Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Experimental & Molecular Medicine ; : 144-152, 2006.
Article in English | WPRIM | ID: wpr-15697

ABSTRACT

We have previously isolated a novel protein "B/K" that contains two C2-like domains. Here, we report the isolatioin and mRNA distribution of a human B/K isoform, and protein kinase A (PKA)-dependent phosphorylation of the B/K protein. The 1.5 kb human B/K cDNA clone exhibits 89% and 97% identities with rat B/K in the sequences of nucleotide and amino acid, respectively. Human B/K isoform encodes a 474 amino acid protein and shows structural features similar to the rat counterpart including two C2 domains, three consensus sequences for PKA, absence of a transmembrane region, and conservation of the N-terminal cysteine cluster. On Northern and dot blot analyses, a 3.0 kb B/K transcript was abundantly present in human brain, kidney, and prostate. Among the brain regions, strong signals were observed in the frontal and temporal lobes, the hippocampus, the hypothalamus, the amygdala, the substantia nigra, and the pituitary. Recombinant B/K proteins containing three consensus sites for PKA was very efficiently phosphorylated in vitro by PKA catalytic subunit. B/K protein which was overexpressed in LLC-PK1 cells was also strongly phosphorylated in vivo by vasopressin analog DDAVP, and PKA-specific inhibitor H89 as well as type 2 vasopressin receptor antagonist specifically suppressed DDAVP-induced B/K phosphorylation. These results suggest that B/K proteins play a role as potential substrates for PKA in the area where they are expressed.


Subject(s)
Rats , Mice , Male , Humans , Female , Animals , Adult , Sequence Homology, Amino Acid , Sequence Analysis, DNA , Protein Isoforms/genetics , Phosphorylation , Phosphoproteins/genetics , Molecular Sequence Data , Gene Expression Profiling , DNA, Complementary/chemistry , Cyclic AMP-Dependent Protein Kinases/physiology , Cloning, Molecular , Cell Line , Base Sequence , Amino Acid Sequence
2.
Braz. j. med. biol. res ; 30(8): 961-5, Aug. 1997. graf
Article in English | LILACS | ID: lil-197252

ABSTRACT

Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70 per cent). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100 per cent). PKA activity and CREB-P levels show two peaks: a 35-40 per cent increase 0 h after training, and a second increase 3-6 h later (35-60 per cent). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task.


Subject(s)
Rats , Animals , Avoidance Learning/physiology , Cyclic AMP Response Element-Binding Protein/physiology , Cyclic AMP-Dependent Protein Kinases/physiology , Hippocampus/chemistry , Memory/physiology , Receptors, AMPA/physiology , Signal Transduction/physiology , Receptors, Glutamate/physiology
3.
Yonsei Medical Journal ; : 232-242, 1995.
Article in English | WPRIM | ID: wpr-52257

ABSTRACT

Isoproterenol (ISO), a beta agonist, causes hyperpolarization of coronary smooth muscle cells via an increase in K+ conductance. This hyperpolarization may cause the coronary vasorelaxation by decreasing the cytoplasmic Ca2+ concentration. It is well known that the activation of beta adrenoreceptors stimulates the adenylate cyclase activity, and the resulting K+ channel phosphorylation by cAMP-dependent protein kinase may be responsible for ISO-induced increase in K+ channel activity. However, it is not clear whether the increase in K+ channel activity by ISO is exclusively due to the activation of adenylate cyclase or not. In this research, the effect of ISO on the isometric tension and the mechanism of ISO-induced K+ channel activation were investigated in various patch clamp conditions. The summarized results are as follows. ISO- and pinacidil induced vasorelaxation was significantly inhibited by the application of TEA or by increasing the external K+ concentration. In the whole cell clamp mode, application of ISO increased K+ outward current, and this effect was completely eliminated by propranolol. In the cell-attached patch, application of ISO or forskolin increased Ca(2+)-activated K+ channel activity. Application of ISO to the bath in the outside-out patches or GTP in the inside-out patches stimulated Ca(2+)-activated K+ channels. From the above results, both A-kinase dependent channel phosphorylation and direct GTP-binding protein mediated effect might be responsible for the the activation of Ca(2+)-activated K+ channel by ISO in rabbit coronary smooth muscle cells. And this K+ channel activation also contributes to the ISO-induced vasorelaxation.


Subject(s)
Female , Male , Rabbits , Animals , Calcium/metabolism , Coronary Vessels/drug effects , Cyclic AMP-Dependent Protein Kinases/physiology , GTP-Binding Proteins/physiology , Isoproterenol/pharmacology , Muscle, Smooth, Vascular/drug effects , Potassium Channels/drug effects , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL