Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 934
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 18(7): 753-761, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553950

ABSTRACT

Healthy individuals of African ancestry have neutropenia that has been linked with the variant rs2814778(G) of the gene encoding atypical chemokine receptor 1 (ACKR1). This polymorphism selectively abolishes the expression of ACKR1 in erythroid cells, causing a Duffy-negative phenotype. Here we describe an unexpected fundamental role for ACKR1 in hematopoiesis and provide the mechanism that links its absence with neutropenia. Nucleated erythroid cells had high expression of ACKR1, which facilitated their direct contact with hematopoietic stem cells. The absence of erythroid ACKR1 altered mouse hematopoiesis including stem and progenitor cells, which ultimately gave rise to phenotypically distinct neutrophils that readily left the circulation, causing neutropenia. Individuals with a Duffy-negative phenotype developed a distinct profile of neutrophil effector molecules that closely reflected the one observed in the ACKR1-deficient mice. Thus, alternative physiological patterns of hematopoiesis and bone marrow cell outputs depend on the expression of ACKR1 in the erythroid lineage, findings with major implications for the selection advantages that have resulted in the paramount fixation of the ACKR1 rs2814778(G) polymorphism in Africa.


Subject(s)
Duffy Blood-Group System , Erythroblasts , Hematopoiesis , Hematopoietic Stem Cells , Neutropenia , Neutrophils , Receptors, Cell Surface , Animals , Humans , Mice , Black People/genetics , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Cell Proliferation , Duffy Blood-Group System/genetics , Duffy Blood-Group System/metabolism , Erythroblasts/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Microscopy, Confocal , Neutropenia/genetics , Neutrophils/cytology , Neutrophils/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism
2.
Immunity ; 49(6): 1062-1076.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30446388

ABSTRACT

Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine "depot" in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.


Subject(s)
Chemokine CXCL1 , Chemokine CXCL2 , Duffy Blood-Group System , Neutrophils , Receptors, Cell Surface , Transendothelial and Transepithelial Migration , Animals , Abdominal Muscles/drug effects , Abdominal Muscles/immunology , Abdominal Muscles/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/immunology , Chemokine CXCL1/metabolism , Chemokine CXCL2/genetics , Chemokine CXCL2/immunology , Chemokine CXCL2/metabolism , Duffy Blood-Group System/genetics , Duffy Blood-Group System/immunology , Duffy Blood-Group System/metabolism , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , Intercellular Junctions/drug effects , Intercellular Junctions/immunology , Intercellular Junctions/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Transendothelial and Transepithelial Migration/drug effects , Transendothelial and Transepithelial Migration/genetics , Transendothelial and Transepithelial Migration/immunology , Tumor Necrosis Factor-alpha/pharmacology
3.
Nature ; 575(7783): 512-518, 2019 11.
Article in English | MEDLINE | ID: mdl-31597160

ABSTRACT

Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.


Subject(s)
Endothelial Cells/pathology , Liver Cirrhosis/pathology , Liver/pathology , Macrophages/pathology , Single-Cell Analysis , Animals , Case-Control Studies , Cell Lineage , Duffy Blood-Group System/metabolism , Endothelial Cells/metabolism , Female , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/cytology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/cytology , Liver Cirrhosis/genetics , Macrophages/metabolism , Male , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Mice , Phenotype , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptors, Cell Surface/metabolism , Receptors, Immunologic/metabolism , Tetraspanin 29/metabolism , Transcriptome , Transendothelial and Transepithelial Migration
4.
Malar J ; 23(1): 27, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238806

ABSTRACT

BACKGROUND: Though Plasmodium vivax is the second most common malaria species to infect humans, it has not traditionally been considered a major human health concern in central Africa given the high prevalence of the human Duffy-negative phenotype that is believed to prevent infection. Increasing reports of asymptomatic and symptomatic infections in Duffy-negative individuals throughout Africa raise the possibility that P. vivax is evolving to evade host resistance, but there are few parasite samples with genomic data available from this part of the world. METHODS: Whole genome sequencing of one new P. vivax isolate from the Democratic Republic of the Congo (DRC) was performed and used in population genomics analyses to assess how this central African isolate fits into the global context of this species. RESULTS: Plasmodium vivax from DRC is similar to other African populations and is not closely related to the non-human primate parasite P. vivax-like. Evidence is found for a duplication of the gene PvDBP and a single copy of PvDBP2. CONCLUSION: These results suggest an endemic P. vivax population is present in central Africa. Intentional sampling of P. vivax across Africa would further contextualize this sample within African P. vivax diversity and shed light on the mechanisms of infection in Duffy negative individuals. These results are limited by the uncertainty of how representative this single sample is of the larger population of P. vivax in central Africa.


Subject(s)
Malaria, Vivax , Malaria , Animals , Humans , Plasmodium vivax/genetics , Malaria, Vivax/parasitology , Africa, Central , Genomics , Duffy Blood-Group System/genetics
5.
Malar J ; 23(1): 194, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902674

ABSTRACT

BACKGROUND: Malaria remains a severe parasitic disease, posing a significant threat to public health and hindering economic development in sub-Saharan Africa. Ethiopia, a malaria endemic country, is facing a resurgence of the disease with a steadily rising incidence. Conventional diagnostic methods, such as microscopy, have become less effective due to low parasite density, particularly among Duffy-negative human populations in Africa. To develop comprehensive control strategies, it is crucial to generate data on the distribution and clinical occurrence of Plasmodium vivax and Plasmodium falciparum infections in regions where the disease is prevalent. This study assessed Plasmodium infections and Duffy antigen genotypes in febrile patients in Ethiopia. METHODS: Three hundred febrile patients visiting four health facilities in Jimma town of southwestern Ethiopia were randomly selected during the malaria transmission season (Apr-Oct). Sociodemographic information was collected, and microscopic examination was performed for all study participants. Plasmodium species and parasitaemia as well as the Duffy genotype were assessed by quantitative polymerase chain reaction (qPCR) for all samples. Data were analysed using Fisher's exact test and kappa statistics. RESULTS: The Plasmodium infection rate by qPCR was 16% (48/300) among febrile patients, of which 19 (39.6%) were P. vivax, 25 (52.1%) were P. falciparum, and 4 (8.3%) were mixed (P. vivax and P. falciparum) infections. Among the 48 qPCR-positive samples, 39 (13%) were negative by microscopy. The results of bivariate logistic regression analysis showed that agriculture-related occupation, relapse and recurrence were significantly associated with Plasmodium infection (P < 0.001). Of the 300 febrile patients, 85 (28.3%) were Duffy negative, of whom two had P. vivax, six had P. falciparum, and one had mixed infections. Except for one patient with P. falciparum infection, Plasmodium infections in Duffy-negative individuals were all submicroscopic with low parasitaemia. CONCLUSIONS: The present study revealed a high prevalence of submicroscopic malaria infections. Plasmodium vivax infections in Duffy-negative individuals were not detected due to low parasitaemia. In this study, an improved molecular diagnostic tool was used to detect and characterize Plasmodium infections, with the goal of quantifying P. vivax infection in Duffy-negative individuals. Advanced molecular diagnostic techniques, such as multiplex real-time PCR, loop-mediated isothermal amplification (LAMP), and CRISPR-based diagnostic methods. These techniques offer increased sensitivity, specificity, and the ability to detect low-parasite-density infections compared to the employed methodologies.


Subject(s)
Duffy Blood-Group System , Genotype , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Duffy Blood-Group System/genetics , Humans , Male , Female , Adult , Adolescent , Young Adult , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Ethiopia/epidemiology , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Middle Aged , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Child , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Child, Preschool , Molecular Diagnostic Techniques/methods , Aged , Infant , Cross-Sectional Studies , Prevalence , Fever/parasitology
6.
Pediatr Blood Cancer ; 71(6): e30945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462769

ABSTRACT

Consistent with studies showing a high prevalence of the Duffy null phenotype among healthy Black Americans, this retrospective study found that Duffy null was present in >75% of a young and contemporary cohort of children with sickle cell disease (SCD) in the United States. Despite the potential for this phenotype to impact absolute neutrophil counts, hydroxyurea (HU) dosing, and outcomes, it was not associated with being prescribed a lower HU dose or having increased acute SCD visits early in the HU treatment course. Future studies are needed to confirm these findings in older children with SCD.


Subject(s)
Anemia, Sickle Cell , Antisickling Agents , Duffy Blood-Group System , Hydroxyurea , Humans , Hydroxyurea/therapeutic use , Hydroxyurea/administration & dosage , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/epidemiology , Male , Female , Retrospective Studies , Child, Preschool , United States/epidemiology , Child , Duffy Blood-Group System/genetics , Prevalence , Antisickling Agents/therapeutic use , Infant , Receptors, Cell Surface/genetics , Adolescent
7.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965955

ABSTRACT

BACKGROUND: In Al-Ahsa, Saudi Arabia, the high consanguinity rates contribute to the prevalence of inherited hemoglobinopathies such as sickle cell disease and thalassemia, which frequently require blood transfusions. These transfusions carry the risk of alloimmunization, necessitating a precise blood component matching to mitigate health risks. Local antigen frequency data is vital for optimizing transfusion practices and enhancing the safety of these medical procedures for the Al-Ahsa population. METHODS: This study investigated the distribution of Duffy, Kidd, Lewis, and Rh blood group antigens in 1,549 individuals from the region; comparing the frequencies with global data. RESULTS: Serological analyses revealed a high prevalence of the Fy(a+b-) and Jk(a+b+) phenotypes in the Duffy and Kidd blood groups, respectively, with Jk(a-b-) being notably scarce. The Lewis blood group exhibited a significant presence of Le(a-b+) and Le(a+b-) phenotypes, whereas Le(a+b+) was less common. In the Rh system, the D antigen was most prevalent, with other antigens following in descending order of frequency. CONCLUSIONS: The study underscores the regional variation in antigen frequencies, emphasizing the need for local blood banks to adapt their screening and matching practices to mitigate the risk of alloimmunization and enhance transfusion safety. These findings are pivotal for refining transfusion strategies and understanding the immunohematology landscape in Al-Ahsa.


Subject(s)
Blood Group Antigens , Duffy Blood-Group System , Phenotype , Humans , Saudi Arabia/epidemiology , Duffy Blood-Group System/genetics , Blood Group Antigens/immunology , Blood Group Antigens/genetics , Lewis Blood Group Antigens/immunology , Lewis Blood Group Antigens/genetics , Blood Donors/statistics & numerical data , Rh-Hr Blood-Group System/genetics , Rh-Hr Blood-Group System/immunology , Kidd Blood-Group System/genetics , Kidd Blood-Group System/immunology , Male , Blood Grouping and Crossmatching/methods , Female
8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34663701

ABSTRACT

Atypical chemokine receptor 1 (ACKR1) is a G protein-coupled receptor (GPCR) targeted by Staphylococcus aureus bicomponent pore-forming leukotoxins to promote bacterial growth and immune evasion. Here, we have developed an integrative molecular pharmacology and structural biology approach in order to characterize the effect of leukotoxins HlgA and HlgB on ACKR1 structure and function. Interestingly, using cell-based assays and native mass spectrometry, we found that both components HlgA and HlgB compete with endogenous chemokines through a direct binding with the extracellular domain of ACKR1. Unexpectedly, hydrogen/deuterium exchange mass spectrometry analysis revealed that toxin binding allosterically modulates the intracellular G protein-binding domain of the receptor, resulting in dissociation and/or changes in the architecture of ACKR1-Gαi1 protein complexes observed in living cells. Altogether, our study brings important molecular insights into the initial steps of leukotoxins targeting a host GPCR.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Staphylococcus aureus/physiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Dimerization , Duffy Blood-Group System/isolation & purification , Duffy Blood-Group System/metabolism , Exotoxins/metabolism , Humans , Mass Spectrometry/methods , Protein Binding , Receptors, Cell Surface/isolation & purification , Receptors, Cell Surface/metabolism , Sf9 Cells
9.
Eur J Immunol ; 52(1): 161-177, 2022 01.
Article in English | MEDLINE | ID: mdl-34524684

ABSTRACT

The migration of CD4+ effector/memory T cells across the blood-brain barrier (BBB) is a critical step in MS or its animal model, EAE. T-cell diapedesis across the BBB can occur paracellular, via the complex BBB tight junctions or transcellular via a pore through the brain endothelial cell body. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB, we here directly compared the transcriptome profile of pMBMECs favoring transcellular or paracellular T-cell diapedesis by RNA sequencing (RNA-seq). We identified the atypical chemokine receptor 1 (Ackr1) as one of the main candidate genes upregulated in pMBMECs favoring transcellular T-cell diapedesis. We confirmed upregulation of ACKR1 protein in pMBMECs promoting transcellular T-cell diapedesis and in venular endothelial cells in the CNS during EAE. Lack of endothelial ACKR1 reduced transcellular T-cell diapedesis across pMBMECs under physiological flow in vitro. Combining our previous observation that endothelial ACKR1 contributes to EAE pathogenesis by shuttling chemokines across the BBB, the present data support that ACKR1 mediated chemokine shuttling enhances transcellular T-cell diapedesis across the BBB during autoimmune neuroinflammation.


Subject(s)
Blood-Brain Barrier , CD4-Positive T-Lymphocytes , Duffy Blood-Group System , Encephalomyelitis, Autoimmune, Experimental , Memory T Cells , Multiple Sclerosis , Receptors, Cell Surface , Transendothelial and Transepithelial Migration , Animals , Mice , Blood-Brain Barrier/immunology , CD4-Positive T-Lymphocytes/immunology , Duffy Blood-Group System/genetics , Duffy Blood-Group System/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/genetics , Inflammation/immunology , Memory T Cells/immunology , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Transendothelial and Transepithelial Migration/genetics , Transendothelial and Transepithelial Migration/immunology
10.
J Pediatr ; 262: 113608, 2023 11.
Article in English | MEDLINE | ID: mdl-37419240

ABSTRACT

Duffy-null phenotype-associated neutropenia was present in 77.7% of leukopenia/neutropenia referrals to our center in Detroit with a high prevalence in Yemeni (96.6%), African American (91%), and non-Yemeni Middle Eastern (52.9%) patients. Greater availability of Duffy typing in patients with neutropenia but without recurrent/frequent/serious infections may lessen the need for additional consultations and investigations.


Subject(s)
Duffy Blood-Group System , Neutropenia , Humans , Child , Duffy Blood-Group System/genetics , Neutropenia/genetics , Phenotype , Referral and Consultation , Hospitals
11.
Blood ; 137(1): 13-15, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33181819

ABSTRACT

The term "benign ethnic neutropenia" describes the phenotype of having an absolute neutrophil count (ANC) <1500 cells/µL with no increased risk of infection. It is most commonly seen in those of African ancestry. In addition, ANC reference ranges from countries in Africa emphasize that ANC levels <1500 cells/µL are common and harmless. The lower ANC levels are driven by the Duffy null [Fy(a-b-)] phenotype, which is protective against malaria and seen in 80% to 100% of those of sub-Saharan African ancestry and <1% of those of European descent. Benign ethnic neutropenia is clinically insignificant, but the average ANC values differ from what are typically seen in those of European descent. Thus, the predominantly White American medical system has described this as a condition. This labeling implicitly indicates that common phenotypes in non-White populations are abnormal or wrong. We believe that it is important to examine and rectify practices in hematology that contribute to systemic racism.


Subject(s)
Black People , Leukocyte Count , Neutrophils , Racism , Africa South of the Sahara , Duffy Blood-Group System , Humans , Reference Values
12.
Blood ; 138(8): 706-721, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33876205

ABSTRACT

Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell-deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell-mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.


Subject(s)
B-Lymphocytes/immunology , Duffy Blood-Group System/immunology , Erythrocyte Transfusion , Germinal Center/immunology , Isoantibodies/immunology , Isoantigens/immunology , Receptors, Cell Surface/immunology , Animals , Duffy Blood-Group System/genetics , Female , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Isoantibodies/genetics , Isoantigens/genetics , Mice , Mice, Knockout , Receptors, Cell Surface/genetics
13.
Malar J ; 22(1): 369, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049801

ABSTRACT

BACKGROUND: Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS: Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS: The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION: The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium knowlesi , Animals , Humans , Plasmodium vivax , Antibodies, Protozoan , Antigens, Protozoan , Protozoan Proteins/metabolism , Malaria, Vivax/parasitology , Erythrocytes/parasitology , Animals, Genetically Modified , Duffy Blood-Group System/metabolism
14.
Am J Hum Biol ; 35(3): e23832, 2023 03.
Article in English | MEDLINE | ID: mdl-36376949

ABSTRACT

OBJECTIVES: Malaria is an important selective force for human genetic adaptation due to the sustained, lethal impact it has had on populations worldwide. High frequencies of both hemoglobin S and the null allele FYBES of the Duffy blood group have been found in areas where this disease is endemic, attributed to the protective action of the carriers of these variants against malaria infection. The objective of this work was to perform ancestral reconstruction and analyze the correlation of the frequencies of these alleles throughout the phylogeny of 24 human populations. METHODS: A tree topology and the allelic frequencies reported in the literature for the 24 populations were used. The ancestral frequencies for the two alleles were reconstructed using the maximum likelihood method and the Brownian model of evolution (CI = 95%), and the correlation analysis was performed using phylogenetically independent contrasts (PICs). Statistical analyses were performed with the statistical software R version 3.4.1. RESULTS: For both alleles, a correspondence was found in the reconstruction of the ancestral frequencies, and a significant statistical correlation (p = .001) was observed between the S and FYBES alleles. CONCLUSIONS: These results provide evidence of an epistatic relationship between the two alleles, which may influence the fitness of the individuals who present with them when they are subjected to a selective force such as malaria.


Subject(s)
Hemoglobin, Sickle , Malaria , Humans , Hemoglobin, Sickle/genetics , Genotype , Alleles , Duffy Blood-Group System/genetics , Gene Frequency , Malaria/genetics
15.
Hum Mol Genet ; 29(20): 3341-3349, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32959868

ABSTRACT

Many medical treatments, from oncology to psychiatry, can lower white blood cell counts and thus access to these treatments can be restricted to individuals with normal levels of white blood cells, principally in order to minimize risk of serious infection. This adversely affects individuals of African or Middle Eastern ancestries who have on average a reduced number of circulating white blood cells, because of the Duffy-null (CC) genotype at rs2814778 in the ACKR1 gene. Here, we investigate whether the Duffy-null genotype is associated with the risk of infection using the UK Biobank sample and the iPSYCH Danish case-cohort study, two population-based samples from different countries and age ranges. We found that a high proportion of those with the Duffy-null genotype (21%) had a neutrophil count below the threshold often used as a cut-off for access to relevant treatments, compared with 1% of those with the TC/TT genotype. In addition we found that despite its strong association with lower average neutrophil counts, the Duffy-null genotype was not associated with an increased risk of infection, viral or bacterial. These results have widespread implications for the clinical treatment of individuals of African ancestry and indicate that neutrophil thresholds to access treatments could be lowered in individuals with the Duffy-null genotype without an increased risk of infection.


Subject(s)
Black People/genetics , Duffy Blood-Group System/genetics , Infections/etiology , Polymorphism, Single Nucleotide , White People/genetics , Biological Specimen Banks , Cohort Studies , Female , Genotype , Humans , Infections/pathology , Male , Middle Aged
16.
PLoS Pathog ; 16(2): e1008258, 2020 02.
Article in English | MEDLINE | ID: mdl-32078643

ABSTRACT

The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood. Here, we briefly review the evidence of Duffy-negative infections by P. vivax and summarize the current hypothesis at the basis of this invasion process. We discuss those in the perspective of malaria-elimination challenges, notably in African countries.


Subject(s)
Antigens, Protozoan/metabolism , Duffy Blood-Group System/metabolism , Malaria, Vivax/metabolism , Plasmodium vivax , Protozoan Proteins/metabolism , Receptors, Cell Surface/metabolism , Africa , Humans , Malaria, Vivax/prevention & control , Plasmodium vivax/metabolism , Plasmodium vivax/pathogenicity
17.
Malar J ; 21(1): 230, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915453

ABSTRACT

BACKGROUND: The increase in detections of Plasmodium vivax infection in Duffy-negative individuals in Africa has challenged the dogma establishing the unique P. vivax Duffy Binding Protein-Duffy antigen receptor for chemokines (PvDBP-DARC) pathway used by P. vivax merozoites to invade reticulocytes. Information on the impact of Duffy antigen polymorphisms on the epidemiology of P. vivax malaria remains elusive. The objective of this study was to determine the distribution of asexual parasitaemia of P. vivax according to the Duffy antigen polymorphisms in Ethiopia. METHODS: DNA was extracted from dried blood spots (DBS) collected from prospectively recruited 138 P. vivax-infected patients from health centres. The identification and estimation of P. vivax asexual parasitaemia were performed by microscopic examination and quantitative real-time polymerase chain reaction (PCR). Duffy genotyping was conducted by DNA sequencing in a total of 138 P.vivax infected samples. RESULTS: The proportion of Duffy-negatives (FY*BES/FY*BES) in P. vivax infected patients was 2.9% (4/138). Duffy genotype FY*B/FY*BES (48.6%) was the most common, followed by FY*A/FY*BES genotype (25.4%). In one patient, the FY*02 W.01/FY*02 N.01 genotype conferring a weak expression of the Fyb antigen was observed. All P.vivax infected Duffy-negative patients showed low asexual parasitaemia (≤ 110 parasites/µL). The median P. vivax parasitaemia in Duffy-negative patients (53 parasites/µL) was significantly lower than those found in homozygous and heterozygous individuals (P < 0.0001). CONCLUSION: Plasmodium vivax in Duffy-negative patients shows invariably low asexual parasitaemia. This finding suggests that the pathway used by P. vivax to invade Duffy-negative reticulocytes is much less efficient than that used in Duffy-positives. Moreover, the low asexual parasitaemia observed in Duffy-negative individuals could constitute an 'undetected silent reservoir', thus likely delaying the elimination of vivax malaria in Ethiopia.


Subject(s)
Malaria, Vivax , Malaria , Duffy Blood-Group System/genetics , Ethiopia/epidemiology , Humans , Parasitemia/epidemiology , Plasmodium vivax/genetics
18.
Malar J ; 21(1): 144, 2022 May 08.
Article in English | MEDLINE | ID: mdl-35527254

ABSTRACT

BACKGROUND: Over a third of the world's population is at risk of Plasmodium vivax-induced malaria. The unique aspect of the parasite's biology and interactions with the human host make it harder to control and eliminate the disease. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Duffy-negative blood groups are two red blood cell (RBC) variations that can confer protection against malaria. METHODS: Molecular genotyping of G6PD and Duffy variants was performed in 225 unrelated patients (97 with uncomplicated and 128 with severe vivax malaria) recruited at a Reference Centre for Infectious Diseases in Manaus. G6PD and Duffy variants characterizations were performed using Real Time PCR (qPCR) and PCR-RFLP, respectively. RESULTS: The Duffy blood group system showed a phenotypic distribution Fy(a + b-) of 70 (31.1%), Fy(a + b +) 96 (42.7%), Fy(a-b +) 56 (24.9%) and Fy(a-b-) 1 (0.44%.) The genotype FY*A/FY*B was predominant in both uncomplicated (45.3%) and severe malaria (39.2%). Only one Duffy phenotype Fy(a-b) was found and this involved uncomplicated vivax malaria. The G6PD c.202G > A variant was found in 11 (4.88%) females and 18 (8.0%) males, while c.376A > G was found in 20 females (8.88%) and 23 (10.22%) male patients. When combined GATA mutated and c.202G > A and c.376A > G mutated, was observed at a lower frequency in uncomplicated (3.7%) in comparison to severe malaria (37.9%). The phenotype Fy(a-b +) (p = 0.022) with FY*B/FY*B (p = 0.015) genotype correlated with higher parasitaemia. CONCLUSIONS: A high prevalence of G6PD c202G > A and c.376A > G and Duffy variants is observed in Manaus, an endemic area for vivax malaria. In addition, this study reports for the first time the Duffy null phenotype Fy(a-b-) in the population of the Amazonas state. Moreover, it is understood that the relationship between G6PD and Duffy variants can modify clinical symptoms in malaria caused by P. vivax and this deserves to be further investigated and explored among this population.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Brazil/epidemiology , Duffy Blood-Group System/genetics , Female , Genotype , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Malaria, Vivax/epidemiology , Male , Plasmodium vivax/genetics
19.
Proc Natl Acad Sci U S A ; 116(14): 7053-7061, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30872477

ABSTRACT

Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.


Subject(s)
Antigens, Protozoan/metabolism , Duffy Blood-Group System/metabolism , Erythrocytes/parasitology , Gene Expression Profiling , Malaria, Vivax/metabolism , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Antigens, Protozoan/genetics , Duffy Blood-Group System/genetics , Erythrocytes/metabolism , Malaria, Vivax/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Receptors, Cell Surface/genetics , Saimiri
20.
J Infect Dis ; 223(10): 1817-1821, 2021 05 28.
Article in English | MEDLINE | ID: mdl-32941614

ABSTRACT

Plasmodium vivax has 2 invasion ligand/host receptor pathways (P. vivax Duffy-binding protein/Duffy antigen receptor for chemokines [DARC] and P. vivax reticulocyte binding protein 2b/transferrin receptor [TfR1]) that are promising targets for therapeutic intervention. We optimized invasion assays with isogenic cultured reticulocytes. Using a receptor blockade approach with multiple P. vivax isolates, we found that all strains utilized both DARC and TfR1, but with significant variation in receptor usage. This suggests that P. vivax, like Plasmodium falciparum, uses alternative invasion pathways, with implications for pathogenesis and vaccine development.


Subject(s)
Antigens, CD , Duffy Blood-Group System , Malaria, Vivax , Plasmodium vivax , Receptors, Cell Surface , Receptors, Transferrin , Cells, Cultured , Humans , Plasmodium vivax/pathogenicity , Reticulocytes/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL