Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Pharmacol ; 630(1-3): 112-20, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20006596

ABSTRACT

We describe the pharmacological and pharmacokinetic profiles of SCH 486757, a nociceptin/orphanin FQ peptide (NOP) receptor agonist that has recently entered human clinical trials for cough. SCH 486757 selectively binds human NOP receptor (K(i)=4.6+/-0.61nM) over classical opioid receptors. In a guinea pig capsaicin cough model, SCH 486757 (0.01-1mg/kg) suppressed cough at 2, 4, and 6h post oral administration with a maximum efficacy occurring at 4h equivalent to codeine, hydrocodone, dextromethorphan and baclofen. The antitussive effects of SCH 486757 (3.0mg/kg, p.o.) was blocked by the NOP receptor antagonist J113397 (12mg/kg, i.p.) but not by naltrexone (10mg/kg, p.o.). SCH 486757 does not produce tolerance to its antitussive activity after a 5-day BID dosing regimen. After acute and chronic dosing paradigms, SCH 486757 (1mg/kg) inhibited capsaicin-evoked coughing by 46+/-9% and 40+/-11%, respectively. In a feline mechanically-evoked cough model, SCH 486757 produces a maximum inhibition of cough and expiratory abdominal electromyogram amplitude of 59 and 61%, respectively. SCH 486757 did not significantly affect inspiratory electromyogram amplitude. We examined the abuse potential of SCH 486757 (10mg/kg, p.o.) in a rat conditioned place preference procedure which is sensitive to classical drugs of abuse, such as amphetamine and morphine. SCH 486757 was without effect in this model. Finally, SCH 486757 displays a good oral pharmacokinetic profile in the guinea pig, rat and dog. We conclude that SCH 486757 has a favorable antitussive profile in preclinical animal models.


Subject(s)
Antitussive Agents/therapeutic use , Cough/drug therapy , Receptors, Opioid/agonists , Animals , Azabicyclo Compounds/pharmacology , Cats , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Guinea Pigs , Male , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid/metabolism , Nociceptin Receptor
2.
J Pharmacol Toxicol Methods ; 48(3): 153-9, 2002.
Article in English | MEDLINE | ID: mdl-14986864

ABSTRACT

INTRODUCTION: This is the first report to evaluate changes in nasal resistance in a preclinical animal model using the forced oscillation method. METHODS: The method involves characterizing pressure-flow relationships of the respiratory system due to external oscillatory forces. RESULTS: First, we evaluated changes in nasal resistance using an established small-animal rhinometric technique. In these studies, aerosolized ovalbumin (3%) administered to the nasal cavity of ovalbumin-sensitized guinea pigs increased nasal resistance at 30 min by 99 +/- 14%. The histamine H1 antagonists, chlorpheniramine (1 mg/kg i.v.) and pyrilamine (1 mg/kg i.v.), blocked the increase in nasal resistance due to ovalbumin provocation (50 +/- 17% and 39 +/- 11% over baseline, respectively). The alpha-adrenergic agonist phenylpropanolamine (3 mg/ kg i.v.) had no effect on the nasal actions of ovalbumin. In separate studies, nasal resistance was measured at 2 Hz by forced oscillation and ovalbumin (3%) increased nasal resistance by 91 +/- 14%. Chlorpheniramine (1 mg/kg i.v.) significantly attenuated the increase in nasal resistance due to ovalbumin. Finally, changes in nasal resistance for each treatment group were evaluated at frequencies of 1 - 18 Hz. Area under the curve analysis demonstrated that chlorpheniramine blocked the nasal obstructive effect of ovalbumin. In contrast, a pharmacologically active dose of phenylpropanolamine (3 mg/kg i.v.) did not produce decongestant activity. DISCUSSION: The current data are inconsistent with the well-established clinical efficacy of alpha-adrenergic agonists as nasal decongestants. Consequently, we suggest that allergic nasal obstruction in the guinea pig may not be the best preclinical approach to assess the nasal decongestant activity of vasoconstrictor alpha-adrenergic agonists. Additionally, our studies demonstrate the utility of the forced oscillation technique in assessing changes in nasal resistance in small laboratory animals.


Subject(s)
Histamine H1 Antagonists/pharmacology , Nasal Decongestants/pharmacology , Nasal Obstruction/drug therapy , Oscillometry/methods , Airway Resistance/drug effects , Animals , Anti-Allergic Agents/therapeutic use , Chlorpheniramine/therapeutic use , Drug Evaluation, Preclinical , Guinea Pigs , Histamine H1 Antagonists/therapeutic use , Male , Nasal Decongestants/therapeutic use , Nasal Obstruction/chemically induced , Nasal Obstruction/physiopathology , Ovalbumin/pharmacology , Pyrilamine/therapeutic use , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL