Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
1.
Chinese Journal of Lung Cancer ; (12): 1-12, 2024.
Article in Chinese | WPRIM | ID: wpr-1010105

ABSTRACT

BACKGROUND@#Radiation therapy is one of the most common treatments for non-small cell lung cancer (NSCLC). However, the insensitivity of some tumor cells to radiation is one of the major reasons for the poor efficacy of radiotherapy and the poor prognosis of patients, and exploring the underlying mechanisms behind radioresistance is the key to solving this clinical challenge. This study aimed to identify the molecules associated with radioresistance in lung adenocarcinoma (LUAD), identified thyroid hormone receptor interactor 13 (TRIP13) as the main target initially, and explored whether TRIP13 is related to radioresistance in LUAD and the specific mechanism, with the aim of providing theoretical basis and potential targets for the combination therapy of LUAD patients receiving radiotherapy in the clinic.@*METHODS@#Three datasets, GSE18842, GSE19188 and GSE33532, were selected from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (|log FC|>1.5, P<0.05) in each of the three datasets using the R 4.1.3 software, and then Venn diagram was used to find out the differentially expressed genes common to the three datasets. The screened differential genes were then subjected to protein-protein interaction (PPI) analysis and module analysis with the help of STRING online tool and Cytoscape software, and survival prognosis analysis was performed for each gene with the help of Kaplan-Meier Plotter database, and the TRIP13 gene was identified as the main molecule for subsequent studies. Subsequently, the human LUAD cell line H292 was irradiated with multiple X-rays using a sub-lethal dose irradiation method to construct a radioresistant cell line, H292DR. The radioresistance of H292DR cells was verified using cell counting kit-8 (CCK-8) assay and clone formation assay. The expression levels of TRIP13 in H292 and H292DR cells were measured by Western blot. Small interfering RNA (siRNA) was used to silence the expression of TRIP13 in H292DR cells and Western blot assay was performed. The clone formation ability and migration ability of H292DR cells were observed after TRIP13 silencing, followed by the detection of changes in the expression levels of proteins closely related to homologous recombination, such as ataxia telangiectasia mutated (ATM) protein.@*RESULTS@#Screening of multiple GEO datasets, validation of external datasets and survival analysis revealed that TRIP13 was highly expressed in LUAD and was associated with poor prognosis in LUAD patients who had received radiation therapy. And the results of gene set enrichment analysis (GSEA) of TRIP13 suggested that TRIP13 might be closely associated with LUAD radioresistance by promoting homologous recombination repair after radiation therapy. Experimentally, TRIP13 expression was found to be upregulated in H292DR, and silencing of TRIP13 was able to increase the sensitivity of H292DR cells to radiation.@*CONCLUSIONS@#TRIP13 is associated with poor prognosis in LUAD patients treated with radiation, possibly by promoting a homologous recombination repair pathway to mediate resistance of LUAD cells to radiation.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms/radiotherapy , Adenocarcinoma of Lung/radiotherapy , Cell Count , Combined Modality Therapy , ATPases Associated with Diverse Cellular Activities , Cell Cycle Proteins
2.
Chinese Medical Journal ; (24): 222-231, 2024.
Article in English | WPRIM | ID: wpr-1007744

