT-PCR analysis of ATM transcript and Southern blotting of genomic DNA. We found three LGDs: one of 8.5 and two identical of 18 kb spanning exons 32-36 and 21-29, respectively. The breakpoints of these deletions were sequenced in an attempt to understand the mechanisms of mutations; both deletions involved regions rich in repeated elements.


Assuntos
Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Ataxia Telangiectasia/etnologia , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Southern Blotting , Cromatografia Líquida de Alta Pressão/métodos , Análise Mutacional de DNA/métodos , Éxons/genética , Saúde da Família , Feminino , Deleção de Genes , Haplótipos/genética , Humanos , Itália , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo Genético , Homologia de Sequência do Ácido Nucleico , Software
17.
Stem Cells Int ; 2016: 7920358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839568

RESUMO

Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting.

18.
Stem Cells Int ; 2016: 7176154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822229

RESUMO

The biomaterial scaffold plays a key role in most tissue engineering strategies. Its surface properties, micropatterning, degradation, and mechanical features affect not only the generation of the tissue construct in vitro, but also its in vivo functionality. The area of myocardial tissue engineering still faces significant difficulties and challenges in the design of bioactive scaffolds, which allow composition variation to accommodate divergence in the evolving myocardial structure. Here we aimed at verifying if a microstructured bioartificial scaffold alone can provoke an effect on stem cell behavior. To this purpose, we fabricated microstructured bioartificial polymeric constructs made of PLGA/gelatin mimicking anisotropic structure and mechanical properties of the myocardium. We found that PLGA/gelatin scaffolds promoted adhesion, elongation, ordered disposition, and early myocardial commitment of human mesenchymal stem cells suggesting that these constructs are able to crosstalk with stem cells in a precise and controlled manner. At the same time, the biomaterial degradation kinetics renders the PLGA/gelatin constructs very attractive for myocardial regeneration approaches.

19.
Epigenetics ; 10(7): 563-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114724

RESUMO

Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.


Assuntos
Células-Tronco Embrionárias/metabolismo , Código das Histonas , Histonas/metabolismo , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/citologia , Humanos , Isoformas de Proteínas/metabolismo
20.
Stem Cells Int ; 2015: 765846, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074978

RESUMO

The potentialities to apply mesenchymal stem cells (MSCs) in regenerative medicine have been extensively studied over the last decades. In the cardiovascular disease (CVD) field, MSCs-based therapy is the subject of great expectations. Its therapeutic potential has been already shown in several preclinical models and both the safety and efficacy of MSCs-based therapy are being evaluated in humans. It is now clear that the predominant mechanism by which MSCs participate in heart tissue repair is through a paracrine activity. Via the production of a multitude of trophic factors endowed with different properties, MSCs can reduce tissue injury, protect tissue from further adverse effects, and enhance tissue repair. The present review discusses the current understanding of the MSCs secretome as a therapy for treatment of CVD. We provide insights into the possible employment of the MSCs secretome and their released extracellular vesicles as novel approaches for cardiac regeneration that would have certain advantages over injection of living cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA