Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Proc Natl Acad Sci U S A ; 121(9): e2316299121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381786

ABSTRACT

The ability of thin materials to shape-shift is a common occurrence that leads to dynamic pattern formation and function in natural and man-made structures. However, harnessing this concept to rationally design inorganic structures at the nanoscale has remained far from reach due to a lack of fundamental understanding of the essential physical components. Here, we show that the interaction between organic ligands and the nanocrystal surface is responsible for the full range of chiral shapes seen in colloidal nanoplatelets. The adsorption of ligands results in incompatible curvatures on the top and bottom surfaces of the NPL, causing them to deform into helicoïds, helical ribbons, or tubes depending on the lateral dimensions and crystallographic orientation of the NPL. We demonstrate that nanoplatelets belong to the broad class of geometrically frustrated assemblies and exhibit one of their hallmark features: a transition between helicoïds and helical ribbons at a critical width. The effective curvature [Formula: see text] is the single aggregate parameter that encodes the details of the ligand/surface interaction, determining the nanoplatelets' geometry for a given width and crystallographic orientation. The conceptual framework described here will aid the rational design of dynamic, chiral nanostructures with high fundamental and practical relevance.

2.
Langmuir ; 40(22): 11481-11490, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38663023

ABSTRACT

Inducing chirality in semiconductor nanoparticles is a recent trend motivated by the possible applications in circularly polarized light emission, spintronics, or stereoselective synthesis. However, the previous reports on CdSe nanoplatelets (NPLs) exclusively rely on cysteine or its derivatives as chiral ligands to induce optical activity. Here, we show a strong induction of chirality with derivatives of tartaric acid obtained by a single-step synthesis. The ligand exchange procedure in organic solvent was optimized for five-monolayer (5 ML) NPLs but can also be performed on 4, 3, and 2 ML. We show that the features of the CD spectra change with structural modification of the ligands and that these chiral ligands interact mainly with the first light-hole (lh1) band rather than the first heavy-hole (hh1) band, contrary to cysteine. This result suggests that chiroptical properties could be used to probe CdSe nanoplatelets' surface ligands.

3.
Nano Lett ; 22(4): 1778-1785, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35156830

ABSTRACT

While initial theories on quantum confinement in colloidal quantum dots (QDs) led to analytical band gap/size relations or sizing functions, numerical methods describe size quantization more accurately. However, because of the lack of reliable sizing functions, researchers fit experimental band gap/size data sets using models with redundant, physically meaningless parameters that break down upon extrapolation. Here, we propose a new sizing function based on a proportional correction for nonparabolic bands. Using known bulk parameters, we predict size quantization for groups IV, III-V, II-VI, and IV-VI and metal-halide perovskite semiconductors, including straightforward adaptations for negative-gap semiconductors and nonspherical QDs. Refinement with respect to experimental data is possible using the Bohr diameter as a fitting parameter, by which we show a statistically relevant difference in the band gap/size relation for wurtzite and zinc blende CdSe. The general sizing function proposed here unifies the QD size calibration and enables researchers to assess bulk semiconductor parameters and predict the size quantization in unexplored materials.

4.
Soft Matter ; 17(3): 770, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33406189

ABSTRACT

Correction for 'Solution self-assembly of plasmonic Janus nanoparticles' by Nicolò Castro et al., Soft Matter, 2016, 12, 9666-9673, DOI: .

5.
Proc Natl Acad Sci U S A ; 115(36): 8895-8900, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30131428

ABSTRACT

Discrete metallomacrocycles are attractive scaffolds for the formation of complex supramolecular architectures with emergent properties. We herein describe the formation of hierarchical nanostructures using preformed metallomacrocycles by coordination-driven self-assembly of a covalent organic-inorganic polyoxometalate (POM)-based hybrid. In this system, we take advantage of the presence of charged subunits (POM, metal linker, and counterions) within the metallomacrocycles, which drive their aggregation through intermolecular electrostatic interactions. We show that the solvent composition and the charge of the metal linker are key parameters that steer the supramolecular organization. Different types of hierarchical self-assemblies, zero-dimensional (0D) dense nanoparticles, and 1D worm-like nanoobjects, can be selectively formed owing to different aggregation modes of the metallomacrocycles. Finally, we report that the worm-like structures drastically enhance the solubility in water of a pyrene derivative and can act as molecular carriers.

6.
Nano Lett ; 20(5): 3465-3470, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32315197

ABSTRACT

Fluorescent emitters like ions, dye molecules, or semiconductor nanoparticles are widely used in optoelectronic devices, usually within densely packed layers. Their luminescence properties can then be very different from when they are isolated, because of short-range interparticle interactions such as Förster resonant energy transfer (FRET). Understanding these interactions is crucial to mitigate FRET-related losses and could also lead to new energy transfer strategies. Exciton migration by FRET hopping between consecutive neighbor fluorophores has been evidenced in various systems but was generally limited to distances of tens of nanometers and involved only a few emitters. Here, we image self-assembled linear chains of CdSe nanoplatelets (colloidal quantum wells) and demonstrate exciton migration over 500 nm distances, corresponding to FRET hopping over 90 platelets. By comparing a diffusion-equation model to our experimental data, we measure a (1.5 ps)-1 FRET rate, much faster than all decay mechanisms, so that strong FRET-mediated collective photophysical effects can be expected.

7.
Inorg Chem ; 59(4): 2458-2463, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31977199

ABSTRACT

The design and synthesis of a supramolecular square composed of polyoxometalate-based hybrid donors and ethylenediamine palladium(II) nodes are reported. The structure of the metallomacrocycle scaffold was inferred by diffusion NMR, small-angle X-ray scattering (SAXS), and molecular modeling. The metallomacrocycle scaffold that contains negatively and positively charged subunits can further self-assemble owing to a competition between the solvation energy of the discrete species and intermolecular electrostatic interactions. When the dissociating character of the solvent was lowered or when in the presence of a protic solvent, different types of multiscale organizations (vesicles and pseudo-1D structures) were selectively formed and were characterized by SAXS and transmission electron microscopy.

8.
Nano Lett ; 19(9): 6466-6474, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31373504

ABSTRACT

Two-dimensional ultrathin CdSe nanoplatelets have attracted a large interest due to their optical properties but their formation mechanism is not well understood. Several different mechanisms have been proposed: confined growth in a surfactant mesophase acting as a template, anisotropic ripening of small seeds into 2D nanoplatelets, or continuous anisotropic growth of a limited number of nuclei. However, quantitative in situ data that could validate or disprove these formation scenarios are lacking. We use synchrotron-based small-angle and wide-angle X-ray scattering to probe the formation mechanism of CdSe nanoplatelets synthesized using a heating-up method. We prove the absence of a molecular mesophase in the reactive medium at the onset of nanoplatelet formation ruling out a templating effect. We also show that our data are inconsistent with the anisotropic ripening of small seeds whereas the evolution of the SAXS patterns during the reaction is consistent with the continuous lateral growth of nanoplatelets fed by reactive monomers. Finally, we show that when the final temperature of the synthesis is lowered, nanoplatelets with larger lateral dimensions form. We reveal that they bend in solution during their growth to yield nanoscrolls.

9.
J Am Chem Soc ; 138(15): 5093-9, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27019075

ABSTRACT

The metal-driven self-assembly processes of a covalent polyoxometalate (POM)-based hybrid bearing remote terpyridine binding sites have been investigated. In a strongly dissociating solvent, a discrete metallomacrocycle, described as a molecular triangle, is formed and characterized by 2D diffusion NMR spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and molecular modeling. In a less dissociating solvent, the primary supramolecular structure, combining negatively charged POMs and cationic metal linkers, further self-assemble through intermolecular electrostatic interactions in a reversible process. The resulting hierarchical assemblies are dense monodisperse nanoparticles composed of ca. 50 POMs that were characterized by SAXS and transmission electron microscopy (TEM). This multiscale organized system directed by metal coordination and electrostatic interactions constitutes a promising step for the future design of POM self-assemblies with controllable structure-directing factors.

10.
Chemphyschem ; 17(5): 618-31, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26663488

ABSTRACT

Self-assembly of colloidal nanoparticles into higher order superstructures is becoming an important topic in current research in nanoscience. More and more research efforts are being dedicated to the controlled processing of nanoparticle dispersions to yield complex architectures from these simple building blocks. This is due to the fact that collective effects can emerge from an assembly of organized nanoparticles. Semiconducting colloidal nanocrystals such as quantum dots are promising materials for a wide range of applications in optoelectronic photovoltaics. The fundamental interactions that dictate the self-assembly of semiconducting colloidal nanocrystals in apolar solvents are reviewed with a focus on 3D structures and basic shapes (spheres, rods, and platelets). Emergent collective properties and the effect of the self-assembly on the optical properties of the particles are also discussed.

11.
Soft Matter ; 12(48): 9666-9673, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27869281

ABSTRACT

Janus nanoparticles bearing two different properties on a single particle are amenable to self-assembly into higher-order structures via their directional interaction. We show that gold/silica Janus nanoparticles self-assemble in solution into clusters resembling colloidal micelles upon addition of a hydrophobic thiol which provides them with a surface active amphiphilic character. As the nanoparticles spontaneously assemble, the color of the solution evolves due to the coupling of the surface plasmons. Time resolved spectrophotometry in the visible and near-infrared ranges coupled to simulations were used to probe the assembly process. A singular value decomposition analysis reveals the presence of dimers as transient species. The structure of the clusters was probed using small angle X-ray revealing that the Janus nanoparticles assemble into clusters containing a few particles.

12.
Nano Lett ; 15(4): 2620-6, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25815414

ABSTRACT

Understanding the formation mechanism of colloidal nanocrystals is of paramount importance in order to design new nanostructures and synthesize them in a predictive fashion. However, reliable data on the pathways leading from molecular precursors to nanocrystals are not available yet. We used synchrotron-based time-resolved in situ small and wide-angle X-ray scattering to experimentally monitor the formation of CdSe quantum dots synthesized in solution through the heating up of precursors in octadecene at 240 °C. Our experiment yields a complete movie of the structure of the solution from the self-assembly of the precursors to the formation of the quantum dots. We show that the initial cadmium precursor lamellar structure melts into small micelles at 100 °C and that the first CdSe nuclei appear at 218.7 °C. The size distributions and concentration in nanocrystals are measured in a quantitative fashion as a function of time. We show that a short nucleation burst lasting 30 s is followed by a slow decrease of nanoparticle concentration. The rate-limiting process of the quantum dot formation is found to be the thermal activation of selenium.


Subject(s)
Crystallization/methods , Materials Testing/methods , Molecular Probe Techniques , Quantum Dots , X-Ray Diffraction/methods , Computer Systems , Hot Temperature , Scattering, Small Angle , Solutions/chemistry
13.
Angew Chem Int Ed Engl ; 55(32): 9371-4, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27329047

ABSTRACT

Colloidal CdSe nanoplatelets are considered to be excellent candidates for many applications in nanotechnology. One of the current challenges is to self-assemble these colloidal quantum wells into large ordered structures to control their collective optical properties. We describe a simple and robust procedure to achieve controlled face-to-face self-assembly of CdSe nanoplatelets into micron-long polymer-like threads made of up to ∼1000 particles. These structures are formed by addition of oleic acid to a stable colloidal dispersion of platelets, followed by slow drying and re-dispersion. We could control the average length of the CdSe nanoplatelet threads by varying the amount of added oleic acid. These 1-dimensional structures are flexible and feature a "living polymer" character because threads of a given length can be further grown through the addition of supplementary nanoplatelets at their reactive ends.

14.
Chemistry ; 21(52): 19010-5, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26602994

ABSTRACT

A polyoxometalate-based molecular triangle has been synthesized through the metal-driven self-assembly of covalent organic/inorganic hybrid oxo-clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of (1)H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI-TWIM-MS), small-angle X-ray scattering (SAXS) and molecular modelling. The collision cross-sections obtained from TWIM-MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry-optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.

15.
Langmuir ; 31(38): 10532-9, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26343169

ABSTRACT

Colloidal CdSe nanoplatelets with monolayer control over their thickness can now be synthesized in solution and display interesting optical properties. From a fundamental point of view, the self-assembly of CdSe nanoplatelets can impact their optical properties through short-range interactions, and achieving control over their dispersion state in solution is of major relevance. The related issue of colloidal stability is important from an applicative standpoint in the perspective of the processing of these materials. Using UV-vis spectroscopy, we assess the colloidal stability of dispersions of CdSe nanoplatelets at different nanoparticle and ligand (oleic acid) concentrations. We unravel an optimum in oleic acid concentration for colloidal stability and show that even moderately concentrated dispersions flocculate on a time scale ranging from minutes to hours. Small-angle X-ray scattering shows that the precipitation proceeds through a face-to-face stacking of the nanoplatelets due to long-ranged van der Waals attraction. To address this issue, we coated the platelets with a carboxylic acid-terminated polystyrene, thus achieving colloidal stability while retaining the optical properties of the platelets.

16.
Nano Lett ; 14(2): 710-5, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24368017

ABSTRACT

We report on the self-assembly of colloidal CdSe nanoplatelets into micrometers long anisotropic needle-like superparticles (SPs), which are formed in solution upon addition of an antisolvent to a stable colloidal dispersion. Optical fluorescence microscopy, transmission electron microscopy, and small-angle X-ray scattering provide detailed structural characterization and show that each particle is composed of 10(6) nanoplatelets organized in highly aligned columns. Within the SPs, the nanoplatelets are stacked on each other to maximize the contact surface between the ligands. When deposited on a substrate, the planes of the platelets are oriented perpendicularly to its surface and the SPs exhibit polarized emission properties.

17.
RSC Adv ; 13(41): 28407-28415, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37771921

ABSTRACT

Heterostructured cadmium-based core-shell nanoparticles (NPs) are the subject of research because of not only fundamental scientific advances but also a range of technological applications. To increase the range of applications of nanoparticles, it is possible to immobilise them in sol-gel glass that can be easily manufactured and shaped, keeping the properties of the dispersed particles. This allows the creation of new bulk optical materials with tailored properties, opening up opportunities for various technological applications such as lighting or sensing. Herein we report the synthesis of core-shell CdSe/CdS triangular-shaped nanoparticles under an atmosphere of oxygen and at room temperature. A detailed characterisation of the obtained NPs was carried out. The interesting effect of the gelling agent (tetra-n-butylammonium fluoride) on the triangular nanoparticles in solution and the stability of the emission properties over time was investigated. Sol-gel glasses with entrapped triangular NPs were prepared, and their photoluminescence properties were compared with those obtained in colloidal solutions.

18.
ACS Nano ; 17(9): 8796-8806, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37093055

ABSTRACT

One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.

19.
Commun Chem ; 5(1): 7, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-36697722

ABSTRACT

Semi-conducting nanoplatelets are two-dimensional nanoparticles whose thickness is in the nanometer range and controlled at the atomic level. They have come up as a new category of nanomaterial with promising optical properties due to the efficient confinement of the exciton in the thickness direction. In this perspective, we first describe the various conformations of these 2D nanoparticles which display a variety of bent and curved geometries and present experimental evidences linking their curvature to the ligand-induced surface stress. We then focus on the assembly of nanoplatelets into superlattices to harness the particularly efficient energy transfer between them, and discuss different approaches that allow for directional control and positioning in large scale assemblies. We emphasize on the fundamental aspects of the assembly at the colloidal scale in which ligand-induced forces and kinetic effects play a dominant role. Finally, we highlight the collective properties that can be studied when a fine control over the assembly of nanoplatelets is achieved.

20.
Chem Sci ; 13(17): 4977-4983, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35655873

ABSTRACT

Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid "burst of nucleation" (La Mer, JACS, 1950, 72(11), 4847-4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k G) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.

SELECTION OF CITATIONS
SEARCH DETAIL