ABSTRACT

BACKGROUND@#Radiation (IR)-induced DNA damage triggers cell cycle arrest and has a suppressive effect on the tumor microenvironment (TME). Wee1, a cell cycle regulator, can eliminate G2/M arrest by phosphorylating cyclin-dependent kinase 1 (CDK1). Meanwhile, programed death-1/programed death ligand-1 (PD-1/PDL-1) blockade is closely related to TME. This study aims to investigate the effects and mechanisms of Wee1 inhibitor AZD1775 and anti-PD-1 antibody (anti-PD-1 Ab) on radiosensitization of hepatoma.@*METHODS@#The anti-tumor activity of AZD1775 and IR was determined by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) assay on human and mouse hepatoma cells HepG2, Hepa1-6, and H22. The anti-hepatoma mechanism of AZD1775 and IR revealed by flow cytometry and Western blot in vitro . A hepatoma subcutaneous xenograft mice model was constructed on Balb/c mice, which were divided into control group, IR group, AZD1775 group, IR + AZD1775 group, IR + anti-PD-1 Ab group, and the IR + AZD1775 + anti-PD-1 Ab group. Cytotoxic CD8 + T cells in TME were analyzed by flow cytometry.@*RESULTS@#Combining IR with AZD1775 synergistically reduced the viability of hepatoma cells in vitro . AZD1775 exhibited antitumor effects by decreasing CDK1 phosphorylation to reverse the IR-induced G2/M arrest and increasing IR-induced DNA damage. AZD1775 treatment also reduced the proportion of PD-1 + /CD8 + T cells in the spleen of hepatoma subcutaneous xenograft mice. Further studies revealed that AZD1775 and anti-PD-1 Ab could enhance the radiosensitivity of hepatoma by enhancing the levels of interferon γ (IFNγ) + or Ki67 + CD8 T cells and decreasing the levels of CD8 + Tregs cells in the tumor and spleen of the hepatoma mice model, indicating that the improvement of TME was manifested by increasing the cytotoxic factor IFNγ expression, enhancing CD8 + T cells proliferation, and weakening CD8 + T cells depletion.@*CONCLUSIONS@#This work suggests that AZD1775 and anti-PD-1 Ab synergistically sensitize hepatoma to radiotherapy by enhancing IR-induced DNA damage and improving cytotoxic CD8 + T cells in TME.


Subject(s)
Humans , Animals , Mice , Carcinoma, Hepatocellular/radiotherapy , Cell Cycle Proteins/metabolism , Protein-Tyrosine Kinases/genetics , Apoptosis , Programmed Cell Death 1 Receptor , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Liver Neoplasms/radiotherapy , Tumor Microenvironment , Pyrazoles , Pyrimidinones
3.
Chinese Journal of Medical Genetics ; (6): 7-11, 2023.
Article in Chinese | WPRIM | ID: wpr-970868

ABSTRACT

OBJECTIVE@#To analyze the clinical phenotype and results of genetic testing in three children with Cornelia de Lange syndrome (CdLS).@*METHODS@#Clinical data of the children and their parents were collected. Peripheral blood samples of the pedigrees were collected for next generation sequencing analysis.@*RESULTS@#The main clinical manifestations of the three children have included growth delay, mental retardation, peculiar facies and other accompanying symptoms. Based on the criteria proposed by the International Diagnostic Consensus, all three children were suspected for CdLS. As revealed by whole exome sequencing, child 1 has harbored NIPBL gene c.5567_5569delGAA insTAT missense variant, child 2 has harbored SMC1A gene c.607A>G missense variant, and child 3 has harbored HDAC8 gene c.628+1G>A splicing variant. All of the variants were de novo in origin.@*CONCLUSION@#All of the children were diagnosed with CdLS due to pathogenic variants of the associated genes, among which the variants of NIPBL and HDAC8 genes were unreported previously. Above finding has enriched the spectrum of pathogenic variants underlying CdLS.


Subject(s)
Humans , Cell Cycle Proteins/genetics , De Lange Syndrome/diagnosis , Genotype , Phenotype , Genetic Testing , Histone Deacetylases/genetics , Repressor Proteins/genetics
4.
Frontiers of Medicine ; (4): 889-906, 2023.
Article in English | WPRIM | ID: wpr-1010805

ABSTRACT

Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.


Subject(s)
Humans , DNA Copy Number Variations , Nuclear Proteins/genetics , Central Nervous System Neoplasms/pathology , Transcription Factors/genetics , Prognosis , Lymphoma/genetics , Genomics , China , Central Nervous System/pathology , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics
5.
Neuroscience Bulletin ; (6): 1333-1347, 2023.
Article in English | WPRIM | ID: wpr-1010605

ABSTRACT

Brain size abnormality is correlated with an increased frequency of autism spectrum disorder (ASD) in offspring. Genetic analysis indicates that heterozygous mutations of the WD repeat domain 62 (WDR62) are associated with ASD. However, biological evidence is still lacking. Our study showed that Wdr62 knockout (KO) led to reduced brain size with impaired learning and memory, as well as ASD-like behaviors in mice. Interestingly, Wdr62 Nex-cKO mice (depletion of WDR62 in differentiated neurons) had a largely normal brain size but with aberrant social interactions and repetitive behaviors. WDR62 regulated dendritic spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. Finally, we revealed that retinoic acid gavages significantly alleviated ASD-like behaviors in mice with WDR62 haploinsufficiency, probably by complementing the expression of ASD and synapse-related genes. Our findings provide a new perspective on the relationship between the microcephaly gene WDR62 and ASD etiology that will benefit clinical diagnosis and intervention of ASD.


Subject(s)
Mice , Animals , Microcephaly/genetics , Autistic Disorder/metabolism , Autism Spectrum Disorder/metabolism , Nerve Tissue Proteins/metabolism , Brain/metabolism , Mice, Knockout , Cell Cycle Proteins/metabolism
6.
Journal of Zhejiang University. Science. B ; (12): 1037-1046, 2023.
Article in English | WPRIM | ID: wpr-1010581

ABSTRACT

染色质许可和DNA复制因子1(Cdt1)是复制起始许可的主要调控因子,也是组成复制前复合物的核心成员。细胞通过依赖Cdt1的波动水平,且在每个周期中通过调节其总量以确保DNA仅复制一次。Cdt1功能缺陷会造成DNA过度复制,最终导致基因组不稳定。虽然酵母中cdt1和人类Meier-Gorlin综合征(MGS)患者中的CDT1已被广泛研究,但缺乏脊椎动物模型。我们发现在硬骨鱼类分支的几个鲤形目物种(包括斑马鱼)中,Cdt1蛋白在其N末端插入一段其他脊椎动物中没有的独特无序序列。通过分析在cdt1基因中携带移码缺失的遗传性斑马鱼突变体(命名为cdt1zju1 ),我们发现突变胚胎虽然几乎无任何早期胚胎表型异常,但成年突变斑马鱼却表现出侏儒症、生存能力降低的症状,以及性腺发育不全且不育。此外,我们同样发现除转录本cdt1-201外,斑马鱼还存在第二个cdt1转录本——cdt1-202,它是通过跳过外显子2产生,这在其他生物中暂无报道。有意思的是cdt1-202在cdt1-201纯合突变体中显著上调。上述研究结果表明,cdt1-202转录本可能可以补偿cdt1-201在早期发育过程中的功能损失,但不能补偿后期生长,这可支持斑马鱼作为研究人类MGS的遗传模型。


Subject(s)
Animals , Humans , Zebrafish , Growth Disorders , Cell Cycle Proteins , Gonads
7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 36-46, 2023.
Article in English | WPRIM | ID: wpr-971662

ABSTRACT

Bavachin is a dihydroflavonoid compound isolated from Psoralea corylifolia, and exhibits anti-bacterial, anti-inflammatory, anti-tumor and lipid-lowering activities. Recent attention has gradually drawn on bavachin-induced apoptosis in many human cancer cell lines. However, the anti-cancer effects and related mechanisms in colorectal cancer remain unknown. Here, we investigated the effects of bavachin on colorectal cancer in vivo and in vitro. The results showed that bavachin inhibited the proliferation of human colorectal cancer cells and induce apoptosis. These changes were mediated by activating the MAPK signaling pathway, which significantly up-regulated the expression of Gadd45a. Furthermore, Gadd45a silencing obviously attenuated bavachin-mediated cell apoptosis. Inhibition of the MAPK signaling pathway by JNK/ERK/p38 inhibitors also weakened the up-regulation of Gadd45a by bavachin. The anticancer effect of bavachin was also validated using a mouse xenograft model of human colorectal cancer. In conclusion, these findings suggest that bavachin induces the apoptosis of colorectal cancer cells through activating the MAPK signaling pathway.


Subject(s)
Humans , Signal Transduction , Flavonoids/pharmacology , Proteins/pharmacology , MAP Kinase Signaling System , Colorectal Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Cycle Proteins/pharmacology
8.
Protein & Cell ; (12): 51-63, 2023.
Article in English | WPRIM | ID: wpr-971605

ABSTRACT

RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.


Subject(s)
Animals , Mice , 3' Untranslated Regions/genetics , Cell Cycle Proteins/metabolism , Gametogenesis/genetics , Meiosis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
9.
Journal of Experimental Hematology ; (6): 81-88, 2023.
Article in Chinese | WPRIM | ID: wpr-971106

ABSTRACT

OBJECTIVE@#To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL.@*METHODS@#The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1.@*RESULTS@#Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05).@*CONCLUSION@#EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.


Subject(s)
Humans , Gemcitabine , Everolimus/pharmacology , Survivin/pharmacology , Cyclin D1/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein , Cell Line, Tumor , Cell Proliferation , TOR Serine-Threonine Kinases , Apoptosis , Apoptosis Regulatory Proteins , Cell Cycle Proteins , Lymphoma, Large B-Cell, Diffuse
10.
Journal of Experimental Hematology ; (6): 17-24, 2023.
Article in Chinese | WPRIM | ID: wpr-971096

ABSTRACT

OBJECTIVE@#To analyze the gene mutation profile in children with acute lymphocyte leukemia (ALL) and to explore its prognostic significance.@*METHODS@#Clinical data of 249 primary pediatric ALL patients diagnosed and treated in the Department of Hematological Oncology of Wuhan Children's Hospital from January 2018 to December 2021 were analyzed retrospectively. Next-generation sequencing (NGS) was used to obtain gene mutation data and analyze the correlation between it and the prognosis of children with ALL.@*RESULTS@#227 (91.2%) were B-ALL, 22 (8.8%) were T-ALL among the 249 cases, and 178 (71.5%) were found to have gene mutations, of which 85 (34.1%) had ≥3 gene mutations. NRAS(23.7%), KRAS (22.9%),FLT3(11.2%), PTPN11(8.8%), CREBBP (7.2%), NOTCH1(6.4%) were the most frequently mutated genes, the mutations of KRAS, FLT3, PTPN11, CREBBP were mainly found in B-ALL, the mutations of NOTCH1 and FBXW7 were mainly found in T-ALL. The gene mutation incidence of T-ALL was significantly higher than that of B-ALL (χ2= 5.573,P<0.05) and were more likely to have co-mutations (P<0.05). The predicted 4-year EFS rate (47.9% vs 88.5%, P<0.001) and OS rate (53.8% vs 94.1%, P<0.001) in children with tp53 mutations were significantly lower than those of patients without tp53 mutations. Patients with NOTCH1 mutations had higher initial white blood cell count (128.64×109/L vs 8.23×109/L,P<0.001), and children with NOTCH1 mutations had a lower 4-year EFS rate than those of without mutations (71.5% vs 87.2%, P=0.037).@*CONCLUSION@#Genetic mutations are prevalent in childhood ALL and mutations in tp53 and NOTCH1 are strong predictors of adverse outcomes in childhood ALL, with NGS contributing to the discovery of genetic mutations and timely adjustment of treatment regimens.


Subject(s)
Child , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Cycle Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Ubiquitin-Protein Ligases/genetics , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Mutation , Lymphocytes
11.
Chinese Acupuncture & Moxibustion ; (12): 1287-1292, 2023.
Article in English | WPRIM | ID: wpr-1007474

ABSTRACT

OBJECTIVES@#To explore the possible mechanism of Shao's five-needle therapy pretreatment on relieving airway inflammatory response in asthmatic rats.@*METHODS@#Forty SPF-grade SD rats were randomly divided into a blank group, a model group, an acupuncture group, and a medication group, with 10 rats in each group. Except the blank group, asthma model was established by aerosol inhalation of ovalbumin in the other 3 groups. The rats in the acupuncture group were treated with acupuncture at "Dazhui" (GV 14) and bilateral "Feishu" (BL 13) and "Fengmen" (BL 12), with each session lasting for 20 min. Acupuncture was given before each motivating, once daily for 7 consecutive days. The rats in the medication group were treated with intraperitoneal injection of dexamethasone sodium phosphate solution before each motivating, once daily for 7 days. General situation of the rats was observed in each group; ELISA method was used to detect the levels of inflammatory cytokines interleukin (IL)-1β and IL-18 in serum; immunofluorescence staining method was performed to assess the expression of reactive oxygen species (ROS) in lung tissues; Western blot method was used to measure the protein expression of thioredoxin interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in lung tissues.@*RESULTS@#The rats in the blank group exhibited normal behavior, while those in the model group showed signs of respiratory distress, ear scratching, cheek rubbing, and dysphoria. Compared with the model group, the rats in the acupuncture group and the medication group showed stable respiration and relatively agile responses. Compared with those in the blank group, the serum levels of IL-18 and IL-1β were elevated (P<0.01), the expression intensity of ROS was increased, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were increased (P<0.01) in the model group. Compared with those in the model group, the serum levels of IL-18 and IL-1β were reduced (P<0.01), the expression intensity of ROS was lowered, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were reduced (P<0.01) in the acupuncture group and the medication group. Compared with the medication group, the protein expression of ASC in lung tissue was reduced in the acupuncture group (P<0.05).@*CONCLUSIONS@#Pretreatment of Shao's five-needle therapy could alleviate airway inflammatory response in asthmatic rats by reducing ROS levels and decreasing the aggregation and activation of pathway-related proteins in the ROS/TXNIP/NLRP3 pathway, ultimately leading to decreased secretion of IL-1β and IL-18. This mechanism may contribute to the effectiveness of Shao's five-needle therapy in preventing and treating asthma.


Subject(s)
Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Interleukin-18/metabolism , NLR Proteins , Rats, Sprague-Dawley , Asthma/metabolism , Caspases , Cell Cycle Proteins
12.
Chinese Journal of Biotechnology ; (12): 132-148, 2023.
Article in Chinese | WPRIM | ID: wpr-970364

ABSTRACT

The bromodomain and extraterminal domain (Bet) family are the regulators of the epigenome and also the pivotal driving factors for the expression of tumor related genes that tumor cells depend on for survival and proliferation. Bromodomain-containing protein 4 (Brd4) is a member of the Bet protein family. Generally, Brd4 identifies acetylated histones and binds to the promoter or enhancer region of target genes to initiate and maintain expression of tumor related genes. Brd4 is closely related to the regulation of multiple transcription factors and chromatin modification and is involved in DNA damage repair and maintenance of telomere function, thus maintaining the survival of tumor cells. This review summarizes the structure and function of Brd4 protein and the application of its inhibitors in tumor research.


Subject(s)
Humans , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Histones , Cell Cycle Proteins/metabolism , Neoplasms/metabolism , Protein Domains
13.
Chinese Journal of Lung Cancer ; (12): 310-318, 2023.
Article in Chinese | WPRIM | ID: wpr-982161

ABSTRACT

Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.


Subject(s)
Humans , Cell Cycle Proteins/metabolism , Spindle Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , M Phase Cell Cycle Checkpoints/genetics , Lung Neoplasms/metabolism
14.
Asian Journal of Andrology ; (6): 398-403, 2023.
Article in English | WPRIM | ID: wpr-981948

ABSTRACT

Teratozoospermia is a rare disease associated with male infertility. Several recurrent genetic mutations have been reported to be associated with abnormal sperm morphology, but the genetic basis of tapered-head sperm is not well understood. In this study, whole-exome sequencing (WES) identified a homozygous WD repeat domain 12 (WDR12; p.Ser162Ala/c.484T>G) variant in an infertile patient with tapered-head spermatozoa from a consanguineous Chinese family. Bioinformatic analysis predicted this mutation to be a pathogenic variant. To verify the effect of this variant, we analyzed WDR12 protein expression in spermatozoa of the patient and a control individual, as well as in the 293T cell line, by Western blot analysis, and found that WDR12 expression was significantly downregulated. To understand the role of normal WDR12, we evaluated its mRNA and protein expression in mice at different ages. We observed that WDR12 expression was increased in pachytene spermatocytes, with intense staining visible in round spermatid nuclei. Based on these results, the data suggest that the rare biallelic pathogenic missense variant (p.Ser162Ala/c.484T>G) in the WDR12 gene is associated with tapered-head spermatozoa. In addition, after intracytoplasmic sperm injection (ICSI), a successful pregnancy was achieved. This finding indicates that infertility associated with this WDR12 homozygous mutation can be overcome by ICSI. The present results may provide novel insights into understanding the molecular mechanisms of male infertility.


Subject(s)
Humans , Pregnancy , Female , Male , Animals , Mice , Teratozoospermia/pathology , Semen/metabolism , Infertility, Male/metabolism , Spermatozoa/metabolism , Mutation , RNA-Binding Proteins/metabolism , Cell Cycle Proteins/genetics
15.
Chinese Journal of Medical Genetics ; (6): 568-571, 2023.
Article in Chinese | WPRIM | ID: wpr-981790

ABSTRACT

OBJECTIVE@#To explore the prenatal ultrasonographic features and genetic basis for an abortus suspected for type II Cornelia de Lange syndrome (CdLS2).@*METHODS@#A fetus diagnosed with CdLS2 at the Shengjing Hospital Affiliated to China Medical University on September 3, 2019 was selected as the study subject. Clinical data of the fetus and family history was collected. Following induced labor, whole exome sequencing was carried out on the abortus. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.@*RESULTS@#Prenatal ultrasonography (33 weeks of pregnancy) has revealed multiple anomalies in the fetus, which included slightly widened cavity of septum pellucidum, blurred corpus callosum, slightly reduced frontal lobe volume, thin cortex, fusion of lateral ventricles, polyhydramnios, small stomach bubble, and digestive tract atresia. Whole exome sequencing has revealed a heterozygous c.2076delA (p.Lys692Asnfs*27) frameshifting variant in the SMC1A gene, which was found in neither parent and was rated as pathogenic based on the guidelines of American College of Medical Genetics and Genomics (ACMG).@*CONCLUSION@#The CdLS2 in this fetus may be attributed to the c.2076delA variant of the SMC1A gene. Above finding has provided a basis for genetic counseling and assessment of reproductive risk for this family.


Subject(s)
Pregnancy , Female , Humans , Cell Cycle Proteins/genetics , De Lange Syndrome/diagnosis , Phenotype , Ultrasonography, Prenatal , Fetus/diagnostic imaging , Mutation
16.
China Journal of Chinese Materia Medica ; (24): 3014-3021, 2023.
Article in Chinese | WPRIM | ID: wpr-981431

ABSTRACT

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Subject(s)
Animals , Rats , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Signal Transduction , Liver , Aging , Cell Cycle Proteins , Interleukin-6
17.
Chinese Journal of Biotechnology ; (12): 1525-1547, 2023.
Article in Chinese | WPRIM | ID: wpr-981152

ABSTRACT

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinase 2
18.
Frontiers of Medicine ; (4): 317-329, 2023.
Article in English | WPRIM | ID: wpr-982568

ABSTRACT

Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.


Subject(s)
Humans , Atherosclerosis/genetics , Autophagy/genetics , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , MicroRNAs/metabolism , Repressor Proteins/metabolism , RNA Splicing Factors , Serine-Arginine Splicing Factors/genetics , RNA, Long Noncoding/metabolism
19.
Protein & Cell ; (12): 202-216, 2023.
Article in English | WPRIM | ID: wpr-982531

ABSTRACT

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.


Subject(s)
Humans , Mesenchymal Stem Cells/physiology , Cellular Senescence , Homeostasis , Cell Cycle Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Mitochondria/metabolism , Electron Transport Complex III/metabolism , Cells, Cultured
20.
Chinese Journal of Lung Cancer ; (12): 721-731, 2023.
Article in Chinese | WPRIM | ID: wpr-1010080

ABSTRACT

BACKGROUND@#Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, and its treatment and diagnosis remain a hot research topic. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is highly expressed in a variety of cancer cells and may be associated with the progression of LUAD. This study aimed to investigate the effect of TPX2 on the malignant progression of LUAD cells and the regulatory mechanisms.@*METHODS@#The expression of gene TPX2 in LUAD tissues from The Cancer Genome Atlas (TCGA) database was analyzed by bioinformatics analysis techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of TPX2 and miR-218-5p in human lung normal cell lines and human LUAD cell lines. Western blot was used to detect TPX2 protein expression in cell lines and its effect on the expression of key proteins in the p53 signaling pathway. The relationship between TPX2 and miR-218-5p was predicted using bioinformatics and verified by dual luciferase reporter gene assay. Cell counting kit-8 (CCK-8) assay, cell clone formation, cell scratching, Transwell assay, and flow cytometry were used to detect the effects of miR-218-5p and TPX2 on LUAD cell function.@*RESULTS@#TPX2 was significantly overexpressed in LUAD cells, and knockdown of TPX2 inhibited LUAD cell proliferation, migration, and invasion, promoted apoptosis and induced G2/M phase block, and promoted the expression of key proteins in the p53 signaling pathway. miR-218-5p, an upstream regulator of TPX2, could inhibit its expression. Overexpression of miR-218-5p eliminated the malignant development caused by high expression of TPX2, inhibited the malignant processes of LUAD cells such as proliferation and migration as well as promoted the p53 signaling pathway.@*CONCLUSIONS@#miR-218-5p targets and inhibits TPX2 expression and exerts an inhibitory effect on the malignant progression of LUAD cells via p53.


Subject(s)
Humans , Lung Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Microtubule-Associated Proteins/genetics , Cell Cycle Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL