Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Biol Reprod ; 107(3): 664-675, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35639631

ABSTRACT

Reproductive health underpins overall health, and thus, research in reproductive science and medicine is essential. This requires a pipeline of trained scientists and clinicians, which is challenging given the relatively small size of the field. Educational programs outside the traditional doctorate or medical degrees are needed to generate and maintain a well-trained reproductive science and medicine workforce. Master's programs have gained traction as a viable way for students to receive educational value relative to their career goals. Our hypothesis is master's degree programs in the fundamental, applied, and allied health reproductive fields broadens the workforce and increases impact. An internet web search identified 73 programs that conferred an MS degree in the areas of animal science, clinical/embryology, and reproductive health/biology. These programs are spread across the globe in Europe (47%), North America (23%), Asia (14%), South America (7%), Oceania (5%), and Africa (4%). To evaluate global exemplars, we profiled the mission and structure, curriculum, and program impact of two established master's degree programs: the Master of Science in Reproductive Science and Medicine at Northwestern University in the United States and the Biology and Technology of Reproduction in Mammals at the University of Murcia in Spain. Elements of infrastructure and support, program connectivity, and alumni networks were analyzed for their role in the success of the programs. These two programs have formally trained >375 individuals, demonstrating master's degree programs in reproductive science are an important educational mechanism. The educational best practices shared here serve as templates for expanding training programs worldwide.


Subject(s)
Curriculum , Students , Humans , Reproduction , United States
2.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216252

ABSTRACT

Mosaicism is the most important limitation for one-step gene editing in embryos by CRISPR/Cas9 because cuts and repairs sometimes take place after the first DNA replication of the zygote. To try to minimize the risk of mosaicism, in this study a reversible DNA replication inhibitor was used after the release of CRISPR/Cas9 in the cell. There is no previous information on the use of aphidicolin in porcine embryos, so the reversible inhibition of DNA replication and the effect on embryo development of different concentrations of this drug was first evaluated. The effect of incubation with aphidicolin was tested with CRISPR/Cas9 at different concentrations and different delivery methodologies. As a result, the reversible inhibition of DNA replication was observed, and it was concentration dependent. An optimal concentration of 0.5 µM was established and used for subsequent experiments. Following the use of this drug with CRISPR/Cas9, a halving of mosaicism was observed together with a detrimental effect on embryo development. In conclusion, the use of reversible inhibition of DNA replication offers a way to reduce mosaicism. Nevertheless, due to the reduction in embryo development, it would be necessary to reach a balance for its use to be feasible.


Subject(s)
Aphidicolin/pharmacology , CRISPR-Cas Systems/drug effects , Cell Nucleus/drug effects , DNA Replication/drug effects , Embryo, Mammalian/drug effects , Eukaryota/drug effects , Animals , Animals, Genetically Modified , Embryonic Development/drug effects , Gene Editing/methods , Mosaicism/drug effects , Swine , Zygote/drug effects
3.
Reprod Domest Anim ; 56(2): 374-380, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33320378

ABSTRACT

Crosstalk between the oocyte and surrounding cumulus cells (CCs) is essential for the production of competent oocytes. Previous studies have analysed the relative transcript abundance in oocytes derived from small (SF: <3 mm diameter)- and medium-sized (MF: 3-6 mm diameter) follicles to determine the potential use of SF-derived oocytes in assisted reproductive technologies (ART). The aim of this study was to examine the relative transcript abundance of CCs obtained from cumulus-oocyte complexes (COCs) derived from SF and MF. Nine genes were selected according to their importance for developmental competence: AT-rich interaction domain 1B (ARID1B), bone morphogenic protein receptor 2 (BMPR2), CD44, follicle-stimulating hormone receptor (FSHR), follistatin (FST), inhibin beta-A (INHBA), luteinizing hormone receptor (LHR), nuclear receptor subfamily 2 group F member 6 (NR2F6) and vascular endothelial growth factor A (VEGFA). The expression of these genes was analysed by RT-qPCR. The results pointed to significant differences in five genes, and the relative transcript abundance of SF-derived CCs was lower in the case of INHBA, but higher in FSHR, FST, LHR and NR2F6 compared with MF-derived CCs. We provide information of gene activity in the porcine CCs from different sized follicles, thus improving our understanding of oocyte biology and providing new markers that identify viable and competent oocytes.


Subject(s)
Cumulus Cells/metabolism , Gene Expression Profiling , Ovarian Follicle/physiology , Animals , Female , Oocytes/cytology , Oocytes/physiology , RNA, Messenger/analysis , Sus scrofa/physiology
4.
Reproduction ; 160(5): 725-735, 2020 11.
Article in English | MEDLINE | ID: mdl-33065540

ABSTRACT

The role of specific zona pellucida (ZP) glycoproteins in gamete interaction has not yet been elucidated in many species. A recently developed 3D model based on magnetic sepharose beads (B) conjugated to recombinant ZP glycoproteins (BZP) and cumulus cells (CBZP) allows the study of isolated ZP proteins in gamete recognition studies. The objective of this work was to study the role of porcine ZP2, ZP3 and ZP4 proteins in sperm binding, cumulus cell adhesion and acrosome reaction triggering. ZP protein-bound beads were incubated with fresh ejaculated boar spermatozoa and isolated cumulus cells for 24 h. The number of sperm bound to the beads, the acrosomal shrouds (presence of acrosomal content) on the bead's surface, and the acrosome integrity (by means of PNA-FITC lectin) in bound and unbound sperm were studied. Finally, in vitro matured porcine oocytes mixed with BZP2 were inseminated in vitro using fresh sperm and fertilisation results evaluated. Over 60% of beads had at least one sperm bound after 2 h of coincubation. ZP2-beads (BZP2) and cumulus-ZP2-bead complexes (CBZP2) reached the highest number of sperm per bead, whereas BZP3 and BZP4 models showed the highest number of unbound reacted sperm cells and acrosomal shrouds. Fertilisation efficiency and monospermy rate increased when oocytes were fertilised in the presence of BZP2. We, therefore, conclude that in pigs, it is mainly ZP2 that is involved in sperm-ZP binding whereas ZP3 and ZP4 induce acrosome reaction. Using magnetic sepharose ZP2-bound beads might be a valuable tool to improve the fertilisation rate in pigs.


Subject(s)
Fertilization in Vitro/methods , Fertilization , Oocytes/metabolism , Sperm-Ovum Interactions , Spermatozoa/metabolism , Zona Pellucida Glycoproteins/metabolism , Acrosome Reaction , Animals , Female , Male , Swine
5.
Mol Reprod Dev ; 86(5): 543-557, 2019 05.
Article in English | MEDLINE | ID: mdl-30793403

ABSTRACT

Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O-GlcNAcylation-the addition of a single sugar residue (O-linked ß-N-acetylglucosamine) on proteins-is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O-GlcNAcylation is mediated by O-GlcNAc transferase (OGT), which adds O-GlcNAc onto proteins, and O-GlcNAcase (OGA), which removes it. Here we investigated O-GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O-GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O-GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O-GlcNAc function, we disrupted O-GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet-G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O-GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O-GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.


Subject(s)
Acetylglucosamine/metabolism , Fertilization/physiology , Homeostasis/physiology , Meiosis/physiology , Oocytes/metabolism , Animals , Cattle , Female , Humans , Oocytes/physiology
6.
J Assist Reprod Genet ; 35(12): 2141-2147, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30246222

ABSTRACT

PURPOSE: Scientific literacy and communication are critical skills in the biological sciences. Journal clubs, in which peer-reviewed academic literature is discussed, are traditionally used to teach students to evaluate the literature, review scientific findings, and learn about historical, controversial, or current topics. METHODS: We used a virtual journal club to facilitate the international interaction between two universities with master's degree programs in the reproductive sciences: the University of Murcia (Spain) and Northwestern University (USA). The virtual journal club occurred over a 2-hour period and was held using Blue Jeans Conferencing Service software and involved a total of 29 students. During this event, the students who were separated physically by thousands of miles discussed and exchanged ideas about a high-impact publication in real time. A survey assessment was administered to students at the University of Murcia following the event. RESULTS: Positive perceptions included the establishment of cross-institutional interactions and the ability to practice scientific communication in another language. Areas noted for improvement included preparation time and engagement opportunities. CONCLUSION: Overall, the virtual journal club is an innovative technology that can easily be broadened and has the potential to foster collaboration, ameliorate multilingual communication, improve cultural competencies, and expand professional global networks.


Subject(s)
Internet , Knowledge , Reproduction/genetics , Humans , Reproduction/physiology , Spain
7.
Adv Physiol Educ ; 42(2): 215-224, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29616573

ABSTRACT

Over recent decades, education has increasingly focused on student-centered learning. Guided practices represent a new way of learning for undergraduate students of physiology, whereby the students turn into teacher-students and become more deeply involved in the subject by preparing and teaching a practical (laboratory) class to their peers. The goal was to assess the students' opinions about guided practices and how physiological parameters change during the activity. For this objective, two experiments were performed. First, a voluntary questionnaire on guided practices was completed by the students during 2 academic years. Students could also write a free text commentary. The positive answers obtained in the questionnaire and the free commentary responses point to the effectiveness of this methodology in students' minds. Negative aspects included the time spent preparing the activity, and the stress that students experienced in the teaching role. Second, information about how the teacher-students felt before teaching the practical class was self-reported, and physiological parameters related to stress (heart rate, pulse rate, blood pressure, arterial oxygen saturation, respiratory rate, and electrocardiogram recorded to evaluate R-R interval and heart rate variability) were measured immediately before and while the practical class was taught. This evaluation reported an increase in stress during the execution of the practice. In conclusion, despite a new and stressful situation, guided practices are of interest for the students as a learning tool and for the acquisition of skills that may be of use in their later professional lives.


Subject(s)
Attitude , Education, Veterinary/methods , Physiology/education , Problem-Based Learning/methods , Stress, Psychological/physiopathology , Students, Health Occupations , Clinical Competence/standards , Education, Veterinary/standards , Female , Humans , Male , Problem-Based Learning/standards , Stress, Psychological/diagnosis , Stress, Psychological/psychology , Surveys and Questionnaires
8.
Reproduction ; 147(3): 369-78, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24398873

ABSTRACT

This study was designed to determine whether calreticulin (CRT), a chaperone protein, is present in in vitro-matured (IVM) pig oocytes and to study its potential role in the block to polyspermy. Western blot analysis, using an anti-CRT antibody, of oocyte lysate showed an immunoreactive band of ∼60  kDa. Simultaneous labeling of IVM oocytes with anti-CRT antibody and peanut agglutinin lectin (PNA lectin, a porcine cortical granules (CG)-specific binding lectin) revealed localization of CRT in the subplasmalemmal region with a 27.7% colocalization with PNA staining. After IVF, PNA labeling was not observed and anti-CRT labeling decreased significantly in zygotes and disappeared in two-cell embryos. Western blot analysis of oocyte exudate obtained from zona pellucida (ZP)-free oocytes activated with calcium ionophore confirmed the presence of a band that reacted with an anti-CRT antibody. Anti-CRT antibody and PNA labeling were not observed in activated oocytes despite being detectable in non-activated oocytes. The presence of CRT in vesicles located under the oolemma was demonstrated using immunogold cytochemistry at the ultrastructural level. To study the role of CRT in fertilization, ZP-enclosed and ZP-free oocytes were incubated with exogenous CRT and then inseminated. Whereas ZP-free oocytes showed fewer penetrating sperm and lower polyspermy rates than untreated oocytes, the opposite effect was observed in ZP-enclosed oocytes. In conclusion, CRT is confined to subplasmalemmal vesicles partially overlapping with CG contents. Its exocytosis after the oocyte activation seems to participate in the membrane block to polyspermy in pigs but is not involved in the ZP block.


Subject(s)
Calreticulin/physiology , Cell Membrane/physiology , Cytoplasmic Granules/metabolism , Sperm-Ovum Interactions , Swine , Animals , Calreticulin/metabolism , Cells, Cultured , Embryo Culture Techniques , Exocytosis , Fertilization , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Male , Oocytes/cytology , Oocytes/metabolism , Sperm-Ovum Interactions/physiology , Swine/metabolism , Tissue Distribution , Zona Pellucida/metabolism
9.
Theriogenology ; 208: 149-157, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37329589

ABSTRACT

Animals born from in-vitro-produced (IVP) embryos show changes in the placenta and umbilical cord vascularization. This study compares the placental and umbilical vascular morphometry in pigs (n = 19) born through artificial insemination (AI group) or after transfer of IVP embryos cultured with (RF-IVP group) or without (C-IVP group) reproductive fluids. The relationship between vascular parameters and animal growth during the first year of life was also analyzed. Samples were collected at birth, fixed, paraffin-embedded, cut in sections, stained, and photographed for vascular and morphometric analysis with ImageJ® and Slide Viewer®. The average daily weight gain was individually scored from birth to the first year of life. No differences were found in placental vascular morphometry among groups, except for the vascular area of small vessels (arterioles, venules, and small vessels) that was higher in the C-IVP group. Regarding the umbilical cord, the values for perimeter (AI: 26.40 ± 3.93 mm; IVP: 30.51 ± 4.74 mm), diameter (AI: 8.35 ± 1.01 mm; IVP: 10.26 ± 1.85 mm), area (AI: 43.18 ± 12.87; IVP: 56.61 ± 14.89 mm2), and Wharton's jelly area (AI: 36.86 ± 12.04 mm2; IVP 48.88 ± 12.80 mm2) were higher in IVP-derived than AI-derived animals, whereas arterial and venous morphometric data were similar between groups. A correlation study showed that placental and umbilical cord vascular phenotypes affect the further growth of pigs. In conclusion, assisted reproductive technologies impact small caliber vessels in the placenta and morphometric parameters in the umbilical cord. The addition of reproductive fluids in IVP-embryo contributes to reduce the differences with in vivo-derived animals.


Subject(s)
Placenta , Wharton Jelly , Female , Pregnancy , Animals , Swine , Umbilical Cord , Arteries , Embryo, Mammalian
10.
Hum Reprod ; 27(7): 1985-93, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22556378

ABSTRACT

BACKGROUND: The role of the plasminogen-plasmin (PLG-PLA) system in fertilization is unknown, although its dysfunction has been associated with subfertility in humans. We have recently detected and quantified plasminogen in the oviductal fluid of two mammals and showed a reduction in sperm penetration during IVF when plasminogen is present. The objective of this study was to describe the mechanism by which PLG-PLA system regulates sperm entry into the oocyte. METHODS AND RESULTS: By combining biochemical, functional, electron microscopic, immunocytochemical and live cell imaging methods, we show here that (i) plasminogen is activated into the protease plasmin, by gamete interaction; (ii) urokinase-type and tissue-type plasminogen activators are present in oocytes, but they are not of cortical granule origin; (iii) sperm binding to oocytes triggers the releasing of plasminogen activators and (iv) the generated plasmin causes sperm detachment from the zona pellucida. CONCLUSIONS: Our results describe a novel mechanism for the success or failure of fertilization in mammals, by which molecules present in the oviductal environment are activated by molecules originating within the gametes. We anticipate that therapeutic up- or down-regulation of this physiological mechanism may be used to help in conception or as a contraceptive tool. Since components of the PLG-PLA system are already available as drugs for heart attacks or cancer therapies, basic research on this novel function would be rapidly transferable for clinical application.


Subject(s)
Fertilization/physiology , Fibrinolysin/metabolism , Oocytes/cytology , Plasminogen/metabolism , Spermatozoa/pathology , Animals , Female , Fertilization in Vitro , Humans , Immunohistochemistry/methods , Male , Microscopy, Electron/methods , Models, Biological , Ovary/metabolism , Oviducts/metabolism , Protein Binding , Spermatozoa/metabolism , Tissue Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Zona Pellucida/metabolism
11.
Anim Reprod ; 19(1): e20210132, 2022.
Article in English | MEDLINE | ID: mdl-35493788

ABSTRACT

This review is intended to draw attention to the importance of the culture media composition on the health of the embryos, fetuses, newborns, and adults derived from assisted reproductive technologies (ART). Although current research and industry trends are to use chemically defined media because of their suitability for manufacturing, commercialization, and regulatory purposes, compelling evidence indicates that those media fail to adequately account for the biological demands of early embryogenesis. Here, we list the main undesirable consequences of the ART described in the literature and results we and others have obtained over the past decade exploring an alternative and more natural way to support embryo growth in vitro: inclusion of endogenous reproductive fluids as additives in the ART culture media for pigs, cows, and humans. This review systematically assesses the pros and cons of using reproductive fluid additives, as well as the requirements to implement this approach in the future.

12.
Animals (Basel) ; 12(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36552498

ABSTRACT

The in vitro production (IVP) and subsequent transfer of embryos (ET) to recipient mothers is not yet an established reproductive technology in the pig industry, as it is in cattle. However, that the trade of IVP-cryopreserved pig embryos is expected to start in the next decades. Society and governments are increasingly aware of the repercussions that IVP could have for animal health, welfare, behavior, or food safety, but proven scientific information for this type of animal does not exist, since no colonies of pigs have been created to this end. We created a small one and studied the differences between 16 IVP-derived pigs and 14 pigs derived from artificial insemination (AI), at 3.5 years of age, conceived from the same boar, and housed and fed under the same conditions since they were born. Incidence of lameness, position in the herd hierarchy, weight, adenosine deaminase activity, and hematological and biochemical analytes were compared between the two groups of animals. The results showed that the IVP animals weighed more, occupied higher positions in the herd hierarchy, and had a lower incidence of lameness. Although genetic differences from the maternal line could explain some of these results, it is also possible that the IVP animals developed better adaptative abilities, but more studies with a higher number of animals are necessary to reach consistent conclusions.

13.
Theriogenology ; 186: 175-184, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35500431

ABSTRACT

Limb girdle muscular dystrophy type R1 (LGMDR1) is an autosomal recessive myopathy described in humans resulting from a deficiency of calpain-3 protein (CAPN3). This disease lacks effective treatment and an appropriate model, so the generation of KO pigs by CRISPR-Cas9 offers a way to better understand disease ethology and to develop novel therapies. Microinjection is the main method described for gene editing by CRISPR-Cas9 in porcine embryo, but electroporation, which allows handling more embryos faster and easier, has also recently been reported. The objective of the current study was to optimize porcine oocyte electroporation to maximize embryo quality and mutation rate in order to efficiently generate LGMDR1 porcine models. We found that the efficiency of generating CAPN3 KO embryos was highest with 4 electroporation pulses and double sgRNA concentration than microinjection. Direct comparison between microinjection and electroporation demonstrated similar rates of embryo development and mutation parameters. The results of our study demonstrate that oocyte electroporation, an easier and faster method than microinjection, is comparable to standard approaches, paving the way for democratization of transgenesis in pigs.


Subject(s)
CRISPR-Cas Systems , Calpain , Animals , Calpain/genetics , Electroporation/methods , Electroporation/veterinary , Gene Editing/methods , Gene Editing/veterinary , Insemination , Microinjections/veterinary , Oocytes , Swine/genetics
14.
J Dev Orig Health Dis ; 13(5): 593-605, 2022 10.
Article in English | MEDLINE | ID: mdl-34986913

ABSTRACT

The addition of reproductive fluids (RF) to the culture media has shown benefits in different embryonic traits but its long-term effects on the offspring phenotype are still unknown. We aimed to describe such effects in pigs. Blood samples and growth parameters were collected from piglets derived from in vitro-produced embryos (IVP) with or without RF added in the culture media versus those artificially inseminated (AI), from day 0 to month 6 of life. An oral glucose tolerance test was performed on day 45 of life. We show here the first comparative data of the growth of animals produced through different assisted reproductive techniques, demonstrating differences between groups. Overall, there was a tendency to have a larger size at birth and faster growth in animals derived from in vitro fertilization and embryo culture versus AI, although this trend was diminished by the addition of RFs to the culture media. Similarly, small differences in hematological indices and glucose tolerance between animals derived from AI and those derived from IVP, with a sex-dependent effect, tended to fade in the presence of RF. The addition of RF to the culture media could contribute to minimizing the phenotypical differences between the in vitro-derived and AI offspring, particularly in males.


Subject(s)
Fertilization in Vitro , Insemination, Artificial , Animals , Culture Media , Glucose Tolerance Test , Male , Swine
15.
Proc Natl Acad Sci U S A ; 105(41): 15809-14, 2008 Oct 14.
Article in English | MEDLINE | ID: mdl-18838686

ABSTRACT

Polyspermy is an important anomaly of fertilization in placental mammals, causing premature death of the embryo. It is especially frequent under in vitro conditions, complicating the successful generation of viable embryos. A block to polyspermy develops as a result of changes after sperm entry (i.e., cortical granule exocytosis). However, additional factors may play an important role in regulating polyspermy by acting on gametes before sperm-oocyte interaction. Most studies have used rodents as models, but ungulates may differ in mechanisms preventing polyspermy. We hypothesize that zona pellucida (ZP) changes during transit of the oocyte along the oviductal ampulla modulate the interaction with spermatozoa, contributing to the regulation of polyspermy. We report here that periovulatory oviductal fluid (OF) from sows and heifers increases (both, con- and heterospecifically) ZP resistance to digestion with pronase (a parameter commonly used to measure the block to polyspermy), changing from digestion times of approximately 1 min (pig) or 2 min (cattle) to 45 min (pig) or several hours (cattle). Exposure of oocytes to OF increases monospermy after in vitro fertilization in both species, and in pigs, sperm-ZP binding decreases. The resistance of OF-exposed oocytes to pronase was abolished by exposure to heparin-depleted medium; in a medium with heparin it was not altered. Proteomic analysis of the content released in the heparin-depleted medium after removal of OF-exposed oocytes allowed the isolation and identification of oviduct-specific glycoprotein. Thus, an oviduct-specific glycoprotein-heparin protein complex seems to be responsible for ZP changes in the oviduct before fertilization, affecting sperm binding and contributing to the regulation of polyspermy.


Subject(s)
Fertilization , Glycoproteins/physiology , Heparin/physiology , Oviducts/chemistry , Spermatozoa/metabolism , Zona Pellucida/metabolism , Animals , Cattle , Female , Male , Pronase , Protein Binding , Sperm-Ovum Interactions , Spermatozoa/physiology , Swine , Zona Pellucida/physiology
16.
Front Cell Dev Biol ; 9: 662032, 2021.
Article in English | MEDLINE | ID: mdl-34095128

ABSTRACT

Fertilization is a key process in biology to the extent that a new individual will be born from the fusion of two cells, one of which leaves the organism in which it was produced to exert its function within a different organism. The structure and function of gametes, and main aspects of fertilization are well known. However, we have limited knowledge about the specific molecules participating in each of the steps of the fertilization process due to the transient nature of gamete interaction. Moreover, if we specifically focus in the fusion of both gametes' membrane, we might say our molecular knowledge is practically null, despite that molecular mechanisms of cell-to-cell adhesion are well studied in somatic cells. Moreover, between both gametes, the molecular knowledge in the egg is even scarcer than in the spermatozoon for different reasons addressed in this review. Sperm-specific protein IZUMO1 and its oocyte partner, JUNO, are the first cell surface receptor pair essential for sperm-egg plasma membrane binding. Recently, thanks to gene editing tools and the development and validation of in vitro models, new oocyte molecules are being suggested in gamete fusion such as phosphatidylserine recognition receptors. Undoubtedly, we are in a new era for widening our comprehension on molecular fertilization. In this work, we comprehensively address the proposed molecules involved in gamete binding and fusion, from the oocyte perspective, and the new methods that are providing a better understanding of these crucial molecules.

17.
Animals (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922134

ABSTRACT

More suitable and efficient methods to protect gametes from external harmful effects during in vitro handling can be achieved by adding preovulatory porcine oviductal fluid (pOF) to in vitro culture media. The objective of this study was to assess the swim-up procedure's suitability as a sperm selection method using a medium supplemented with 1mg/mL BSA, 1% preovulatory pOF (v/v), 1% v/v pOF plus 1mg/mL BSA, and 5mg/mL BSA. After selection, various sperm parameters were studied, such as sperm recovery rate, sperm morphology, motility (by CASA), vitality, acrosome status and intracellular calcium (by flow cytometry) and ability to penetrate oocytes in vitro. Around 2% of sperm were recovered after swim-up, and the replacement of BSA by pOF showed a beneficial reduction of motility parameters calcium concentration, resulting in an increased penetration rate. The combination of albumin and oviductal fluid in the medium did not improve the sperm parameters results, whereas a high concentration of BSA increased sperm morphological abnormalities, motility, and acrosome damage, with a reduction of calcium concentration and penetration rate. In conclusion, the replacement of albumin by preovulatory oviductal fluid in the swim-up sperm preparation method modifies boar sperm parameters and improves the in vitro penetration of oocytes.

18.
Res Vet Sci ; 142: 43-53, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34861454

ABSTRACT

Assisted reproductive technologies (ART), besides solving several reproductive problems, it has also been used as a tool to improve the animal productivity that is required for feeding the human population. One of these techniques, the embryo transfer (ET), has presented limitations in the porcine species, which could constrain its use in the porcine industry. To clarify the potential of this technique, we aimed to compare the impact of using ET or artificial insemination (AI) on the phenotype of the offspring during its first days of age, in terms of growth and blood parameters. At birth, the body weight was higher for ET-females than AI-females, but this difference was no longer observed at day 15. On day 3, it was observed a higher concentration of red blood cells, haemoglobin, and haematocrit in females-ET and a higher concentration of white blood cells in both ET-derived piglets (males and females) when compared to AI groups. On day 3, the biochemical analysis showed a higher level of albumin for ET-derived males, and a lower level of bilirubin for ET-females than AI controls. However, all values were within the normal ranges. Our results indicate that piglets derived from ET seem to be phenotypically similar to those born by AI, which provides preliminary evidence that the ET procedure is a safe technique, but additional studies beyond 15 days of life are requested to conclude its global impact. Furthermore, the presented reference values of blood parameters in this species are interesting data for the pig industry.

19.
CRISPR J ; 4(1): 132-146, 2021 02.
Article in English | MEDLINE | ID: mdl-33616447

ABSTRACT

Studies of knockout (KO) mice with defects in the endolysosomal two-pore channels (TPCs) have shown TPCs to be involved in pathophysiological processes, including heart and muscle function, metabolism, immunity, cancer, and viral infection. With the objective of studying TPC2's pathophysiological roles for the first time in a large, more humanlike animal model, TPC2 KO pigs were produced using CRISPR-Cas9. A major problem using CRISPR-Cas9 to edit embryos is mosaicism; thus, we studied for the first time the effect of microinjection timing on mosaicism. Mosaicism was greatly reduced when in vitro produced embryos were microinjected before insemination, and surgical embryo transfer (ET) was performed using such embryos. All TPC2 KO fetuses and piglets born following ET (i.e., F0 generation) were nonmosaic biallelic KOs. The generation of nonmosaic animals greatly facilitates germ line transmission of the mutation, thereby aiding the rapid and efficient generation of KO animal lines for medical research and agriculture.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques/methods , Insemination , Microinjections/methods , Oocytes , Swine/genetics , Animals , Calcium Channels/genetics , Embryo Transfer , Embryo, Mammalian , Female , Fertilization , Fetus , Germ Cells , Karyotype , Male , Mice , Mice, Knockout , Models, Animal , Mosaicism , Mutation , Phenotype , RNA, Guide, Kinetoplastida , Zygote
20.
Curr Protoc Toxicol ; 86(1): e100, 2020 12.
Article in English | MEDLINE | ID: mdl-33331693

ABSTRACT

We have recently described a new model to study gamete interaction in mammalian species. The model recreates the spherical surface of the oocyte by using magnetic Sepharose beads coated with a layer of a recombinant protein involved in gamete interaction (such as ZP2, or the IZUMO1 receptor JUNO) and an external layer of cumulus oophorus cells, thus mimicking, to some extent, a native cumulus-oocyte complex. Once generated, this 3D model can be used in a sperm-binding assay to obtain valuable information about the molecular basis of gamete interaction, since different recombinant proteins can be used to coat the bead surface, thus generating a variety of models to be used for several species. Furthermore, thanks to the ability of the model to decoy sperm, the physiological status of the bound sperm can be studied, making this a powerful tool to select sperm with high fertilizing capacity, to unmask subfertile animals in livestock breeding centers, or for toxicological studies. Here, we describe how to generate and use this model for sperm-binding assays, using porcine sperm as an example, and ZP2, a protein from zona pellucida, as the recombinant protein of interest. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Generation of the in vitro 3D model Alternate Protocol 1: Binding cumulus oophorus cells to the model Basic Protocol 2: Quality control of the model by SDS-PAGE electrophoresis and western blot Support Protocol 1: Immunochemistry to confirm proper protein distribution on surface of beads Support Protocol 2: Elution of recombinant conjugated proteins Basic Protocol 3: Sperm-binding assay Alternate Protocol 2: Sperm preparation by the swim-up method.


Subject(s)
In Vitro Techniques , Sperm-Ovum Interactions , Animals , Male , Oocytes , Spermatozoa , Swine
SELECTION OF CITATIONS
SEARCH DETAIL