ABSTRACT
SUMMARY: Glucose has an essential role in the proliferation and survival of testicular tissue. Glucose transporters (GLUTs) are responsible for glucose uptake across cell membranes. In the present work, two main isoforms GLUT1 and GLUT3 were investigated in the testes of Laboratory mouse (BALB/c), Lesser Egyptian jerboa (Jaculus jaculus), Golden hamster (Mesocricetus auratus), and Desert Hedgehog (Paraechinus aethiopicus). Immunofluorescent localization of GLUT1 and GLUT3 showed considerable species differences. The lowest expression of GLUT1 and GLUT3 was localized in the testis of Laboratory mouse (BALB/c), the highest GLUT1 localization was detected in the testis of Lesser Egyptian jerboa (Jaculus jaculus), and the highest GLUT3 immunofluorescent localization was observed in the testis of Hedgehog (Paraechinus aethiopicus). The results imply that GLUT3 is the principal glucose transporter in the studied testes, which is related to species differences. The different immunolocalization of GLUT in examined testes suggests using various transport systems for energy gain in different species.
La glucosa tiene un papel esencial en la proliferación y supervivencia del tejido testicular. Los transportadores de glucosa (GLUT) son responsables de la absorción de glucosa a través de las membranas celulares. En el presente trabajo, se investigaron dos isoformas principales GLUT1 y GLUT3 en los testículos de un ratón de laboratorio (BALB/c), un jerbo egipcio menor (Jaculus jaculus), un hámster dorado (Mesocricetus auratus) y un erizo del desierto (Paraechinus aethiopicus). La localización inmunofluorescente de GLUT1 y GLUT3 mostró diferencias considerables entre especies. La expresión más baja de GLUT1 y GLUT3 se localizó en el testículo del ratón de laboratorio (BALB/c), la localización más alta de GLUT1 se detectó en el testículo del jerbo egipcio menor (Jaculus jaculus) y la localización inmunofluorescente de GLUT3 más alta se observó en el testículo de Erizo (Paraechinus aethiopicus). Los resultados implican que GLUT3 es el principal transportador de glucosa en los testículos estudiados, lo que está relacionado con diferencias entre especies. La diferente inmunolocalización de GLUT en los testículos examinados sugiere el uso de varios sistemas de transporte para ganar energía en diferentes especies.
Subject(s)
Animals , Testis/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/metabolism , Mammals , Mice, Inbred BALB CABSTRACT
BACKGROUND@#Bladder cancer, characterized by a high potential of tumor recurrence, has high lifelong monitoring and treatment costs. To date, tumor cells with intrinsic softness have been identified to function as cancer stem cells in several cancer types. Nonetheless, the existence of soft tumor cells in bladder tumors remains elusive. Thus, our study aimed to develop a micro-barrier microfluidic chip to efficiently isolate deformable tumor cells from distinct types of bladder cancer cells.@*METHODS@#The stiffness of bladder cancer cells was determined by atomic force microscopy (AFM). The modified microfluidic chip was utilized to separate soft cells, and the 3D Matrigel culture system was to maintain the softness of tumor cells. Expression patterns of integrin β8 (ITGB8), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were determined by Western blotting. Double immunostaining was conducted to examine the interaction between F-actin and tripartite motif containing 59 (TRIM59). The stem-cell-like characteristics of soft cells were explored by colony formation assay and in vivo studies upon xenografted tumor models.@*RESULTS@#Using our newly designed microfluidic approach, we identified a small fraction of soft tumor cells in bladder cancer cells. More importantly, the existence of soft tumor cells was confirmed in clinical human bladder cancer specimens, in which the number of soft tumor cells was associated with tumor relapse. Furthermore, we demonstrated that the biomechanical stimuli arising from 3D Matrigel activated the F-actin/ITGB8/TRIM59/AKT/mTOR/glycolysis pathways to enhance the softness and tumorigenic capacity of tumor cells. Simultaneously, we detected a remarkable up-regulation in ITGB8, TRIM59, and phospho-AKT in clinical bladder recurrent tumors compared with their non-recurrent counterparts.@*CONCLUSIONS@#The ITGB8/TRIM59/AKT/mTOR/glycolysis axis plays a crucial role in modulating tumor softness and stemness. Meanwhile, the soft tumor cells become more sensitive to chemotherapy after stiffening, that offers new insights for hampering tumor progression and recurrence.
Subject(s)
Animals , Mice , Humans , Proto-Oncogene Proteins c-akt/metabolism , Actins/metabolism , Neoplasm Recurrence, Local , TOR Serine-Threonine Kinases/metabolism , Urinary Bladder Neoplasms , Glycolysis , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism , Tripartite Motif Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Integrin beta ChainsABSTRACT
OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.@*METHODS@#Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.@*RESULTS@#The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).@*CONCLUSIONS@#EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Electroacupuncture , Phosphatidylinositol 3-Kinase/metabolism , Facial Nerve Injuries/therapy , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1 , Glial Cell Line-Derived Neurotrophic Factor , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Autophagy , Mammals/metabolismABSTRACT
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Subject(s)
Mice , Animals , Astrocytes , Neuroglia/physiology , Diencephalon , Brain , Neurons , MammalsABSTRACT
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Subject(s)
Animals , Mice , Humans , Ependymoglial Cells/metabolism , Hedgehog Proteins/metabolism , Ferrets/metabolism , Cerebral Cortex , Neurogenesis , Mammals/metabolism , Neuroglia/metabolism , Bone Morphogenetic Protein 7/metabolismABSTRACT
La leche humana es el estándar de oro para la nutrición del bebé y debe iniciarse en la primera hora de vida. La leche de vaca, de otros mamíferos o las bebidas vegetales no se deben ofrecer antes del año de vida. Sin embargo, algunos niños requieren, al menos en parte, de fórmulas infantiles. Aun con las sucesivas mejoras a lo largo de la historia mediante la incorporación de oliogosacáridos, probióticos, prebióticos, sinbióticos y postbióticos, las fórmulas infantiles siguen siendo perfectibles para reducir la brecha de salud entre los bebés amamantados y aquellos alimentados con fórmula. En este sentido, se espera que la complejidad de las fórmulas siga aumentando a medida que se conozca mejor cómo modular el desarrollo de la microbiota intestinal. El objetivo de este trabajo fue realizar una revisión no sistemática del efecto de los diferentes escenarios lácteos sobre la microbiota intestinal.
Human milk is the gold standard for infant nutrition, and breastfeeding should be started within the first hour of life. Cow's milk, other mammalian milk, or plant-based beverages should not be offered before 1 year of age. However, some infants require, at least in part, infant formulas. Even with subsequent enhancements throughout history, with the addition of oligosaccharides, probiotics, prebiotics, synbiotics, and postbiotics, infant formulas still have room for improvement in reducing the health gap between breastfed and formula-fed infants. In this regard, the complexity of infant formulas is expected to continue to increase as the knowledge of how to modulate the development of the gut microbiota is better understood. The objective of this study was to perform a non-systematic review of the effect of different milk scenarios on the gut microbiota.
Subject(s)
Humans , Animals , Infant, Newborn , Infant , Milk Hypersensitivity , Gastrointestinal Microbiome , Breast Feeding , Cattle , Infant Formula , Mammals , Milk, HumanABSTRACT
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.
Subject(s)
Mice , Animals , Gliosis/pathology , Cicatrix/pathology , Spinal Cord Injuries , Astrocytes/metabolism , Spinal Cord/pathology , Fibrosis , Mammals , Receptors, G-Protein-CoupledABSTRACT
Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.
Subject(s)
Animals , Neuroglia/metabolism , Central Nervous System/metabolism , Astrocytes/metabolism , Oligodendroglia/metabolism , Cerebral Small Vessel Diseases/metabolism , Antigens/metabolism , Mammals/metabolismABSTRACT
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Subject(s)
Animals , Neuroglia/physiology , Neurons/physiology , Astrocytes , Microglia/physiology , Oligodendroglia , MammalsABSTRACT
C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.
Subject(s)
Animals , Humans , Inflammation/metabolism , Lectins, C-Type/metabolism , Mammals/metabolism , Membrane Proteins , Polysaccharides/metabolismABSTRACT
OBJECTIVE@#The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.@*METHODS@#Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.@*RESULTS@#IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.@*CONCLUSION@#IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Subject(s)
Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Colchicine/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Mammals/metabolismABSTRACT
Sleep is a highly conserved phenomenon in endotherms, and has a universal physiological function across all species. In mammals, sleep can be divided into two stages: rapid eye movement (REM) sleep and non-REM (NREM) sleep, which alternate in a cyclic manner. Humans spend about one-third of their lives asleep. Sufficient sleep is necessary for humans to sustain everyday functioning. Sleep plays an important role in regulating energy metabolism, immune defense, endocrine function, and the consolidation of memory process. With the development of social economy and the change of life style, sleep duration of the residents has gradually decreased and the incidence of sleep disturbances has increased. Sleep disturbances can lead to severe mental disorders, such as depression, anxiety disorders, dementia, and other mental diseases, and may increase the risk of physical diseases, such as chronic inflammation, heart disease, diabetes, hypertension, atherosclerosis and others. Maintaining good sleep is of great significance for developing social productive forces, promoting sustainable development of economic society, and is a necessary condition for carrying out the "Healthy China Strategy". The sleep research in China started in 1950s. After decades of development, researchers have made great progress in the molecular mechanisms of sleep and wakefulness, the pathogenesis of sleep disorders and the development of new therapies. With the advancement of science and technology and the public's attention to sleep, the level of clinical diagnosis and therapy of sleep disorders in China is gradually brought in line with international standards. The publication of diagnosis and treatment guidelines in the field of sleep medicine will promote the standardization of the construction. In the future, it is still necessary to promote the development of sleep medicine in the following aspects: Strengthening the professional training and discipline construction, improving the cooperation of sleep research, promoting the intelligent diagnosis and treatment of sleep disorders, and developing the new intervention strategies. Therefore, this review will comprehensively summarize the origin, current situation, and future expectations of sleep medicine in China, including discipline construction of sleep medicine, the number of sleep project grants, research findings, the status and progress of diagnosis and treatment of sleep disorders, and the development direction of sleep medicine.
Subject(s)
Animals , Humans , Sleep , Sleep Wake Disorders/therapy , Atherosclerosis , China/epidemiology , Health Status , MammalsABSTRACT
The ovary is the reproductive organ of female mammals, which is responsible for producing mature eggs and secreting sex hormones. The regulation of ovarian function involves the ordered activation and repression of genes related to cell growth and differentiation. In recent years, it has been found that histone posttranslational modification can affect DNA replication, damage repair and gene transcriptional activity. Some regulatory enzymes mediating histone modification are co-activators or co-inhibitors associated with transcription factors, which play important roles in the regulation of ovarian function and the development of ovary-related diseases. Therefore, this review outlines the dynamic patterns of common histone modifications (mainly acetylation and methylation) during the reproductive cycle and their regulation of gene expression for important molecular events, focusing on the mechanisms of follicle development and sex hormone secretion and function. For example, the specific dynamics of histone acetylation are important for the arrest and resumption of meiosis in oocytes, while histone (especially H3K4) methylation affects the maturation of oocytes by regulating their chromatin transcriptional activity and meiotic progression. Besides, histone acetylation or methylation can also promote the synthesis and secretion of steroid hormones before ovulation. Finally, the abnormal histone posttranslational modifications in the development of two common ovarian diseases (premature ovarian insufficiency and polycystic ovary syndrome) are briefly described. It will provide a reference basis for understanding the complex regulation mechanism of ovarian function and further exploring the potential therapeutic targets of related diseases.
Subject(s)
Female , Animals , Histone Code , Histones , Protein Processing, Post-Translational , Ovary , Oocytes , MammalsABSTRACT
Collagen, which widely exists in skin, bone, muscle and other tissues, is a major structural protein in mammalian extracellular matrix. It participates in cell proliferation, differentiation, migration and signal transmission, plays an important role in tissue support and repair and exerts a protective effect. Collagen is widely used in tissue engineering, clinical medicine, food industry, packaging materials, cosmetics and medical beauty due to its good biological characteristics. This paper reviews the biological characteristics of collagen and its application in bioengineering research and development in recent years. Finally, we prospect the future application of collagen as a biomimetic material.
Subject(s)
Animals , Collagen/analysis , Tissue Engineering/methods , Extracellular Matrix/metabolism , Biomimetic Materials/chemistry , Bone and Bones , Tissue Scaffolds , Mammals/metabolismABSTRACT
Circadian rhythm is an internal regulatory mechanism formed in organisms in response to the circadian periodicity in the environment, which modulates the pathophysiological events, occurrence and development of diseases, and the response to treatment in mammals. It significantly influences the susceptibility, injury, and recovery of ischemic stroke, and the response to therapy. Accumulating evidence indicates that circadian rhythms not only regulate the important physiological factors of ischemic stroke events, such as blood pressure and coagulation-fibrinolysis system, but also participate in the immuno-inflammatory reaction mediated by glial cells and peripheral immune cells after ischemic injury and the regulation of neurovascular unit(NVU). This article aims to link molecular, cellular, and physiological pathways in circadian biology to the clinical consequences of ischemic stroke and to illustrate the impact of circadian rhythms on ischemic stroke pathogenesis, the regulation of NVU, and the immuno-inflammatory responses. The regulation of circadian rhythm by traditional Chinese medicine is reviewed, and the research progress of traditional Chinese medicine intervention in circadian rhythm is summarized to provide a reasonable and valuable reference for the follow-up traditional Chinese medicine research and molecular mechanism research of circadian rhythm.
Subject(s)
Animals , Ischemic Stroke , Medicine, Chinese Traditional , Circadian Rhythm , Blood Coagulation , Blood Pressure , MammalsABSTRACT
To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.
Subject(s)
Mice , Animals , Diabetes Mellitus, Type 2/genetics , Streptozocin/pharmacology , Diet, High-Fat/adverse effects , Proteomics , Inflammation , TOR Serine-Threonine Kinases , Autophagy , MammalsABSTRACT
Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Subject(s)
Animals , Alternative Splicing/genetics , RNA Splicing , Spliceosomes/metabolism , RNA, Messenger/metabolism , Communicable Diseases/genetics , Mammals/metabolismABSTRACT
Persistent neurogenesis exists in the subventricular zone (SVZ) of the ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus in the adult mammalian brain. Adult endogenous neurogenesis not only plays an important role in the normal brain function, but also has important significance in the repair and treatment of brain injury or brain diseases. This article reviews the process of adult endogenous neurogenesis and its application in the repair of traumatic brain injury (TBI) or ischemic stroke, and discusses the strategies of activating adult endogenous neurogenesis to repair brain injury and its practical significance in promoting functional recovery after brain injury.
Subject(s)
Adult , Animals , Humans , Brain/physiopathology , Hippocampus/physiopathology , Mammals/physiology , Neurogenesis/physiology , Brain Hemorrhage, Traumatic/therapy , Ischemic Stroke/therapy , Recovery of Function , Spinal Cord/physiopathologyABSTRACT
DMRT, a gene family related to sexual determination, encodes a large group of transcription factors (DMRTs) with the double-sex and mab-3 (DM) domain (except for DMRT8), which is able to bind to and regulate DNAs. Current studies have shown that the DMRT gene family plays a critical role in the development of sexual organs (such as gender differentiation, gonadal development, germ cell development, etc.) as well as extrasexual organs (such as musculocartilage development, nervous system development, etc.). Additionally, it has been suggested that DMRTs may be involved in the cancer development and progression (such as prostate cancer, breast cancer, lung cancer, etc.). This review summarizes the research progress about the mammalian DMRTs' structure, function and its critical role in cancer development, progression and therapy (mainly in human and mice), which suggests that DMRT gene could be a candidate gene in the study of tumor formation and therapeutic strategy.
Subject(s)
Male , Animals , Humans , Mice , Transcription Factors/genetics , Mammals/metabolism , Cell Differentiation , Neoplasms/geneticsABSTRACT
The gastrointestinal tract is the largest digestive organ and the largest immune organ and detoxification organ, which is vital to the health of the body. Drosophila is a classic model organism, and its gut is highly similar to mammalian gut in terms of cell composition and genetic regulation, therefore can be used as a good model for studying gut development. target of rapmaycin complex 1 (TORC1) is a key factor regulating cellular metabolism. Nprl2 inhibits TORC1 activity by reducing Rag GTPase activity. Previous studies have found that nprl2 mutated Drosophila showed aging-related phenotypes such as enlarged foregastric and reduced lifespan, which were caused by over-activation of TORC1. In order to explore the role of Rag GTPase in the developmental defects of the gut of nprl2 mutated Drosophila, we used genetic hybridization combined with immunofluorescence to study the intestinal morphology and intestinal cell composition of RagA knockdown and nprl2 mutated Drosophila. The results showed that RagA knockdown alone could induce intestinal thickening and forestomach enlargement, suggesting that RagA also plays an important role in intestinal development. Knockdown of RagA rescued the phenotype of intestinal thinning and decreased secretory cells in nprl2 mutants, suggesting that Nprl2 may regulate the differentiation and morphology of intestinal cells by acting on RagA. Knockdown of RagA did not rescue the enlarged forestomach phenotype in nprl2 mutants, suggesting that Nprl2 may regulate forestomach development and intestinal digestive function through a mechanism independent of Rag GTPase.