Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Soft Matter ; 20(14): 3066-3072, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38063044

ABSTRACT

Microscale flow plays an important role in several areas, including microbiological systems and microfluidic devices. These systems are often placed in viscous or complex fluids such as polymer solutions. Understanding microscale flow in viscous fluids will lead to a further development of microfluidic devices and elucidation of the collective motion of microorganisms. We studied the microscale flow induced by the optically driven rotation of a nematic liquid crystal (NLC) droplet in an aqueous glycerol solution. The rotation of the droplets was controlled using circularly polarized optical tweezers. In water, the induced flow agrees well with the theoretical flow assuming a solid rotating particle and a no-slip boundary condition. However, the induced flow velocity deviated from the theoretical value as the viscosity of the glycerol solution increased. This deviation was mainly due to slip on the droplet surface. As an application of the NLC rotator, the viscosity of the solutions and the hydrodynamic interactions between the two rotating particles were measured.

2.
Int J Neuropsychopharmacol ; 26(7): 474-482, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37279545

ABSTRACT

BACKGROUND: Central serotonin (5-hydroxytryptamine [5-HT]) neurotransmission has been implicated in the etiology of depression. Most antidepressants ameliorate depressive symptoms by increasing 5-HT at synaptic clefts, but their effect on 5-HT receptors has yet to be clarified. 11C-WAY-100635 and 18F-MPPF are positron emission tomography (PET) radioligands for 5-HT1A receptors. While binding of both ligands reflects 5-HT1A receptor density, 18F-MPPF biding may also be affected by extracellular 5-HT concentrations. This dual-tracer PET study explored the neurochemical substrates underlying antidepressant effects in patients with depression. METHODS: Eleven patients with depression, including 9 treated with antidepressants, and 16 age- and sex-matched healthy individuals underwent PET scans with 11C-WAY-100635 and 18F-MPPF. Radioligand binding was determined by calculating the nondisplaceable binding potential (BPND). RESULTS: Patients treated with antidepressants showed significantly lower 18F-MPPF BPND in neocortical regions and raphe nuclei, but not in limbic regions, than controls. No significant group differences in 11C-WAY-100635 BPND were found in any of the regions. Significant correlations of BPND between 11C-WAY-100635 and 18F-MPPF were observed in limbic regions and raphe nuclei of healthy controls, but no such associations were found in antidepressant-treated patients. Moreover, 18F-MPPF BPND in limbic regions was significantly correlated with the severity of depressive symptoms. CONCLUSIONS: These results suggest a diversity of antidepressant-induced extracellular 5-HT elevations in the limbic system among depressive patients, which is associated with the individual variability of clinical symptoms following the treatment.


Subject(s)
Brain , Serotonin , Humans , Carbon Radioisotopes , Brain/diagnostic imaging , Brain/metabolism , Serotonin/metabolism , Radiopharmaceuticals/metabolism , Positron-Emission Tomography/methods , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Synaptic Transmission , Receptor, Serotonin, 5-HT1A/metabolism
3.
Eur J Nucl Med Mol Imaging ; 50(13): 3928-3936, 2023 11.
Article in English | MEDLINE | ID: mdl-37581725

ABSTRACT

PURPOSE: The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS: We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS: We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION: We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.


Subject(s)
Brain , Dopamine , Humans , Dopamine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression
4.
Brain Behav Immun ; 114: 214-220, 2023 11.
Article in English | MEDLINE | ID: mdl-37648003

ABSTRACT

BACKGROUND: Glial activation is central to the pathogenesis of Alzheimer's disease (AD). However, researchers have not demonstrated its relationship to longitudinal cognitive deterioration. We aimed to compare the prognostic effects of baseline positron emission tomography (PET) imaging of glial activation and amyloid/tau pathology on the successive annual cognitive decline in patients with AD. METHODS: We selected 17 patients diagnosed with mild cognitive impairment or AD. We assessed the annual changes in global cognition and memory. Furthermore, we assessed the predictive effects of baseline amyloid and tau pathology indicated by cerebrospinal fluid (CSF) concentrations and PET imaging of glial activation (11C-DPA-713-binding potential in the area of Braak 1-3 [11C-DPA-713-BPND]) on global cognition and memory using a stepwise regression analysis. RESULTS: The final multiple regression model of annual changes in global cognition and memory scores included 11C-DPA-713-BPND as the predictor. The CSF Aß42/40 ratios and p-tau concentrations were removed from the final model. In stepwise Bayesian regression analysis, the Bayes factor-based model comparison suggested that the best model included 11C-DPA-713-BPND as the predictor of decline in global cognition and memory. CONCLUSIONS: Translocator protein-PET imaging of glial activation is a stronger predictor of AD clinical progression than the amount of amyloid/tau pathology measured using CSF concentrations. Glial activation is the primary cause of tau-induced neuronal toxicity and cognitive deterioration, thereby highlighting the potential of blocking maladaptive microglial responses as a therapeutic strategy for AD treatment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Bayes Theorem , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Neuroimaging , Biomarkers/cerebrospinal fluid , Cognition/physiology , Positron-Emission Tomography/methods , Amyloid beta-Peptides/cerebrospinal fluid
5.
Bioorg Med Chem Lett ; 90: 129327, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37187253

ABSTRACT

Positron emission tomography (PET) is a powerful imaging tool that enables early in vivo detection of Alzheimer's disease (AD). For this purpose, various PET ligands have been developed to image ß-amyloid and tau protein aggregates characteristically found in the brain of AD patients. In this study, we initiated to develop another type of PET ligand that targets protein kinase CK2 (formerly termed as casein kinase II), because its expression level is known to be altered in postmortem AD brains. CK2 is a serine/threonine protein kinase, an important component of cellular signaling pathways that control cellular degeneration. In AD, the CK2 level in the brain is thought to be elevated by its involvement in both phosphorylation of proteins such as tau and neuroinflammation. Decreased CK2 activity and expression levels lead to ß-amyloid accumulation. In addition, since CK2 also contributes to the phosphorylation of tau protein, the expression level and activity of CK2 is expected to undergo significant changes during the progression of AD pathology. Furthermore, CK2 could act as a potential target for modulating the inflammatory response in AD. Therefore, PET imaging targeting CK2 expressed in the brain could be a useful another imaging biomarker for AD. We synthesized and radiolabeled a CK2 inhibitor, [11C]GO289, in high yields from its precursor and [11C]methyl iodide under basic conditions. On autoradiography, [11C]GO289 specifically bound to CK2 in both rat and human brain sections. On baseline PET imaging, this ligand entered and rapidly washed out of the rat brain with its peak activity rather being small (SUV < 1.0). However, on blocking, there was no detectable CK2 specific binding signal. Thus, [11C]GO289 may be useful in vitro but not so in vivo in its current formulation. The lack of detectable specific binding signal in the latter may be due to a relatively high component of nonspecific binding signal in the overall rather weak PET signal, or it may also be related to the known fact that ATP can competitively binds to subunits of CK2, reducing its availability for this ligand. In the future, it will be necessary for PET imaging of CK2 to try out different non-ATP competitive formulations of CK2 inhibitor that can also provide significantly higher in vivo brain penetration.


Subject(s)
Alzheimer Disease , Casein Kinase II , Humans , Rats , Animals , Ligands , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism
6.
Bioorg Med Chem Lett ; 85: 129212, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36871703

ABSTRACT

Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors without geometrical isomerization in 82%, 66%, and 57% radiochemical yields (RCYs). Subsequent hydrolysis of the 11C-labeled ester produced [11C]peretinoin in 13 ± 8% RCY (n = 3). After pharmaceutical formulation, the resulting [11C]benzyl ester and [11C]peretinoin had high radiochemical purity (>99% each) and molar activities of 144 and 118 ± 49 GBq µmol-1 at total synthesis times of 31 min and 40 ± 3 min, respectively. Rat brain PET imaging for the [11C]ester revealed a unique time-radioactivity curve, suggesting the participation of the acid [11C]peretinoin for the brain permeability. However, the curve of the [11C]peretinoin rose steadily after a shorter time lag to reach 1.4 standardized uptake value (SUV) at 60 min. These various phenomena between the ester and acid became more pronounced in the monkey brain (SUV of > 3.0 at 90 min). With the opportunity to identify high brain uptake of [11C]peretinoin, we discovered CNS activities of a drug candidate called peretinoin, such as the induction of a stem-cell to neuronal cell differentiation and the suppression of neuronal damages.


Subject(s)
Antineoplastic Agents , Retinoids , Rats , Animals , Methylation , Retinoids/pharmacology , Antineoplastic Agents/pharmacology , Brain/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/pharmacology
7.
Psychogeriatrics ; 23(1): 126-135, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403981

ABSTRACT

BACKGROUND: The evaluation of 11 C-DPA-713 binding using positron emission tomography for quantifying the translocator protein can be a sensitive approach in determining the level of glial activation induced by neuroinflammation. Herein, we aimed to investigate the relationship between regional 11 C-DPA713-binding potential (BPND ) and neuropsychiatric symptoms (NPS) in amyloid-positive Alzheimer's disease (AD) patients. METHODS: Fifteen AD patients were enrolled in this study. Correlations were evaluated between the 11 C-DPA713-BPND and Neuropsychiatric Inventory Questionnaire (NPI-Q) scores, including scores in its four domains: agitation, psychosis, affective, and apathy. 11 C-DPA713-BPND values were compared between groups with and without the neuropsychiatric symptoms for which a relationship was observed in the abovementioned correlation analysis. RESULTS: A positive correlation was found between the severity of agitation and 11 C-DPA713-BPND in the Braak 1-3 area, including the amygdala, hippocampal and parahippocampal regions, and lingual and fusiform areas. An increase in the 11 C-DPA713-BPND was observed in AD patients with agitation. We did not find any significant effects of possible confounding factors, such as age, duration of illness, education, gender, Mini-Mental State Examination score, cerebrospinal fluid amyloid ß 42/40 ratio, and apolipoprotein E4 positivity, on either the 11 C-DPA713-BPND or agitation score. CONCLUSIONS: Neuroinflammation in the medial temporal region and its neighbouring area was shown to be associated with the development of agitation symptoms in AD patients. Our findings extend those of previous studies showing an association between some NPS and inflammation, suggesting that immunologically based interventions for agitation can serve as an alternative treatment for dementia.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases , Positron-Emission Tomography , Inflammation/diagnostic imaging , Temporal Lobe/diagnostic imaging
8.
Eur J Nucl Med Mol Imaging ; 49(4): 1127-1135, 2022 03.
Article in English | MEDLINE | ID: mdl-34651222

ABSTRACT

PURPOSE: Histamine H3 receptor antagonists and inverse agonists have been extensively developed to treat sleep-wake, neurocognitive, and allied disorders. However, potential adverse effects, including insomnia, hampered the clinical use of these drugs, possibly due to their persistent interaction with the target molecules. The purpose of the present study was to estimate the pharmacokinetics and pharmacodynamics of enerisant, a novel antagonist and inverse agonist for histamine H3 receptors. METHODS: To measure the histamine H3 receptor occupancy by enerisant, positron emission tomography studies using [11C]TASP457, a specific radioligand for histamine H3 receptors, were performed in 12 healthy men at baseline and at 2 h after oral administration of enerisant hydrochloride. For three of these subjects, two additional scans were performed at 6 and 26 h after the administration. Relationships between the receptor occupancy by enerisant and its dose and plasma concentrations were then analyzed. RESULTS: Administration of enerisant hydrochloride decreased the radioligand binding in a dose-dependent manner. The estimated receptor occupancy values at 2 h varied as a function of its dose or plasma concentration. The time course of the occupancy showed persistently high levels (> 85%) in the two subjects with higher doses (25 and 12.5 mg). The occupancy was also initially high at 2 h and 6 h with the lower dose of 5 mg, but it decreased to 69.7% at 26 h. CONCLUSION: The target engagement of enerisant was demonstrated in the brains of living human subjects. The occupancy of histamine H3 receptors by enerisant at 2 h can be predicted by applying the plasma concentration of enerisant to Hill's plot. The preliminary time-course investigation showed persistently high brain occupancy with high doses of enerisant despite the decreasing plasma concentration of the drug. Five milligrams or less dose would be appropriate for the treatment for narcolepsy with initially high occupancy allowing for effective treatment of narcolepsy, and then the occupancy level would be expected to decrease to a level to avoid this drug's unwanted side effect of insomnia at night, although further research is warranted to confirm the statement since the expected decrease is based on the finding in one subject. TRIAL REGISTRATION: This study was retrospectively registered with ClinicalTrials.gov (NCT04631276) on November 17, 2020.


Subject(s)
Narcolepsy , Neuroprotective Agents , Receptors, Histamine H3 , Sleep Initiation and Maintenance Disorders , Brain/diagnostic imaging , Brain/metabolism , Histamine/metabolism , Humans , Ligands , Male , Narcolepsy/metabolism , Niacinamide , Positron-Emission Tomography/methods , Pyridines , Quinolones , Receptors, Histamine H3/metabolism , Sleep Initiation and Maintenance Disorders/metabolism
9.
Eur J Nucl Med Mol Imaging ; 49(9): 3150-3161, 2022 07.
Article in English | MEDLINE | ID: mdl-35022846

ABSTRACT

PURPOSE: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. METHODS: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test-retest reproducibility of 18F-T-401-PET were also evaluated. RESULTS: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test-retest reliability was also excellent with the use of MA1. CONCLUSIONS: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test-retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.


Subject(s)
Cannabinoids , Monoacylglycerol Lipases , Brain/diagnostic imaging , Brain/metabolism , Cannabinoids/metabolism , Humans , Male , Monoacylglycerol Lipases/metabolism , Positron-Emission Tomography/methods , Reproducibility of Results , Tissue Distribution
10.
Mol Psychiatry ; 26(10): 5856-5863, 2021 10.
Article in English | MEDLINE | ID: mdl-32606373

ABSTRACT

Depression is one of the common psychiatric disorders in old age. Major depressive disorder (MDD) has been identified as a risk factor or prodrome for neurodegenerative dementias, suggesting neuropathological overlaps and a continuum between MDD and neurodegenerative disorders. In this study, we examined tau and amyloid-ß (Aß) accumulations in the brains of MDD and healthy controls using positron emission tomography (PET) to explore pathological substrates of this illness. Twenty MDD and twenty age-matched, healthy controls were examined by PET with a tau radioligand, [11C]PBB3, and an Aß radioligand, [11C]PiB. Radioligand retentions were quantified as a standardized uptake value ratio (SUVR). We also assessed clinical manifestations of the patients using the 17-item Hamilton Depression Scale, the Geriatric Depression Scale, and psychotic symptoms. Mean cortical [11C]PBB3 SUVRs in MDD patients were significantly higher than those of healthy controls. These values were higher in MDD patients with psychotic symptoms than in those without any. The present findings indicate that tau depositions may underlie MDD, and especially in patients with psychotic symptoms. PET detection of tau accumulations may provide mechanistic insights into neuronal dysfunctions in these cases and could serve as predictions of their clinical consequences.


Subject(s)
Depressive Disorder, Major , Aged , Amyloid beta-Peptides , Aniline Compounds , Depressive Disorder, Major/diagnostic imaging , Humans , Ligands , Positron-Emission Tomography , tau Proteins
11.
Bioorg Med Chem Lett ; 65: 128704, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35351586

ABSTRACT

Colony-stimulating factor 1 receptors (CSF1R) are expressed exclusively on microglia in the central nervous system. The receptors regulate immune responses by controlling the survival and activity of microglia and are intricately involved in the pathophysiology of Alzheimer's disease. In this study, we developed [11C]NCGG401, a positron emission tomography (PET) ligand, targeting for CSF1R as an imaging biomarker for microglial pathophysiology in Alzheimer's disease. NCGG401 showed a high potency to inhibit human CSF1R kinase activity and a high binding affinity to human CSF1R. PET imaging with [11C]NCGG401 in healthy rats showed a good brain permeability. Furthermore, the specific binding component was determined by postmortem autoradiography in rat brain and human hippocampal sections. The knowledge of the characteristics of [11C]NCCC401, our initial CSF1R compound, we have obtained may be useful for further development and optimization of CSF1R radioligands for PET imaging of microglia.


Subject(s)
Alzheimer Disease , Macrophage Colony-Stimulating Factor , Alzheimer Disease/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Ligands , Macrophage Colony-Stimulating Factor/metabolism , Microglia/metabolism , Positron-Emission Tomography/methods , Rats , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
12.
J Chem Phys ; 157(24): 244704, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36586988

ABSTRACT

Bubble solutions are of growing interest because of their various technological applications in surface cleaning, water treatment, and agriculture. However, their physicochemical properties, such as the stability and interfacial charge of bubbles, are not fully understood yet. In this study, the kinetics of radii in aqueous microbubble solutions are experimentally investigated, and the results are discussed in the context of Ostwald ripening. The obtained distributions of bubble radii scaled by mean radius and total number were found to be time-independent during the observation period. Image analysis of radii kinetics revealed that the average growth and shrinkage speed of each bubble is governed by diffusion-limited Ostwald ripening, and the kinetic coefficient calculated using the available physicochemical constants in the literature quantitatively agrees with the experimental data. Furthermore, the cube of mean radius and mean volume exhibit a linear time evolution in agreement with the Lifshitz-Slezov-Wagner (LSW) theory. The coefficients are slightly larger than those predicted using the LSW theory, which can be qualitatively explained by the effect of finite volume fraction. Finally, the slowdown and pinning of radius in the shrinkage dynamics of small microbubbles are discussed in detail.

13.
Neuroimage ; 226: 117543, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33186713

ABSTRACT

BACKGROUND: The dopamine (DA) neurotransmission has been implicated in fundamental brain functions, exemplified by movement controls, reward-seeking, motivation, and cognition. Although dysregulation of DA neurotransmission in the striatum is known to be involved in diverse neuropsychiatric disorders, it is yet to be clarified whether components of the DA transmission, such as synthesis, receptors, and reuptake are coupled with each other to homeostatically maintain the DA neurotransmission. The purpose of this study was to investigate associations of the DA synthesis capacity with the availabilities of DA transporters and D2 receptors in the striatum of healthy subjects. METHODS: First, we examined correlations between the DA synthesis capacity and DA transporter availability in the caudate and putamen using PET data with L-[ß-11C]DOPA and [18F]FE-PE2I, respectively, acquired from our past dual-tracer studies. Next, we investigated relationships between the DA synthesis capacity and D2 receptor availability employing PET data with L-[ß-11C]DOPA and [11C]raclopride, respectively, obtained from other previous dual-tracer assays. RESULTS: We found a significant positive correlation between the DA synthesis capacity and DA transporter availability in the putamen, while no significant correlations between the DA synthesis capacity and D2 receptor availability in the striatum. CONCLUSION: The intimate association of the DA synthesis rate with the presynaptic reuptake of DA indicates homeostatic maintenance of the baseline synaptic DA concentration. In contrast, the total abundance of D2 receptors, which consist of presynaptic autoreceptors and postsynaptic modulatory receptors, may not have an immediate relationship to this regulatory mechanism.


Subject(s)
Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/biosynthesis , Receptors, Dopamine D2/metabolism , Adult , Brain/diagnostic imaging , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/metabolism , Humans , Male , Positron-Emission Tomography , Putamen/diagnostic imaging , Putamen/metabolism , Synaptic Transmission/physiology , Young Adult
14.
Hum Brain Mapp ; 42(12): 4048-4058, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34014611

ABSTRACT

Although striatal dopamine neurotransmission is believed to be functionally linked to the formation of the corticostriatal network, there has been little evidence for this regulatory process in the human brain and its disruptions in neuropsychiatric disorders. Here, we aimed to investigate associations of striatal dopamine transporter (DAT) and D2 receptor availabilities with gray matter (GM) volumes in healthy humans. Positron emission tomography images of D2 receptor (n = 34) and DAT (n = 17) captured with the specific radioligands [11 C]raclopride and [18 F]FE-PE2I, respectively, were acquired along with T1-weighted magnetic resonance imaging data in our previous studies, and were re-analyzed in this work. We quantified the binding potentials (BPND ) of these radioligands in the limbic, executive, and sensorimotor functional subregions of the striatum. Correlations between the radioligand BPND and regional GM volume were then examined by voxel-based morphometry. In line with the functional and anatomical connectivity, [11 C]raclopride BPND in the limbic striatum was positively correlated with volumes of the uncal/parahippocampal gyrus and adjacent temporal areas. Similarly, we found positive correlations between the BPND of this radioligand in the executive striatum and volumes of the prefrontal cortices and their adjacent areas as well as between the BPND in the sensorimotor striatum and volumes of the somatosensory and supplementary motor areas. By contrast, no significant correlation was found between [18 F]FE-PE2I BPND and regional GM volumes. Our results suggest unique structural and functional corticostriatal associations involving D2 receptor in healthy humans, which might be partially independent of the nigrostriatal pathway reflected by striatal DAT.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Gray Matter/metabolism , Neostriatum/metabolism , Prefrontal Cortex/metabolism , Receptors, Dopamine D2/metabolism , Ventral Striatum/metabolism , Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Neostriatum/diagnostic imaging , Neostriatum/pathology , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology , Radiopharmaceuticals/pharmacokinetics , Ventral Striatum/diagnostic imaging , Ventral Striatum/pathology , Young Adult
15.
Eur J Nucl Med Mol Imaging ; 48(9): 2846-2855, 2021 08.
Article in English | MEDLINE | ID: mdl-33566152

ABSTRACT

PURPOSE: Phosphodiesterase 7 (PDE7) is an enzyme that selectively hydrolyses cyclic adenosine monophosphate, and its dysfunction is implicated in neuropsychiatric diseases. However, in vivo visualization of PDE7 in human brains has hitherto not been possible. Using the novel PET ligand 11C-MTP38, which we recently developed, we aimed to image and quantify PDE7 in living human brains. METHODS: Seven healthy males underwent a 90-min PET scan after injection of 11C-MTP38. We performed arterial blood sampling and metabolite analysis of plasma in six subjects to obtain a metabolite-corrected input function. Regional total distribution volumes (VTs) were estimated using compartment models, and Logan plot and Ichise multilinear analysis (MA1). We further quantified the specific radioligand binding using the original multilinear reference tissue model (MRTMO) and standardized uptake value ratio (SUVR) method with the cerebellar cortex as reference. RESULTS: PET images with 11C-MTP38 showed relatively high retentions in several brain regions, including in the striatum, globus pallidus, and thalamus, as well as fast washout from the cerebellar cortex, in agreement with the known distribution of PDE7. VT values were robustly estimated by two-tissue compartment model analysis (mean VT = 4.2 for the pallidum), Logan plot, and MA1, all in excellent agreement with each other, suggesting the reversibility of 11C-MTP38 binding. Furthermore, there were good agreements between binding values estimated by indirect method and those estimated by both MRTMO and SUVR, indicating that these methods could be useful for reliable quantification of PDE7. Because MRTMO and SUVR do not require arterial blood sampling, they are the most practical for the clinical use of 11C-MTP38-PET. CONCLUSION: We have provided the first demonstration of PET visualization of PDE7 in human brains. 11C-MTP38 is a promising novel PET ligand for the quantitative investigation of central PDE7.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 7 , Positron-Emission Tomography , Algorithms , Brain/diagnostic imaging , Humans , Ligands , Male , Radiopharmaceuticals
16.
Brain ; 142(10): 3265-3279, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31504227

ABSTRACT

Tau deposits is a core feature of neurodegenerative disorder following traumatic brain injury (TBI). Despite ample evidence from post-mortem studies demonstrating exposure to both mild-repetitive and severe TBIs are linked to tau depositions, associations of topology of tau lesions with late-onset psychiatric symptoms due to TBI have not been explored. To address this issue, we assessed tau deposits in long-term survivors of TBI by PET with 11C-PBB3, and evaluated those associations with late-life neuropsychiatric outcomes. PET data were acquired from 27 subjects in the chronic stage following mild-repetitive or severe TBI and 15 healthy control subjects. Among the TBI patients, 14 were diagnosed as having late-onset symptoms based on the criteria of traumatic encephalopathy syndrome. For quantification of tau burden in TBI brains, we calculated 11C-PBB3 binding capacity (cm3), which is a summed voxel value of binding potentials (BP*ND) multiplied by voxel volume. Main outcomes of the present study were differences in 11C-PBB3 binding capacity between groups, and the association of regional 11C-PBB3 binding capacity with neuropsychiatric symptoms. To confirm 11C-PBB3 binding to tau deposits in TBI brains, we conducted in vitro PBB3 fluorescence and phospho-tau antibody immunofluorescence labelling of brain sections of chronic traumatic encephalopathy obtained from the Brain Bank. Our results showed that patients with TBI had higher 11C-PBB3 binding capacities in the neocortical grey and white matter segments than healthy control subjects. Furthermore, TBI patients with traumatic encephalopathy syndrome showed higher 11C-PBB3 binding capacity in the white matter segment than those without traumatic encephalopathy syndrome, and regional assessments revealed that subgroup difference was also significant in the frontal white matter. 11C-PBB3 binding capacity in the white matter segment correlated with the severity of psychosis. In vitro assays demonstrated PBB3-positive tau inclusions at the depth of neocortical sulci, confirming 11C-PBB3 binding to tau lesions. In conclusion, increased 11C-PBB3 binding capacity is associated with late-onset neuropsychiatric symptoms following TBI, and a close correlation was found between psychosis and 11C-PBB3 binding capacity in the white matter.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Tauopathies/diagnostic imaging , Adult , Alzheimer Disease/pathology , Brain/pathology , Chronic Traumatic Encephalopathy/pathology , Female , Humans , Male , Mental Disorders/etiology , Mental Disorders/metabolism , Middle Aged , Positron-Emission Tomography/methods , Psychotic Disorders/etiology , Psychotic Disorders/pathology , Tauopathies/metabolism , White Matter/pathology , tau Proteins/metabolism
17.
Mov Disord ; 34(5): 744-754, 2019 05.
Article in English | MEDLINE | ID: mdl-30892739

ABSTRACT

BACKGROUND: [11 C]pyridinyl-butadienyl-benzothiazole 3 is a PET imaging agent designed for capturing pathological tau aggregates in diverse neurodegenerative disorders, and would be of clinical utility for neuropathological investigations of PSP. OBJECTIVES: To explore the usefulness of [11 C]pyridinyl-butadienyl-benzothiazole 3/PET in assessing characteristic distributions of tau pathologies and their association with clinical symptoms in the brains of living PSP patients. METHODS: We assessed 13 PSP patients and 13 age-matched healthy control subjects. Individuals negative for amyloid ß PET with [11 C]Pittsburgh compound B underwent clinical scoring, MR scans, and [11 C]pyridinyl-butadienyl-benzothiazole 3/PET. RESULTS: There were significant differences in binding potential for [11 C]pyridinyl-butadienyl-benzothiazole 3 between PSP patients and healthy control subjects (P = 0.02). PSP patients exhibited greater radioligand retention than healthy control subjects in multiple brain regions, including frontoparietal white matter, parietal gray matter, globus pallidus, STN, red nucleus, and cerebellar dentate nucleus. [11 C]pyridinyl-butadienyl-benzothiazole 3 deposition in frontoparietal white matter, but not gray matter, was correlated with general severity of parkinsonian and PSP symptoms, whereas both gray matter and white matter [11 C]pyridinyl-butadienyl-benzothiazole 3 accumulations in the frontoparietal cortices were associated with nonverbal cognitive impairments. Autoradiographic and fluorescence labeling with pyridinyl-butadienyl-benzothiazole 3 was observed in gray matter and white matter of PSP motor cortex tissues. CONCLUSIONS: Our findings support the in vivo detectability of tau fibrils characteristic of PSP by [11 C]pyridinyl-butadienyl-benzothiazole 3/PET, and imply distinct and synergistic contributions of gray matter and white matte tau pathologies to clinical symptoms. [11 C]pyridinyl-butadienyl-benzothiazole 3/PET potentially provides a neuroimaging-based index for the evolution of PSP tau pathologies promoting the deterioration of motor and cognitive functions. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Brain/diagnostic imaging , Supranuclear Palsy, Progressive/diagnostic imaging , tau Proteins/metabolism , Aged , Aged, 80 and over , Aniline Compounds , Autoradiography , Benzothiazoles , Brain/metabolism , Carbon Radioisotopes , Case-Control Studies , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , Thiazoles
18.
Bioorg Med Chem Lett ; 29(16): 2107-2111, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31311732

ABSTRACT

(R,S)-Isoproterenol inhibits the formation of toxic granular tau oligomers associated with neuronal loss and development of cognitive disorders, and is an attractive drug candidate for Alzheimer's disease. To elucidate its behavior in the brain by positron emission tomography, we synthesize (R,S)-[11C]isoproterenol by reductive alkylation of (R,S)-norepinephrine with [2-11C]acetone, which was in turn synthesized in situ under improved conditions afforded a decay-corrected radiochemical yield of 54%. The reductive alkylation using NaBH(OAc)3 as reducing agent in the presence of benzoic acid in DMSO/DMF (60:40 v/v) at 100 °C for 10 min gave (R,S)-[11C]isoproterenol in an 87% radio-high performance liquid chromatography (HPLC) analytical yield. HPLC separation using a strong cation exchange column, followed by pharmaceutical formulation in the presence of d/l-tartaric acid, afforded (R,S)-[11C]isoproterenol with a total radioactivity of 2.0 ±â€¯0.2 GBq, a decay-corrected radiochemical yield of 19 ±â€¯2%, chemical and radiochemical purities of 71% and >99%, respectively, and a molar activity of 100 ±â€¯13 GBq/µmol (n = 3). The overall synthesis time from the end of the bombardment to pharmaceutical formulation was 48 min. A preliminary preclinical PET study in a rat demonstrated the potential of the radioligand for the evaluation of the penetration of (R,S)-isoproterenol in human brain.


Subject(s)
Acetone/chemistry , Isoproterenol/chemical synthesis , Norepinephrine/chemistry , Radiopharmaceuticals/chemical synthesis , Acetone/chemical synthesis , Alkylation , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Carbon Radioisotopes/chemistry , Isoproterenol/pharmacology , Male , Positron-Emission Tomography , Radiopharmaceuticals/pharmacology , Rats, Wistar , Stereoisomerism
19.
J Chem Phys ; 150(17): 174903, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31067877

ABSTRACT

A patchy colloidal particle possesses distinctive regions with different physical or chemical properties on its surface and thus exhibits anisotropic interactions with another particle or object. By utilizing the large van der Waals attraction between metal surfaces and the electric double layer repulsion originating from surface charge, we succeeded in controlling the adsorption behavior of metallodielectric particles (MDPs), which were composed of dielectric spheres each with a thin gold patch modified with dissociable groups, to gold surfaces. When MDPs were dispersed on a dielectric substrate with a thick gold pattern in aqueous solution, the particles selectively adsorbed onto the gold surface of the substrate at a moderate salt concentration. Furthermore, when MDPs were mixed with large particles coated with a thick gold film, MDPs adsorbed on the gold surface at a moderate salt concentration and formed a monolayer. In the monolayer, gold patches of MDPs bonded to the gold surface and the dielectric surface of MDPs faced outward. In other words, this monolayer was a solid dielectric layer formed on the metal surface of a large particle. Such selectivity, i.e., that a gold patch of an MDP bonded to a gold surface but the patches did not bond to each other, was realized by controlling the thickness and surface charge of gold patches.

20.
J Neurol Neurosurg Psychiatry ; 89(11): 1208-1214, 2018 11.
Article in English | MEDLINE | ID: mdl-29884723

ABSTRACT

OBJECTIVE: Apathy is a common neuropsychological symptom in Alzheimer's disease (AD), and previous studies demonstrated that neuronal loss and network disruption in some brain regions play pivotal roles in the pathogenesis of apathy. However, contributions of tau and amyloid-ß (Aß) depositions, pathological hallmarks of AD, to the manifestation of apathy remain elusive. METHODS: Seventeen patients with AD underwent positron emission tomography (PET) with 11C-pyridinyl-butadienyl-benzothiazole 3 (11C-PBB3) and 11C-Pittsburgh compound-B (11C-PiB) to estimate tau and Aß accumulations using standardised uptake value ratio (SUVR) images. 11C-PBB3 and 11C-PiB SUVR were compared between AD patients with high and low Apathy Scale (AS) scores. Additionally, volumetric and diffusion tensor MRI was performed in those areas where any significant difference was observed in PET analyses. Correlation and path analyses among AS and estimated imaging parameters were also conducted. RESULTS: AD patients with high AS scores showed higher 11C-PBB3 SUVR in the orbitofrontal cortex (OFC) than those with low AS scores, while 11C-PiB SUVR in any brain regions did not differ between them. Elevated 11C-PBB3 SUVR in OFC, decreased OFC thickness and decreased fractional anisotropy (FA) in the uncinate fasciculus (UNC), which is structurally connected to OFC, correlated significantly with increased scores of the AS. Path analysis indicated that increased 11C-PBB3 SUVR in OFC affects apathy directly and through reduction of OFC thickness and subsequent decrease of FA in UNC. CONCLUSIONS: The present findings suggested that tau pathology in OFC may provoke focal neurotoxicity in OFC and the following disruption of the OFC-UNC network, leading to the emergence and progression of apathy in AD.


Subject(s)
Alzheimer Disease/metabolism , Apathy/physiology , Nerve Net/metabolism , Prefrontal Cortex/diagnostic imaging , tau Proteins/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Diffusion Tensor Imaging , Disease Progression , Female , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL