Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34870578

ABSTRACT

Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to 'A. deltaense' YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium. Whole genome average nucleotide identity and digital DNA-DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10-42 °C, pH 5.0-10.0 and with 0.0-0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium, for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).


Subject(s)
Agrobacterium , Phaseolus , Phylogeny , Root Nodules, Plant/microbiology , Agrobacterium/classification , Agrobacterium/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phaseolus/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
2.
Int J Syst Evol Microbiol ; 70(10): 5512-5519, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32910749

ABSTRACT

A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).


Subject(s)
Agrobacterium/classification , Phylogeny , Plant Roots/microbiology , Zea mays/microbiology , Agrobacterium/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
3.
Int J Syst Evol Microbiol ; 69(10): 3141-3147, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31334698

ABSTRACT

During a study on biodiversity of bacteria inhabiting rhizospheric soil of rockrose (Cistus ladanifer L.), we isolated a strain coded RD25T in a soil from Northern Spain. The 16S rRNA gene sequence showed 99.5 % identity with respect to the closest related species Pseudomonas brenneri DSM15294T, and 99.4 % with respect to P. paralactis WS4672T. The following related Pseudomonas species showed 99.3 % or less identity, and therefore RD25T was classified within genus Pseudomonas. The phylogenetic analysis of 16S rRNA and the housekeeping genes rpoB, rpoD and gyrB suggested that this strain could be a novel species. The strain RD25T has several polar-subpolar flagella. It can grow at 36 °C, at 0-6 % NaCl concentration and a range of pH 5-9. Positive for arginine dihydrolase and urease production, and negative for reduction of nitrate. The strain is catalase and oxidase positive. Major fatty acids are C16 : 1 ω7c / C16 : 1 ω6c in summed feature 3, C16 : 0, and C18 : 1 ω7c / C18 : 1 ω6c in summed feature 8. The respiratory ubiquinone is Q9. The DNA G+C content was 59.9 mol%. The digital DNA-DNA hybridisation average values (dDDH) ranged between 30-61.2 % relatedness and the ANIb values ranged between 93.9-80.5 % with respect to the type strains of the closely related species. Therefore, the genotypic, genomic, phenotypic and chemotaxonomic data support the classification of strain RD25 as a novel species of genus Pseudomonas, for which the name P. edaphica sp. nov. is proposed. The type strain is RD25T (=LMG 30152T=CECT 9373T).


Subject(s)
Cistus/microbiology , Phylogeny , Pseudomonas/classification , Rhizosphere , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Nucleic Acid Hybridization , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Ubiquinone/chemistry
4.
Int J Syst Evol Microbiol ; 68(4): 1085-1089, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29458536

ABSTRACT

A Gram-negative rod, designated strain LLAN61T, was isolated from a root nodule of Lotus lancerottensis growing in a saline soil sample from Lanzarote (Canary Islands). The strain grew optimally at 0.5 % (w/v) NaCl and tolerated up to 3.5 %. The 16S rRNA gene sequence analysis showed that strain LLAN61T belonged to genus Phyllobacterium and that Phyllobacteriumleguminum ORS 1419T and Phyllobacteriummyrsinacearum IAM 13584T are the closest related species with 97.93 and 97.86% similarity values, respectively. In the atpD phylogeny, P. leguminum ORS 1419T and P. myrsinacearum ATCC 43591T, sharing similarities of 87.6 and 85.8% respectively, were also the closest species to strain LLAN61T. DNA-DNA hybridization showed an average value of 21 % between strain LLAN61T and P. leguminum LMG 22833T, and 6 % with P. myrsinacearum ATCC 43590T. The predominant fatty acids were C19 : 0 cyclo ω8c and C18 : 1ω6c/C18 : 1ω7c (summed feature 8). The DNA G+C content was 58.0 mol%. Strain LLAN61T differed from its closest relatives in some culture conditions and in assimilation of several carbon sources. Based upon the results of phylogeny, DNA-DNA hybridization, phenotypic tests and fatty acid analysis, this strain should be classified as a novel species of Phyllobacterium for which the name Phyllobacterium salinisoli sp. nov. is proposed (type strain LLAN61T=LMG 30173T = CECT 9417T).


Subject(s)
Lotus/microbiology , Phyllobacteriaceae/classification , Phylogeny , Plant Roots/microbiology , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phyllobacteriaceae/genetics , Phyllobacteriaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Salinity , Sequence Analysis, DNA , Spain
5.
Int J Syst Evol Microbiol ; 67(6): 1789-1792, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28598309

ABSTRACT

The species Arthrobacter viscosus was isolated from soil from Guatemala and it was classified into the genus Arthrobacter on the basis of phenotypic traits. Nevertheless, the results of16S rRNA gene analysis indicated that this species is a member of the genus Rhizobium, with Rhizobium alamii GBV016T and Rhizobium mesosinicum CCBAU 25010T as the most closely related species with 99.64 and 99.48 % similarity, respectively. The similarity values for the recA gene are 92.2 and 94.4 % with respect to R. alamii GBV016T and R. mesosinicum CCBAU 25010T, respectively, and those for the atpD gene are 92.9 and 98.7 %, respectively. Results of DNA-DNA hybridization analysis yield averages of 46 and 41 % relatedness with respect to the type strains of R. alamii and R. mesosinicum, respectively. Phenotypic characteristics also differed from those of the most closely related species of the genus Rhizobium. Therefore, based on the data obtained in this study, we propose to classify strain LMG 16473T as representing a novel species named Rhizobiumviscosum comb. nov. (type strain LMG 16473T=CECT 908T).


Subject(s)
Arthrobacter/classification , Phylogeny , Rhizobium/classification , Soil Microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genes, Bacterial , Guatemala , Nucleic Acid Hybridization , Sequence Analysis, DNA
6.
Int J Syst Evol Microbiol ; 67(4): 969-973, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27959779

ABSTRACT

A bacterial strain designated GTAE24T was isolated from a root of wheat growing in soil from the Canary Islands, Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Brevundimonas with Brevundimonas abyssalisTAR-001T as its closest relative at 99.4 % similarity. DNA-DNA hybridization studies showed an average of 38 % relatedness between strain GTAE24T and the type strain of B. abyssalis. Cells were Gram-stain-negative and motile by polar flagella. The strain was positive for oxidase and weakly positive for catalase. Gelatin, starch and casein were not hydrolysed. Growth was supported by many carbohydrates and organic acids as carbon source. Ubiquinone Q-10 was the predominant isoprenoid quinone and C18 : 1ω7c/C18 : 1ω6c (summed feature 8) and C16 : 0 were the major fatty acids. The major polar lipids were phosphatidylglycerol, 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1,4)-α-d-glucopyranuronosyl] glycerol, 1,2-diacyl-3-O-[6'-phosphatidyl-α-d-glucopyranosyl] glycerol, 1,2-di-O-acyl-3-O-α-d-glucopyranosyl glycerol, and 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol. The DNA G+C content was 63.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain GTAE24T should be considered as representing a novel species of the genus Brevundimonas, for which the name Brevundimonas canariensis sp. nov. is proposed. The type strain is GTAE24T (=LMG 29500T=CECT 9126T).


Subject(s)
Caulobacteraceae/classification , Phylogeny , Plant Roots/microbiology , Triticum/microbiology , Bacterial Typing Techniques , Base Composition , Caulobacteraceae/genetics , Caulobacteraceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Ubiquinone/chemistry
7.
Int J Syst Evol Microbiol ; 66(11): 4657-4664, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27503709

ABSTRACT

A bacterial strain named IB1.1T was isolated in a screening of hydrocarbon-degrading bacteria from oil-contaminated soils on the territory of the Turukhansk District of Krasnoyarsk Krai, East Siberia, Russia. The 16S rRNA gene sequence had 98.7 % identity with respect to the closest phylogenetic relative, Pseudomonas granadensis F-278,770T, and the next most closely related species with 98.6 % similarity was Pseudomonaspunonensis, suggesting that IB1.1T should be classified within the genus Pseudomonas. The analysis of housekeeping genes rpoB, rpoD and gyrB showed similarities lower than 90 % in all cases with respect to the closest relatives, confirming its phylogenetic affiliation. The strain showed a polar flagellum. The respiratory quinone was Q9. The major fatty acids were 16 : 1ω7c/16 : 1ω6c (summed feature 3), 18 : 1ω7c and 16 : 0. The strain was oxidase- and catalase-positive, but the arginine dihydrolase system was not present. Nitrate reduction, urease and ß-galactosidase production, and aesculin hydrolysis were negative. The temperature range for growth was 4-34 °C, and the strain could grow at pH 11. The DNA G+C content was 58.5 mol%. DNA-DNA hybridization results showed values of less than 30 % relatedness with respect to the type strains of the eight most closely related species. Therefore, the dataset of genotypic, phenotypic and chemotaxonomic data support the classification of strain IB1.1T into a novel species of the genus Pseudomonas, for which the name Pseudomonasturukhanskensis sp. nov. is proposed. The type strain is IB1.1T (=VKM B-2935T=CECT 9091T).


Subject(s)
Petroleum Pollution , Phylogeny , Pseudomonas/classification , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Russia , Sequence Analysis, DNA , Siberia , Ubiquinone/chemistry
8.
Int J Syst Evol Microbiol ; 66(12): 4936-4941, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27565417

ABSTRACT

In this work we revise the taxonomic status of the Lotus-nodulating strains MAFF 303099T and R7A isolated in Japan and New Zealand, respectively. Their 16S rRNA gene sequences are identical and show 98.0, 99.7, 99.8 and 99.9 % similarity values with respect to Mesorhizobium loti NZP 2213T, M. jarvisii ATCC 33669T, M. huakuii USDA 4779T (=CCBAU 2609T) and M. erdmanii USDA 3471T, respectively. The analysis of recA and glnII gene sequeces showed that M. jarvisii ATCC 33669T and M. huakuii USDA 4779T (=CCBAU 2609T) are the most closely related strains to MAFF 303099T and R7A, with similarity values suggesting that these two strains belong to a different species for which MAFF 303099T is selected as the type strain. The DNA-DNA relatedness values between strain MAFF 303099T and its closest phylogenetic relatives ranged from 53 to 60 % in average. Strains MAFF 303099T and R7A presented slight differences in the proportions of C18 : 1ω7c 11-methyl and C19 : 0 cyclo ω8c fatty acids with respect to M. jarvisii ATCC 33669T and M. huakuii USDA 4779T, and also in several phenotypic characteristics. Therefore, we propose the reclassification of these two strains into a novel species named Mesorhizobium japonicum sp. nov., with the type strain being MAFF 303099T (=LMG 29417T=CECT 9101T).


Subject(s)
Lotus/microbiology , Mesorhizobium/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Japan , Mesorhizobium/genetics , New Zealand , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
9.
Int J Syst Evol Microbiol ; 66(2): 975-981, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26637820

ABSTRACT

We analysed, using a polyphasic taxonomic approach, two bacterial strains coded BSTT30T and BSTT40, isolated in the course of a study of endophytic bacteria occurring in the stems and roots of potatoes growing in soil from Salamanca, Spain. The 16S rRNA gene sequence was identical in both strains and had 98.4 % identity with respect to the closest relatives Erwinia tasmaniensis Et1/99T and Erwinia rhapontici ATCC29283T. Erwinia billingiae E63T and Erwinia toletana A37T were also closely related with 98.2 % sequence similarities, so the novel strains were classified within the genus Erwinia. The analysis of the housekeeping genes gpd, gyrB and rpoD confirmed the phylogenetic affiliation of strains BSTT30T and BSTT40 with similarities of lower than 90 % in all cases with respect to the closest relatives mentioned above. The respiratory quinone of strain BSTT30T was Q8. The major fatty acids were C16 : 0, C16 : 1ω7c/16 : 1ω6c in summed feature 3 and C18 : 1ω7c/18 : 2ω6,9c in summed feature 8. The novel strains were oxidase-negative and catalase-positive. Glucose was fermented without gas production. They were negative for arginine dihydrolase, urease and indole production. The strains could grow at 35 °C and at pH 10. DNA G+C content was 50.1 mol%. DNA-DNA hybridization results showed values of lower than 29 % relatedness with respect to the type strains of the four most closely related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strains BSTT30T and BSTT40 into a novel species of the genus Erwinia, for which the name Erwinia endophytica sp. nov. is proposed. The type strain is BSTT30T ( = LMG 28457T, CECT 8692T).

10.
Int J Syst Evol Microbiol ; 66(4): 1838-1843, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26843192

ABSTRACT

A bacterial strain designated PM10T was isolated from root nodules of Periandra mediterranea in Brazil. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Paenibacillus with its closest relatives being Paenibacillus vulneris CCUG 53270T and Paenibacillus yunnanensis YN2T with 95.6 and 95.9% 16S rRNA gene sequence similarity, respectively. The isolate was a Gram-stain-variable, motile, sporulating rod that was catalase-negative and oxidase-positive. Caseinase was positive, amylase was weakly positive and gelatinase was negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C15 : 0 was the major fatty acid. Major polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PM10T should be considered representative of a novel species of the genus Paenibacillus, for which the name Paenibacillus periandrae sp. nov. is proposed. The type strain is PM10T (=LMG 28691T=CECT 8827T).


Subject(s)
Fabaceae/microbiology , Paenibacillus/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Brazil , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Molecular Sequence Data , Paenibacillus/genetics , Paenibacillus/isolation & purification , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
11.
Int J Syst Evol Microbiol ; 65(7): 2110-2117, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25851593

ABSTRACT

A bacterial strain named BSTT44(T) was isolated in the course of a study of endophytic bacteria occurring in stems and roots of potato growing in a soil from Salamanca, Spain. The 16S rRNA gene sequence had 99.7% identity with respect to that of its closest relative, Pseudomonas psychrophila E-3T, and the next most closely related type strains were those of Pseudomonas fragi, with 99.6% similarity, Pseudomonas deceptionensis, with 99.2% similarity, and Pseudomonas lundensis, with 99.0% similarity; these results indicate that BSTT44(T) should be classified within the genus Pseudomonas. Analysis of the housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation and showed identities lower than 92% in all cases with respect to the above-mentioned closest relatives. Cells of the strain bore one polar-subpolar flagellum. The respiratory quinone was Q-9.The major fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The strain was oxidase-, catalase- and urease-positive and the arginine dihydrolase system was present, but tests for nitrate reduction, ß-galactosidase production and aesculin hydrolysis were negative. It could grow at 35 °C and at pH 5-9.The DNA G+C content was 60.2 mol%. DNA-DNA hybridization results showed less than 48% relatedness with respect to the type strains of the four most closely related species. Therefore, the combined results of genotypic, phenotypic and chemotaxonomic analyses support the classification of strain BSTT44 into a novel species of the genus Pseudomonas, for which the name Pseudomonas endophytica sp. nov. is proposed. The type strain is BSTT44(T) ( = LMG 28456(T) = CECT 8691(T)).


Subject(s)
Phylogeny , Pseudomonas/classification , Solanum tuberosum/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Plant Stems/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
12.
Int J Syst Evol Microbiol ; 65(Pt 6): 1703-1708, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25736411

ABSTRACT

The species Mesorhizobim loti was isolated from nodules of Lotus corniculatus and its type strain deposited in several collections. Some of these type strains, such as those deposited in the USDA and ATCC collections before 1990, are not coincident with the original strain, NZP 2213T, deposited in the NZP culture collection. The analysis of the 16S rRNA gene showed that strains USDA 3471T and ATCC 33669T formed independent branches from that occupied by Mesorhizobium loti NZP 2213T and related to those occupied by Mesorhizobium opportunistum WSM2075T and Mesorhizobium huakuii IFO 15243T, respectively, with 99.9 % similarity in both cases. However, the analysis of concatenated recA, atpD and glnII genes with similarities lower than 96, 98 and 94 %, respectively, between strains USDA 3471T and M. opportunistum WSM2075T and between strains ATCC 33669T and M. huakuii IFO 15243T, indicated that the strains USDA 3471T and ATCC 33669T represent different species of the genus Mesorhizobium. These results were confirmed by DNA-DNA hybridization experiments and phenotypic characterization. Therefore, the two strains were reclassified as representatives of the two species Mesorhizobium erdmanii sp. nov. (type strain USDA 3471T = CECT 8631T = LMG 17826t2T) and Mesorhizobium jarvisii sp. nov. (type strain ATCC 33669T = CECT 8632T = LMG 28313T).


Subject(s)
Lotus/microbiology , Mesorhizobium/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Genes, Bacterial , Mesorhizobium/genetics , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , United States , United States Department of Agriculture
13.
Int J Syst Evol Microbiol ; 65(Pt 4): 1213-1219, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25609676

ABSTRACT

The species Rhizobium lupini was isolated from Lupinus nodules and included in the Approved Lists of Bacterial Names in 1980. Nevertheless, on the basis of the analysis of the type strain of this species available in DSMZ, DSM 30140(T), whose 16S rRNA gene was identical to that of the type strain of Bradyrhizobium japonicum , R. lupini was considered a later synonym of this species. In this study we confirmed that the strain DSM 30140(T) belongs to the species B. japonicum , but also that it cannot be the original strain of R. lupini because this species effectively nodulated Lupinus whereas strain DSM 30140(T) was able to nodulate soybean but not Lupinus. Since the original type strain of R. lupini was deposited into the USDA collection by L. W. Erdman under the accession number USDA 3051(T) we analysed the taxonomic status of this strain showing that although it belongs to the genus Bradyrhizobium instead of genus Rhizobium , it is phylogenetically distant from B. japonicum and closely related to Bradyrhizobium canariense . The type strains R. lupini USDA 3051(T) and B. canariense BTA-1(T) share 16S rRNA, recA and glnII gene sequences with similarities of 99.8%, 96.5% and 97.1%, respectively. They presented a DNA-DNA hybridization value of 36% and also differed in phenotypic characteristics and slightly in the proportions of some fatty acids. Therefore we propose the reclassification of the species Rhizobium lupini as Bradyrhizobium lupini comb. nov. The type strain is USDA 3051(T) ( = CECT 8630(T) = LMG 28514(T)).


Subject(s)
Bradyrhizobium/classification , Phylogeny , Rhizobium/classification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Lupinus/microbiology , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
14.
Appl Microbiol Biotechnol ; 99(11): 4855-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25586575

ABSTRACT

Alfalfa (Medicago sativa L.) is an important crop worldwide whose cropping in acid soils is hampered by the poor nodulation and yield commonly attributed to the sensitivity of its endosymbionts to acid pH. In this work, we isolated several acid-tolerant strains from alfalfa nodules in three acid soils in northwestern Spain. After grouping by RAPD fingerprinting, most strains were identified as Ensifer meliloti and only two strains as Ensifer medicae according to their 16S-23S intergenic spacer (ITS) sequences that allowed the differentiation of two groups within each one of these species. The two ITS groups of E. meliloti and the ITS group I of E. medicae have been previously found in Medicago nodules; however, the group II of E. medicae has been only found to date in Prosopis alba nodules. The analysis of the nodC gene showed that all strains isolated in this study belong to the symbiovar meliloti, grouping with the type strains of E. meliloti or E. medicae, but some harboured nodC gene alleles different from those found to date in alfalfa nodules. The strains of E. medicae belong to the symbiovar meliloti which should be also recognised in this species, although they harboured a nodC allele phylogenetically divergent to those from E. meliloti strains. Microcosm experiments showed that inoculation of alfalfa with selected acid-tolerant strains significantly increased yields in acid soils representing a suitable agricultural practice for alfalfa cropping in these soils.


Subject(s)
Bacterial Proteins/genetics , DNA, Ribosomal Spacer/genetics , Medicago sativa/microbiology , N-Acetylglucosaminyltransferases/genetics , Sinorhizobium/isolation & purification , Sinorhizobium/physiology , Soil Microbiology , Symbiosis , Acids/analysis , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Sinorhizobium/classification , Sinorhizobium/genetics , Soil/chemistry , Spain
15.
Antonie Van Leeuwenhoek ; 107(5): 1315-21, 2015 May.
Article in English | MEDLINE | ID: mdl-25772303

ABSTRACT

A bacterial strain designated A4STR04(T) was isolated from the inner root tissue of potatoes in Spain. Phylogenetic analysis based on the 16S rRNA gene sequence placed the isolate into the genus Fontibacillus, being most closely related to Fontibacillus panacisegetis KCTC 13564(T) with 99% identity. The isolate was observed to form Gram-positive, motile and sporulating rods. The catalase test was found to be negative and oxidase positive. Nitrate was found to be reduced to nitrite. ß-Galactosidase and caseinase were observed to be produced but the production of gelatinase, urease, arginine dehydrolase, ornithine and lysine decarboxylase was negative. Aesculin hydrolysis was found to be positive and acetoin production was negative. Growth was found to be supported by many carbohydrates and organic acids as carbon source. MK-7 was the only menaquinone detected and the major fatty acid (61.5%) was identified as anteiso-C(15:0), as occurs in the other species of genus Fontibacillus. The strain A4STR04(T) was found to display a complex lipid profile consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a glycolipid, two phospholipids, a lipid and two aminophospholipids. Mesodiaminopimelic acid was detected in the peptidoglycan. The G+C content was determined to be 50.5 mol% (Tm). Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain A4STR04(T) (=LMG 28458 (T) = CECT 8693(T)) should be classified as representing a novel species of genus Fontibacillus, for which the name Fontibacillus solani sp. nov. is proposed.


Subject(s)
Bacillales/classification , Bacillales/isolation & purification , Plant Roots/microbiology , Solanum tuberosum/microbiology , Bacillales/genetics , Bacillales/metabolism , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Molecular Sequence Data , Phylogeny , Plant Roots/genetics , RNA, Ribosomal, 16S/genetics
16.
Int J Syst Evol Microbiol ; 64(Pt 3): 781-786, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24271211

ABSTRACT

Strain S658(T) was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium. The closest related species was, in both cases, Phyllobacterium trifolii PETP02(T) with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658(T) differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA-DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium, for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658(T)( = LMG 27289(T) = CECT 8230(T)).


Subject(s)
Lotus/microbiology , Phyllobacteriaceae/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Phyllobacteriaceae/genetics , Phyllobacteriaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Uruguay
17.
Int J Syst Evol Microbiol ; 64(Pt 1): 83-87, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24021729

ABSTRACT

A bacterial strain designated RLAHU4B(T) was isolated from root nodules of Lupinus albus in León (Spain). The 16S rRNA gene sequence of this strain showed similarities lower than 97 % with respect to species of the genus Cohnella. The strain was a Gram-variable, sporulating rod, motile by means of peritrichous flagella, and facultatively anaerobic. It was positive for oxidase, catalase and ß-galactosidase production but negative for urease, amylase and gelatinase. Strain RLAHU4B(T) grew in the presence of 5 % NaCl. MK-7 was the predominant menaquinone and meso-diaminopimelic acid was present in the peptidoglycan. anteiso-C15 : 0, iso-C16 : 0, iso-C15 : 0 and C16 : 0 were the major fatty acids. Major polar lipids of strain RLAHU4B(T) were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, two unknown aminophospholipids and one unknown lipid. The DNA G+C content was 57.8 mol%. Strain RLAHU4B(T) presented phenotypic differences from all recognized species of the genus Cohnella. The phylogenetic, chemotaxonomic and phenotypic data indicated that strain RLAHU4B(T) belongs to a novel species of the genus Cohnella, for which the name Cohnella lupini sp. nov. is proposed, with strain RLAHU4B(T) ( = LMG 27416(T) = CECT 8236(T)) as the type strain.


Subject(s)
Bacillales/classification , Lupinus/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacillales/genetics , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fatty Acids/chemistry , Molecular Sequence Data , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
18.
Int J Syst Evol Microbiol ; 64(Pt 1): 242-247, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24067731

ABSTRACT

Several fast-growing strains nodulating Vicia faba in Peru, Spain and Tunisia formed a cluster related to Rhizobium leguminosarum. The 16S rRNA gene sequences were identical to that of R. leguminosarum USDA 2370(T), whereas rpoB, recA and atpD gene sequences were phylogenetically distant, with sequence similarities of less than 96 %, 97 % and 94 %, respectively. DNA-DNA hybridization analysis showed a mean relatedness value of 43 % between strain FB206(T) and R. leguminosarum USDA 2370(T). Phenotypic characteristics of the novel strains also differed from those of the closest related species of the genus Rhizobium. Therefore, based on genotypic and phenotypic data obtained in this study, we propose to classify this group of strains nodulating Vicia faba as a novel species of the genus Rhizobium named Rhizobium laguerreae sp. nov. The type strain is FB206(T) ( = LMG 27434(T) = CECT 8280(T)).


Subject(s)
Phylogeny , Plant Root Nodulation , Rhizobium/classification , Vicia faba/microbiology , Base Composition , DNA, Bacterial/genetics , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Peru , Phenotype , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Rhizobium/genetics , Rhizobium/physiology , Spain , Symbiosis , Tunisia
19.
Int J Syst Evol Microbiol ; 64(Pt 9): 3028-3033, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24928428

ABSTRACT

A bacterial strain designated RLAHU15(T) was isolated from root nodules of Lupinus albus in Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Paenibacillus, with its closest relatives being Paenibacillus catalpae D75(T), Paenibacillus glycanilyticus DS-1(T), Paenibacillus endophyticus PECAE04(T) and Paenibacillus xinjiangensis B538(T) with 98.8 %, 98.9 %, 97.4 % and 97.4 % similarity, respectively. DNA-DNA hybridization studies showed values lower than 45 % between the strain RLAHU15(T) and any of these species. The isolate was a Gram-stain positive, motile and sporulating rod. Catalase activity was weak and oxidase activity was positive. Casein and starch were hydrolysed but gelatin was not. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C15 : 0 and iso-C16 : 0 were the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and an unidentified lipid. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 54.4 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RLAHU15(T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus lupini sp. nov. is proposed. The type strain is RLAHU15(T) ( = LMG 27296(T) = CECT 8235(T)).


Subject(s)
Lupinus/microbiology , Paenibacillus/classification , Phylogeny , Root Nodules, Plant/microbiology , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Molecular Sequence Data , Nucleic Acid Hybridization , Paenibacillus/genetics , Paenibacillus/isolation & purification , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
20.
Int J Syst Evol Microbiol ; 64(Pt 7): 2338-2345, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24744015

ABSTRACT

A bacterial strain, OHA11(T), was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11(T) shared 99.1% similarity with respect to Pseudomonas baetica a390(T), and 98.9% similarity with the type strains of Pseudomonas jessenii, Pseudomonas moorei, Pseudomonas umsongensis, Pseudomonas mohnii and Pseudomonas koreensis. The analysis of housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation to the genus Pseudomonas and showed similarities lower than 95% in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c/iso-C15 : 0 2-OH). The strain was oxidase-, catalase- and urease-positive, positive for arginine dihydrolase but negative for nitrate reduction, ß-galactosidase production and aesculin hydrolysis. It was able to grow at 31 °C and at pH 11. The DNA G+C content was 58.1 mol%. DNA-DNA hybridization results showed values lower than 49% relatedness with respect to the type strains of the seven closest related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strain OHA11(T) to a novel species of the genus Pseudomonas, for which the name Pseudomonas helmanticensis sp. nov. is proposed. The type strain is OHA11(T) ( = LMG 28168(T) = CECT 8548(T)).


Subject(s)
Phylogeny , Pseudomonas/classification , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Trees , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL