Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.085
Filtrar
Mais filtros


Intervalo de ano de publicação
1.
Am J Case Rep ; 25: e942048, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351602

RESUMO

BACKGROUND Leprosy, also known as Hansen's disease, is a neglected tropical disease with low prevalence in the United States. The disease's long incubation period can cause delayed presentation, and most affected individuals have a history of travel or work in leprosy-endemic regions. The immune response to Mycobacterium leprae determines the clinical characteristics of leprosy, with tuberculoid leprosy being characterized by well-defined granulomas and involvement of peripheral nerves. The recommended treatment is a combination of dapsone and rifampin for 12 months. CASE REPORT A 78-year-old man with a history of extensive travel to Africa and Asia 50 years ago, presented with a non-tender, non-pruritic, and hypopigmented skin lesion on his left knee. Biopsy results confirmed granulomatous inflammation and the presence of Mycobacterium leprae, leading to a diagnosis of tuberculoid/paucibacillary leprosy. The patient received dapsone and rifampin treatment, which resulted in symptom improvement. CONCLUSIONS The patient's long incubation period of 50 years between exposure and symptom onset is remarkable and possibly one of the longest reported for tuberculoid leprosy. It emphasizes the importance of considering leprosy in cases with an extensive travel history and long incubation periods. Our patient's case presented contradictory staining results, suggesting potential sampling variation or a rare mixed leprosy form. Based on his clinical findings, he was diagnosed with tuberculoid leprosy. Early diagnosis and treatment are crucial to prevent irreversible nerve damage and improve patient outcomes. Healthcare providers should be vigilant in acquiring a detailed travel history to facilitate early diagnosis and appropriate management of leprosy cases.


Assuntos
Hanseníase Tuberculoide , Hanseníase , Masculino , Humanos , Idoso , Hanseníase Tuberculoide/diagnóstico , Hanseníase Tuberculoide/tratamento farmacológico , Hanseníase Tuberculoide/patologia , Rifampina/uso terapêutico , Período de Incubação de Doenças Infecciosas , Hanseníase/diagnóstico , Hanseníase/tratamento farmacológico , Hanseníase/patologia , Mycobacterium leprae , Dapsona/uso terapêutico
2.
Am J Trop Med Hyg ; 110(3): 483-486, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266303

RESUMO

Leprosy is a global health issue, causing long-term functional morbidity and stigma. Rapid diagnosis and appropriate treatment are important; however, early diagnosis is often challenging, especially in nonendemic areas. Here, we report a case of borderline lepromatous leprosy accompanied by dapsone-induced (neutropenia, anemia, and methemoglobinemia) and clofazimine-induced (skin discoloration and ichthyosis) side effects and type 1 leprosy reactions during administration of the multidrug therapy. The patient completely recovered without developing any deformities or visual impairment. To ensure early diagnosis and a favorable outcome, clinicians should be aware of the diminished sensation of skin lesions as a key physical finding and manage the drug toxicities and leprosy reactions appropriately in patients on multidrug therapy.


Assuntos
Hipersensibilidade , Hanseníase Dimorfa , Hanseníase Virchowiana , Hanseníase Multibacilar , Hanseníase , Doenças do Sistema Nervoso Periférico , Dermatopatias Bacterianas , Humanos , Clofazimina/efeitos adversos , Dapsona/efeitos adversos , Quimioterapia Combinada , Hansenostáticos/efeitos adversos , Hanseníase/patologia , Hanseníase Dimorfa/diagnóstico , Hanseníase Dimorfa/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Hanseníase Multibacilar/tratamento farmacológico , Hanseníase Virchowiana/diagnóstico , Hanseníase Virchowiana/tratamento farmacológico , Hanseníase Virchowiana/patologia
3.
PLoS Negl Trop Dis ; 18(1): e0011901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271456

RESUMO

BACKGROUND: The occurrence of adverse drug events (ADEs) during dapsone (DDS) treatment in patients with leprosy can constitute a significant barrier to the successful completion of the standardized therapeutic regimen for this disease. Well-known DDS-ADEs are hemolytic anemia, methemoglobinemia, hepatotoxicity, agranulocytosis, and hypersensitivity reactions. Identifying risk factors for ADEs before starting World Health Organization recommended standard multidrug therapy (WHO/MDT) can guide therapeutic planning for the patient. The objective of this study was to develop a predictive model for DDS-ADEs in patients with leprosy receiving standard WHO/MDT. METHODOLOGY: This is a case-control study that involved the review of medical records of adult (≥18 years) patients registered at a Leprosy Reference Center in Rio de Janeiro, Brazil. The cohort included individuals that received standard WHO/MDT between January 2000 to December 2021. A prediction nomogram was developed by means of multivariable logistic regression (LR) using variables. The Hosmer-Lemeshow test was used to determine the model fit. Odds ratios (ORs) and their respective 95% confidence intervals (CIs) were estimated. The predictive ability of the LRM was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS: A total of 329 medical records were assessed, comprising 120 cases and 209 controls. Based on the final LRM analysis, female sex (OR = 3.61; 95% CI: 2.03-6.59), multibacillary classification (OR = 2.5; 95% CI: 1.39-4.66), and higher education level (completed primary education) (OR = 1.97; 95% CI: 1.14-3.47) were considered factors to predict ADEs that caused standard WHO/MDT discontinuation. The prediction model developed had an AUC of 0.7208, that is 72% capable of predicting DDS-ADEs. CONCLUSION: We propose a clinical model that could become a helpful tool for physicians in predicting ADEs in DDS-treated leprosy patients.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hanseníase , Adulto , Humanos , Feminino , Dapsona/efeitos adversos , Hansenostáticos/efeitos adversos , Rifampina/uso terapêutico , Quimioterapia Combinada , Estudos de Casos e Controles , Clofazimina/uso terapêutico , Brasil/epidemiologia , Hanseníase/tratamento farmacológico , Organização Mundial da Saúde
4.
Am J Trop Med Hyg ; 109(6): 1260-1265, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931307

RESUMO

Since the introduction of multidrug therapy (MDT), various disabilities/morbidities due to leprosy have been prevented. However, there is a subset of patients in whom the skin lesions do not resolve completely or remain unchanged despite a full course of MDT, which is a great source of anxiety to the patient and their family members. Hence, we tried to ascertain the putative causes and risk factors of persistent skin lesions (PSLs) by analyzing the clinical, histopathological, bacteriological, and drug resistance patterns. This is a retrospective, cohort study wherein 35 patients who had PSLs after completion of MDT were included. The majority of the patients were 18 to 30 years of age, with males predominating. Borderline tuberculoid leprosy was the most common clinical spectrum observed (71.4%). The majority had PSLs distributed predominantly over photo-exposed sites (upper limbs > trunk > face). Eight patients (22.8%) had a history of contact with leprosy patients in their family, and six patients (17.1%) had associated comorbidities. Improvement in histopathological parameters such as a decrease in granuloma fraction was observed in 22 patients (62.8%) with PSLs after release from treatment in comparison with baseline. Four patients (11.4%) were noted to have drug resistance (three to rifampicin and one to dapsone). Thus, our study emphasizes that leprosy patients with PSLs after completion of MDT should undergo histopathological evaluation and drug resistance studies.


Assuntos
Hanseníase , Dermatopatias , Masculino , Humanos , Hansenostáticos , Estudos Retrospectivos , Quimioterapia Combinada , Estudos de Coortes , Hanseníase/complicações , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Dapsona/uso terapêutico , Dapsona/efeitos adversos , Dermatopatias/tratamento farmacológico
5.
Curr Allergy Asthma Rep ; 23(11): 635-645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804376

RESUMO

PURPOSE OF REVIEW: As a sulfone antibacterial agent, dapsone has been widely used to treat leprosy. Moreover, dapsone is also used in many immune diseases such as herpetic dermatitis because of its anti-inflammatory and immunomodulatory effects. However, dapsone can cause several adverse effects, the most serious being dapsone hypersensitivity syndrome. Dapsone hypersensitivity syndrome is characterized by a triad of eruptions, fever, and organ involvement, which limits the application of dapsone to some extent. RECENT FINDINGS: In this article, we review current research about the interaction model between HLA-B*13:01, dapsone, and specific TCR in dapsone-induced drug hypersensitivity. In addition to the proposed mechanisms, we also discussed clinical features, treatment progress, prevalence, and prevention of dapsone hypersensitivity syndrome. These studies reveal the pathogenesis, clinical features, and prevalence from the perspectives of genetic susceptibility and innate and adaptive immunity in dapsone hypersensitivity syndrome, thereby guiding clinicians on how to diagnose, prevent, and treat dapsone hypersensitivity syndrome.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade , Hanseníase , Humanos , Dapsona/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/terapia , Hipersensibilidade/complicações , Síndrome , Hanseníase/induzido quimicamente , Hanseníase/complicações , Hanseníase/tratamento farmacológico
6.
J Glob Antimicrob Resist ; 35: 262-267, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37852372

RESUMO

OBJECTIVES: Drug resistance in leprosy is an emerging concern, leading to treatment failures, recurrences, and potential spread of resistant Mycobacterium leprae in the community. In this study, we aimed to assess drug resistance prevalence and patterns amongst leprosy patients at a tertiary care referral hospital in India. METHODS: Mutations in drug resistance determining regions for dapsone, rifampicin, and ofloxacin of the M. leprae genome in DNA extracted from skin biopsies of 136 leprosy patients (treatment-naive = 67, with persistent skin lesions = 35, with recurrence = 34) were analysed by polymerase chain reaction followed by Sanger sequencing. Wild-type strain (Thai-53) was used as a reference strain. RESULTS: Resistance mutations were identified in a total of 23 patients, constituting 16.9% of the cohort. Within this subset of 23 cases, resistance to ofloxacin was observed in 17 individuals (12.5%), while resistance to both dapsone and rifampicin was detected in three patients each (2.2% for both). The occurrence of ofloxacin resistance showed minimal disparity between recurrent and treatment-naive cases, at 17.6% and 16.4%, respectively. Dapsone resistance emerged in two treatment-naive cases and one case with persistent skin lesions. Notably, none of the treatment-naive cases or those with recurrence/relapse exhibited rifampicin resistance. Subsequently, no statistically significant correlation was identified between other clinical variables and the presence of antimicrobial resistance. CONCLUSIONS: The occurrence of resistance to the current multidrug therapy regimen (specifically dapsone and rifampicin) and to ofloxacin, a secondary antileprosy medication in M. leprae, represents a concerning scenario. This calls for an expansion towards bactericidal drug options and the establishment of robust surveillance for drug resistance in countries burdened with high leprosy rates. Moreover, the introduction of stringent antimicrobial stewardship initiatives is imperative. As a single centre study, it represents a limited, cross-sectional view of the real situation in the field.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Ofloxacino/farmacologia , Quimioterapia Combinada , Estudos Transversais , Farmacorresistência Bacteriana/genética , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Dapsona/farmacologia , Dapsona/uso terapêutico , Índia/epidemiologia
7.
EBioMedicine ; 93: 104649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37327675

RESUMO

BACKGROUND: Expansion of antimicrobial resistance monitoring and epidemiological surveillance are key components of the WHO strategy towards zero leprosy. The inability to grow Mycobacterium leprae in vitro precludes routine phenotypic drug susceptibility testing, and only limited molecular tests are available. We evaluated a culture-free targeted deep sequencing assay, for mycobacterial identification, genotyping based on 18 canonical SNPs and 11 core variable-number tandem-repeat (VNTR) markers, and detection of rifampicin, dapsone and fluoroquinolone resistance-associated mutations in rpoB/ctpC/ctpI, folP1, gyrA/gyrB, respectively, and hypermutation-associated mutations in nth. METHODS: The limit of detection (LOD) was determined using DNA of M. leprae reference strains and from 246 skin biopsies and 74 slit skin smears of leprosy patients, with genome copies quantified by RLEP qPCR. Sequencing results were evaluated versus whole genome sequencing (WGS) data of 14 strains, and versus VNTR-fragment length analysis (FLA) results of 89 clinical specimens. FINDINGS: The LOD for sequencing success ranged between 80 and 3000 genome copies, depending on the sample type. The LOD for minority variants was 10%. All SNPs detected in targets by WGS were identified except in a clinical sample where WGS revealed two dapsone resistance-conferring mutations instead of one by Deeplex Myc-Lep, due to partial duplication of the sulfamide-binding domain in folP1. SNPs detected uniquely by Deeplex Myc-Lep were missed by WGS due to insufficient coverage. Concordance with VNTR-FLA results was 99.4% (926/932 alleles). INTERPRETATION: Deeplex Myc-Lep may help improve the diagnosis and surveillance of leprosy. Gene domain duplication is an original putative drug resistance-related genetic adaptation in M. leprae. FUNDING: EDCTP2 programme supported by the European Union (grant number RIA2017NIM-1847 -PEOPLE). EDCTP, R2Stop: Effect:Hope, The Mission To End Leprosy, the Flemish Fonds Wetenschappelijk Onderzoek.


Assuntos
Hanseníase , Mycobacterium tuberculosis , Humanos , Mycobacterium leprae/genética , Testes de Sensibilidade Microbiana , Genótipo , Farmacorresistência Bacteriana/genética , Hanseníase/diagnóstico , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Dapsona , Biópsia , Resistência a Múltiplos Medicamentos
8.
J Biomol Struct Dyn ; 41(23): 13857-13872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070201

RESUMO

Leprosy is a chronic infectious disease caused by a bacillus, Mycobacterium leprae. According to official data from 139 countries in the 6 WHO Regions, there were 127558 new leprosy cases worldwide in 2020. Leprosy mainly affects the skin, the peripheral nerves, mucosa of the upper respiratory tract, and the eyes. If this disease is left untreated, can harm the skin, nerves, limbs, eyes, and skin permanently. The disease is curable with multidrug therapy. Over a period of time Mycobacterium leprae has become resistant to these drugs. Therefore, new therapeutic molecules are warranted. This study was aimed to carry out the in-silico analysis to determine the inhibitory effect of natural compounds on Dihydropteroate synthase (DHPS) of Mycobacterium leprae. The DHPS is a key enzyme in the folate biosynthesis pathway in M. leprae and acts as a competitive inhibitor of PABA. The 3D structure of DHPS protein was modeled using homology modeling and was validated. Molecular docking and simulation along with other in-silico methods were employed to determine the inhibitory effect of ligand molecules towards DHPS target protein. Results revealed ZINC03830554 molecule as a potential inhibitor of DHPS. Binding experiments and bioassays utilizing this strong inhibitor molecule against purified DHPS protein are necessary to validate these early findings.Communicated by Ramaswamy H. Sarma.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Hansenostáticos/farmacologia , Dapsona/farmacologia , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Quimioterapia Combinada , Hanseníase/tratamento farmacológico
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1501-1511, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36773052

RESUMO

Viral respiratory diseases (VRDs) cause lung inflammation and inflammatory cytokine production. We study whether dapsone is responsible for its observed preventive treatment effects of the sustained viral RNA interferon response. Around 2008 and 2012, Korea's Dementia Management Act stipulated drastic changes in the administration of dementia medication by medical staff. Participants were randomized and we compared leprosy patients with VRDs after prescribing dapsone as a standard treatment from 2005 to 2019. Significance was evaluated based on the dapsone-prescribed (+) subgroup and the dapsone-unprescribed (-) subgroup of the VRD diagnosed (+) and VRD undiagnosed (-) subgroup. We analyzed VRD ( +)/(- with dapsone (+)/(-) group and used a T-test, and designed the equation of acetylation with dapsone and acetylcholine (AA) equation. The 6394 VRD participants who received the dapsone intervention compared to the 3255 VRD participants in the control group demonstrated at T2 VRD (+) dapsone (-) (mean (M) = 224.80, SD = 97.50): T3 VRD (-) dapsone (+) (M = 110.87, SD = 103.80), proving that VRD is low when dapsone is taken and high when it is not taken. The t value is 3.10, and the p value is 0.004395 (significant at p < 0.05). After an increase in VRDs peaked in 2009, bronchitis, COPD, and pneumonia surged in 2013. The AA equation was strongly negatively correlated with the prevalence of bronchitis and chronic obstructive pulmonary disease (COPD): with bronchitis, r(15) = -0.823189, p = 0.005519, and with COPD, r(15) = -0.8161, p = 0.000207 (significant at p < 0.05). Dapsone treated both bronchitis and COPD. This study provides theoretical clinical data to limit acetylcholine excess during the VRD pandemic for bronchitis, COPD, and pneumonia.


Assuntos
Bronquite , Demência , Hanseníase , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Acetilcolina , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Bronquite/tratamento farmacológico , Dapsona/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia
10.
J Infect ; 86(4): 338-351, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796681

RESUMO

OBJECTIVE: The World Health Organization (WHO) recommends multidrug therapy (MDT) with rifampicin, dapsone, and clofazimine for treating leprosy, which is based on very low-quality evidence. Here, we performed a network meta-analysis (NMA) to produce quantitative evidence to strengthen current WHO recommendations. METHOD: All studies were obtained from Embase and PubMed from the date of establishment to October 9, 2021. Data were synthesized with frequentist random-effects network meta-analyses. Outcomes were assessed using odds ratios (ORs), 95% confidence intervals (95% CIs), and P score. RESULTS: Sixty controlled clinical trials and 9256 patients were included. MDT was effective (range of OR: 1.06-1255584.25) for treating leprosy and multibacillary leprosy. Six treatments (Range of OR: 1.199-4.50) were more effective than MDT. Clofazimine (P score=0.9141) and dapsone+rifampicin (P score=0.8785) were effective for treating type 2 leprosy reaction. There were no significant differences in the safety of any of the tested drug regimens. CONCLUSIONS: The WHO MDT is effective for treating leprosy and multibacillary leprosy, but it may not be effective enough. Pefloxacin and ofloxacin may be good adjunct drugs for increasing MDT efficacy. Clofazimine and dapsone+rifampicin can be used in the treatment of a type 2 leprosy reaction. Single-drug regimens are not efficient enough to treat leprosy, multibacillary leprosy, or a type 2 leprosy reaction. AVAILABILITY OF DATA AND MATERIALS: All data generated or analyzed during this study are included in this published article [and its supplementary information files].


Assuntos
Hanseníase Multibacilar , Hanseníase , Humanos , Hansenostáticos/efeitos adversos , Rifampina/efeitos adversos , Clofazimina/efeitos adversos , Metanálise em Rede , Quimioterapia Combinada , Hanseníase/tratamento farmacológico , Dapsona/efeitos adversos , Hanseníase Multibacilar/tratamento farmacológico
12.
Brain Nerve ; 74(12): 1392-1394, 2022 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-36503141

RESUMO

Hansen's disease (also known as leprosy) is a chronic infection that is caused by Mycobacterium leprae. It predominantly affects the peripheral nerves, skin, eyes, and nasal mucosa, Following the development of effective treatment with diaphenylsulfone followed by rifampicin, and clofazimine since 1940s, Hansen's disease has been eradicated in Japan. However, the longstanding stigma surrounding this disease, exacerbated partly by forced isolation and other regulations introduced in 1930s, has delayed the abrogation of these regulations. The influence of two Japanese films, namely Kojimanoharu (no English title; "Spring in Islets") (1940) and Casle of Sand (1974), inspired by these events and addressing the concerns regarding this disease, are discussed.


Assuntos
Hanseníase , Humanos , Hanseníase/tratamento farmacológico , Dapsona , Resultado do Tratamento , Japão , Olho
13.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293307

RESUMO

Dapsone (DDS), Rifampicin (RIF) and Ofloxacin (OFL) are drugs recommended by the World Health Organization (WHO) for the treatment of leprosy. In the context of leprosy, resistance to these drugs occurs mainly due to mutations in the target genes (Folp1, RpoB and GyrA). It is important to monitor antimicrobial resistance in patients with leprosy. Therefore, we performed a meta-analysis of drug resistance in Mycobacterium leprae and the mutational profile of the target genes. In this paper, we limited the study period to May 2022 and searched PubMed, Web of Science (WOS), Scopus, and Embase databases for identified studies. Two independent reviewers extracted the study data. Mutation and drug-resistance rates were estimated in Stata 16.0. The results demonstrated that the drug-resistance rate was 10.18% (95% CI: 7.85-12.51). Subgroup analysis showed the highest resistance rate was in the Western Pacific region (17.05%, 95% CI:1.80 to 13.78), and it was higher after 2009 than before [(11.39%, 7.46-15.33) vs. 6.59% (3.66-9.53)]. We can conclude that the rate among new cases (7.25%, 95% CI: 4.65-9.84) was lower than the relapsed (14.26%, 95 CI%: 9.82-18.71). Mutation rates of Folp1, RpoB and GyrA were 4.40% (95% CI: 3.02-5.77), 3.66% (95% CI: 2.41-4.90) and 1.28% (95% CI: 0.87-1.71) respectively, while the rate for polygenes mutation was 1.73% (0.83-2.63). For further analysis, we used 368 drug-resistant strains as research subjects and found that codons (Ser, Pro, Ala) on RpoB, Folp1 and GyrA are the most common mutation sites in the determining region (DRDR). In addition, the most common substitution patterns of Folp1, RpoB, and GyrA are Pro→Leu, Ser→Leu, and Ala→Val. This study found that a higher proportion of patients has developed resistance to these drugs, and the rate has increased since 2009, which continue to pose a challenge to clinicians. In addition, the amino acid alterations in the sequence of the DRDR regions and the substitution patterns mentioned in the study also provide new ideas for clinical treatment options.


Assuntos
Hanseníase , Rifampina , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Dapsona/farmacologia , Dapsona/uso terapêutico , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Ofloxacino/uso terapêutico , Farmacorresistência Bacteriana/genética , Mycobacterium leprae/genética , Hanseníase/tratamento farmacológico , Hanseníase/genética , Mutação , Aminoácidos/genética , Testes de Sensibilidade Microbiana
14.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1509-1523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125533

RESUMO

The 4,4'-diaminodiphenyl sulfone (DDS), also known as dapsone, is traditionally used as a potent anti-bacterial agent in clinical management of leprosy. For decades, dapsone has been among the first-line medications used in multidrug treatment of leprosy recommended by the World Health Organization (WHO). Shortly after dapsone's discovery as an antibiotic in 1937, the dual function of dapsone (anti-microbial and anti-inflammatory) was elucidated. Dapsone exerts its anti-bacterial effects by inhibiting dihydrofolic acid synthesis, leading to inhibition of bacterial growth, while its anti-inflammatory properties are triggered by inhibiting reactive oxygen species (ROS) production, reducing the effect of eosinophil peroxidase on mast cells and downregulating neutrophil-mediated inflammatory responses. Among the leading mechanisms associated with its anti-microbial/anti-protozoal effects, dapsone clearly has multiple antioxidant, anti-inflammatory, and anti-apoptotic functions. In this regard, it has been described in treating a wide variety of inflammatory and infectious skin conditions. Previous reports have explored different molecular targets for dapsone and provided insight into the anti-inflammatory mechanism of dapsone. This article reviews several basic, experimental, and clinical approaches on anti-inflammatory effect of dapsone.


Assuntos
Dapsona , Hanseníase , Humanos , Dapsona/farmacologia , Dapsona/uso terapêutico , Hanseníase/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio
15.
Lancet Microbe ; 3(9): e693-e700, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850123

RESUMO

BACKGROUND: Despite strong leprosy control measures, including effective treatment, leprosy persists in the Comoros. As of May, 2022, no resistance to anti-leprosy drugs had been reported, but there are no nationally representative data. Post-exposure prophylaxis (PEP) with rifampicin is offered to contacts of patients with leprosy. We aimed to conduct a countrywide drug resistance survey and investigate whether PEP led to the emergence of drug resistance in patients with leprosy. METHODS: In this observational, deep-sequencing analysis we assessed Mycobacterium leprae genomes from skin biopsies of patients in Anjouan and Mohéli, Comoros, collected as part of the ComLep (NCT03526718) and PEOPLE (NCT03662022) studies. Skin biopsies that had sufficient M leprae DNA (>2000 bacilli in 2 µl of DNA extract) were assessed for the presence of seven drug resistance-associated genes (ie, rpoB, ctpC, ctpI, folP1, gyrA, gyrB, and nth) using Deeplex Myc-Lep (targeted next generation deep sequencing), with a limit of detection of 10% for minority M leprae bacterial populations bearing a polymorphism in these genes. All newly registered patients with leprosy for whom written informed consent was obtained were eligible for inclusion in the survey. Patients younger than 2 years or with a single lesion on the face did not have biopsies taken. The primary outcome of our study was the proportion of patients with leprosy (ie, new cases, patients with relapses or reinfections, patients who received single (double) dose rifampicin-PEP, or patients who lived in villages where PEP was distributed) who were infected with M leprae with a drug-resistant mutation for rifampicin, fluoroquinolone, or dapsone in the Comoros. FINDINGS: Between July 1, 2017, and Dec 31, 2020, 1199 patients with leprosy were identified on the basis of clinical criteria, of whom 1030 provided a skin biopsy. Of these 1030 patients, 755 (73·3%) tested positive for the M leprae-specific repetitive element-quantitative PCR (qPCR) assay. Of these 755 patients, 260 (34·4%) were eligible to be analysed using Deeplex Myc-Lep. 251 (96·5%) were newly diagnosed with leprosy, whereas nine (3·4%) patients had previously received multidrug therapy. 45 (17·3%) patients resided in villages where PEP had been administered in 2015 or 2019, two (4·4%) of whom received PEP. All seven drug resistance-associated targets were successfully sequenced in 216 samples, 39 samples had incomplete results, and five had no results. No mutations were detected in any of the seven drug resistance-related genes for any patient with successfully sequenced results. INTERPRETATION: This drug resistance survey provides evidence to show that M leprae is fully susceptible to rifampicin, fluoroquinolones, and dapsone in the Comoros. Our results also show, for the first time, the applicability of targeted sequencing directly on skin biopsies from patients with either paucibacillary or multibacillary leprosy. These data suggest that PEP had not selected rifampicin-resistant strains, although further support for this finding should be confirmed with a larger sample size. FUNDING: Effect:Hope, The Mission To End Leprosy, the Fonds Wetenschappelijk Onderzoek, the EU.


Assuntos
Hanseníase , Mycobacterium leprae , Comores , Dapsona/farmacologia , Farmacorresistência Bacteriana/genética , Quimioterapia Combinada , Humanos , Hansenostáticos/farmacologia , Hanseníase/tratamento farmacológico , Mycobacterium leprae/genética , Rifampina/farmacologia
16.
J Glob Antimicrob Resist ; 30: 282-285, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717020

RESUMO

OBJECTIVES: Purulia is one of the high-endemic districts for leprosy in West Bengal (the eastern part of India). The annual new case detection rate (ANCDR) of leprosy in West Bengal is 6.04/100000 (DGHS 2019-20). Our earlier report provided evidence of secondary drug resistance in relapse cases of leprosy. The aim of the current study was to observe primary drug resistance patterns for dapsone, rifampicin, and ofloxacin amongst new leprosy patients from Purulia, West Bengal in order to better understand the emergence of primary resistance to these drugs. METHODS: In the present study, slit-skin smear samples were collected from 145 newly diagnosed leprosy cases from The Leprosy Mission (TLM) Purulia hospital between 2017 and 2018. DNA was extracted from these samples and the Mycobacterium leprae genome was analyzed for genes associated with drug resistance by polymerase chain reaction (PCR), followed by Sanger sequencing. Wild-type strain (Thai-53) and mouse footpad-derived drug-resistant strain (Z-4) were used as reference strains. RESULTS: Of 145 cases, 25 cases showed mutations in genes associated with resistance to rifampicin, dapsone, and ofloxacin (as described by the World Health Organization, rpoB, folP, and gyrA, respectively) through Sanger sequencing. Of these 25 cases, 16 cases showed mutations in ofloxacin, two cases showed mutations in combinations of ofloxacin and rifampicin, four cases showed a mutation only in rifampicin, one case showed mutations in combinations of rifampicin and dapsone, and two cases showed mutations only in dapsone. CONCLUSION: Results from this study indicated the emergence of resistance to antileprosy drugs in new cases of leprosy. As ofloxacin is the alternate drug for the treatment of rifampicin-resistant cases, the emergence of new cases with resistance to ofloxacin indicates that ofloxacin-resistant M. leprae strains are actively circulating in this endemic region (i.e., Purulia, West Bengal), posing challenges for the effective treatment of rifampicin-resistant cases.


Assuntos
Hanseníase , Rifampina , Animais , Dapsona/farmacologia , Dapsona/uso terapêutico , Farmacorresistência Bacteriana/genética , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Hanseníase/microbiologia , Camundongos , Mycobacterium leprae/genética , Ofloxacino/farmacologia , Ofloxacino/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico
17.
J Glob Antimicrob Resist ; 30: 459-467, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643395

RESUMO

OBJECTIVES: Dapsone is one of the important drugs in the treatment of leprosy. The present study aims to evaluate the resistance of Mycobacterium leprae isolates to dapsone, in turn assisting in implementing better control strategies for leprosy elimination. METHODS: A systematic literature search was conducted in PubMed, Embase, Medline, and Web of Science. Two independent reviewers selected the literature according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), extracted data, and evaluated the risk of bias. Drug resistance data were pooled using the random-effects model. Subgroup analysis was performed based on across sampling time, region, study population (treatment status, relapses status), and sample size. RESULTS: A total of 30 studies were included. The results of meta-analysis showed that the dapsone resistance rate of leprosy patients after treatment was 8% (95% confidence interval [CI], 6%-10%). Compared to the rates of primary resistance of new cases without treatment therapy (pooled incidence, 4% [95% CI, 2%-5%]), treatment cases (13% [95% CI 9%-16%]) had secondary resistance, and relapse cases (26% [95% CI, 18%-33%]) had drug resistance. In addition, the drug resistance rate of monotherapy was significantly increased than that of relapsed patients treated with diamino-diphenylsulfone monotherapy. Subgroup analysis showed that the patients in the Western Pacific have the highest dapsone resistance, and the resistance to dapsone was slightly lower after 2005. For sample size, the rate in the group under 100 samples was significantly higher than in the other. CONCLUSION: Dapsone resistance is closely related to leprosy relapse and long-term drug use. Dapsone monotherapy is one of important reasons for drug resistance in relapsed cases. Drug resistance varies among different populations and regions of the world.


Assuntos
Dapsona , Hanseníase , Dapsona/farmacologia , Dapsona/uso terapêutico , Humanos , Hanseníase/tratamento farmacológico , Hanseníase/microbiologia , Mycobacterium leprae , Recidiva , Fatores de Risco
18.
BMJ Open ; 12(5): e057173, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545382

RESUMO

INTRODUCTION: The mainstay of leprosy treatment is multidrug treatment (MDT), which contains rifampicin, dapsone and clofazimine. The occurrence of dapsone hypersensitivity syndrome (DHS), a sudden, potentially fatal and traumatic adverse reaction due to dapsone, may affect treatment adherence and may result in fatality if untreated. Before MDT administration, screening for HLA-B*13:01 in patients with leprosy can potentially reduce DHS risk. The study aims to assess the effectiveness of using a screening test for HLA-B*13:01 in reducing the incidence of DHS and to evaluate the feasibility of using the quantitative PCR-based screening tool as DHS predictors before dapsone administration using individual patient testing in a referral centralised-lab model. METHODS AND ANALYSIS: A total of 310 newly diagnosed patients with leprosy will be recruited from health centres in two highly endemic districts in Indonesia. Dried blood will be taken on filter paper as the specimen receptacle to collect DNA from the patients and transported at room temperature to the leprosy referral laboratory before MDT administration. Checking for HLA-B*13:01 from human DNA is performed using the Nala PGx 1301 V.1 kit. The results will be shared with the leprosy health workers on the site via phone call and courier. Patients with a positive test result will be treated with MDT without dapsone, and patients with a negative result will be treated with complete MDT. Physical examination (weight, height, skin, muscle and nerve function examination), complete blood tests (including renal function test) will be carried out at baseline. Follow-up will be performed at the fourth and eighth weeks to observe any development of adverse drug reactions. ETHICS AND DISSEMINATION: The ethical approval for the study was issued by the Ethical Committee of the National Institute of Health Research and Development, Ministry of Health, Indonesia. Written informed consent will be sought from all participants.


Assuntos
Hipersensibilidade a Drogas , Hanseníase , Dapsona/efeitos adversos , Hipersensibilidade a Drogas/tratamento farmacológico , Hipersensibilidade a Drogas/epidemiologia , Hipersensibilidade a Drogas/genética , Quimioterapia Combinada , Testes Genéticos , Humanos , Incidência , Indonésia , Hansenostáticos/efeitos adversos , Hanseníase/tratamento farmacológico , Síndrome
20.
Antimicrob Agents Chemother ; 66(5): e0217021, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35435708

RESUMO

Brazil ranks second among countries for new cases and first for relapse cases of leprosy worldwide. The Mycobacterium leprae Resistance Surveillance Plan was established. We aimed to present the results of a 2-year follow-up of the National Surveillance Plan in Brazil. A cross-sectional study of leprosy cases was performed to investigate antimicrobial resistance (AMR) in Brazil from October 2018 to September 2020. Molecular screening targeting genes related to dapsone (folP1), rifampin (rpoB), and ofloxacin resistance (gyrA) was performed. During the referral period, 63,520 active leprosy patients were registered in Brazil, and 1,183 fulfilled the inclusion criteria for molecular AMR investigation. In total, only 16 (1.4%) patients had genetic polymorphisms associated with AMR. Of these, 8 (50%) had cases of leprosy relapse, 7 (43.8%) had cases of suspected therapeutic failure with standard treatment, and 1 (6.2%) was a case of new leprosy presentation. M. leprae strains with AMR-associated mutations were found for all three genes screened. Isolates from two patients showed simultaneous resistance to dapsone and rifampin, indicating multidrug resistance (MDR). No significant relationship between clinical variables and the presence of AMR was identified. Our study revealed a low frequency of AMR in Brazil. Isolates were resistant mainly to dapsone, and a very low number of isolates were resistant to rifampin, the main bactericidal agent for leprosy, or presented MDR, reinforcing the importance of the standard World Health Organization multidrug therapy. The greater frequency of AMR among relapsed patients supports the need to constantly monitor this group.


Assuntos
Hansenostáticos , Hanseníase , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Brasil/epidemiologia , Estudos Transversais , Dapsona/uso terapêutico , Farmacorresistência Bacteriana/genética , Quimioterapia Combinada , Humanos , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Hanseníase/microbiologia , Testes de Sensibilidade Microbiana , Mycobacterium leprae/genética , Recidiva , Rifampina/farmacologia , Rifampina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA