Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612712

ABSTRACT

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Subject(s)
Chlorophyta , Fatty Acids, Omega-3 , Microalgae , Reactive Oxygen Species , Cholinergic Antagonists , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Solvents
2.
Psychogeriatrics ; 24(3): 701-718, 2024 May.
Article in English | MEDLINE | ID: mdl-38528391

ABSTRACT

Curcumin and omega-3 polyunsaturated fatty acids (ω-3 PUFA) are multifunctional compounds which play an important role in Alzheimer's disease (AD) and little has been addressed about the role of these two compounds together in the progression of the disease. There is evidence of the beneficial effect of combined administration of ω-3 PUFA and other dietary supplements such as vitamins and polyphenols in the prevention of AD, although much remains to be understood about their possible complementary or synergistic activity. Therefore, the objective of this work is to review the research focused on studying the effect and mechanisms of action of curcumin, ω-3 PUFA, and the combination of these nutraceutical compounds, particularly on AD, and to integrate the possible ways in which these compounds can potentiate their effect. The most important pathophysiologies that manifest in AD will be addressed, in order to have a better understanding of the mechanisms of action through which these bioactive compounds exert a neuroprotective effect.


Subject(s)
Alzheimer Disease , Curcumin , Dietary Supplements , Fatty Acids, Omega-3 , Neuroprotective Agents , Curcumin/therapeutic use , Curcumin/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Drug Synergism
3.
Fitoterapia ; 175: 105908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479621

ABSTRACT

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Subject(s)
Neuroprotective Agents , Picrasma , Plant Leaves , Plant Stems , Sesquiterpenes , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Mice , Humans , Cell Line, Tumor , Molecular Structure , Picrasma/chemistry , Plant Stems/chemistry , Plant Leaves/chemistry , Male , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , China , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mice, Inbred C57BL
4.
Front Pharmacol ; 15: 1328632, 2024.
Article in English | MEDLINE | ID: mdl-38375037

ABSTRACT

Background: The Jiawei Kongsheng Zhenzhong pill (JKZP), a Chinese herbal prescription comprised of eight Chinese crude drugs, has been historically employed to treat neurological and psychological disorders. Nevertheless, the ambiguous material basis severely hindered its progress and application. Purpose: The current study aimed to establish a rapid analytical method for identifying the chemical components of the JKZP aqueous extract and the components absorbed into the rat serum to investigate the quality markers (Q-markers) responsible for the neuroprotective effects of JKZP. Methods: The qualitative detection of the chemical components, prototype components, and metabolites of the aqueous extracts of JKZP, as well as the serum samples of rats that were administered the drug, was performed using the ultra-performance liquid chromatography- quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology. This analysis combined information from literature reports and database comparisons. Moreover, the study was conducted to anticipate the potential Q-markers for the neuroprotective effects of JKZP based on the "five principles" of Q-marker determination. Results: A total of 67 compounds and 111 serum components (comprising 33 prototypes and 78 metabolites) were detected and identified. Combining the principles of quality transmission and traceability, compound compatibility environment, component specificity, effectiveness, and measurability, the study predicted that five key compounds, namely, senkyunolide H, danshensu, echinacoside, loganin, and 3,6'-disinapoyl sucrose, may serve as potential pharmacological bases for the neuroprotective effects of JKZP. Conclusion: To summarize, the UPLC-Q-TOF-MS/MS technique can be employed to rapidly and accurately identify compounds in JKZP. Five active compounds have been predicted to be the Q-markers for the neuroprotective effects of JKZP. This discovery serves as a reference for improving quality, advancing further research and development, and utilizing Chinese herbal prescriptions.

5.
Fitoterapia ; 174: 105866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378134

ABSTRACT

A total of 12 abietane diterpenoids were isolated and identified from Rosmarinus officinalis in which 6 ones were undescribed compounds. Their structures were illuminated by the HRESIMS, NMR, and ECD methods and named as rosmarinusin Q-V (1-6). It worthy mentioned that rosmarinusin Q was a novel abietane diterpenoid with 6/6/5 skeleton whose C ring was an α,ß-unsaturated five-element ketone. All the compounds and four compounds (13-16) reported in our previous paper were evaluated their anti-neuroinflammatory activities on the LPS-induced BV2 cells. Compounds 5, 8, 9, 11, and 15 displayed significant anti-neuroinflammatory activity at the concentration of 10, 20, and 40 µM respectively. These results confirmed that R. officinalis contained abundant abietane diterpenoids and these compounds showed potential values of anti-neuroinflammation which could be developed as neuroprotective agents for the treatment of nerve damage caused by inflammation.


Subject(s)
Diterpenes , Rosmarinus , Abietanes/pharmacology , Abietanes/chemistry , Rosmarinus/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Diterpenes/pharmacology , Diterpenes/chemistry
6.
J Nat Med ; 78(2): 312-327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38143256

ABSTRACT

Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-ß-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-ß-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.


Subject(s)
Brain Injuries , Brain Ischemia , Diospyros , Neuroprotective Agents , Reperfusion Injury , Mice , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Edaravone/therapeutic use , Kaempferols/pharmacology , Kaempferols/therapeutic use , Brain Ischemia/drug therapy , Cerebral Infarction/drug therapy , Flavonoids/pharmacology , Reperfusion Injury/drug therapy , Oxygen , Brain Injuries/drug therapy
7.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5032-5040, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802845

ABSTRACT

This study aimed to explore the possible effect of Xixin Decoction(XXD) on the learning and memory ability of Alzheimer's disease(AD) model senescence-accelerated mouse-prone 8(SAMP8) and the related mechanism in enhancing neuroprotective effect and reducing neuroinflammation. Forty SAMP8 were randomly divided into a model group(10 mL·kg~(-1)·d~(-1)), a probiotics group(0.39 g·kg~(-1)·d~(-1)), a high-dose group of XXD granules(H-XXD, 5.07 g·kg~(-1)·d~(-1)), a medium-dose group of XXD granules(M-XXD, 2.535 g·kg~(-1)·d~(-1)), and a low-dose group of XXD granules(L-XXD, 1.267 5 g·kg~(-1)·d~(-1)). Eight senescence-accelerated mouse-resistant 1(SAMR1) of the same age and strain were assigned to the control group(10 mL·kg~(-1)·d~(-1)). After ten weeks of intragastric administration, the Morris water maze was used to test the changes in spatial learning and memory ability of mice after treatment. Meanwhile, immunofluorescence staining was used to detect the positive expression of receptor for advanced glycation end products(AGER), Toll-like receptor 1(TLR1), and Toll-like receptor 2(TLR2) in the hippocampal CA1 region of mice. Western blot was employed to test the protein expression levels of silencing information regulator 2 related enzyme 1(SIRT1), AGER, TLR1, and TLR2 in the hippocampus of mice. Enzyme linked immunosorbent assay(ELISA) was applied to assess the levels of Aß_(1-42) in the hippocampus of mice and the levels of nuclear factor κB p65(NF-κB p65), NOD-like receptor protein 3(NLRP3), tumor necrosis factor-α(TNF-α), and interleukin-1ß(IL-1ß) in the serum and hippocampus of mice. Compared with the model group, XXD significantly improved the spatial learning and memory ability of SAMP8, increased the expression of neuroprotective factors in the hippocampus, decreased the levels of neuroinflammatory factors, and inhibited the expression of Aß_(1-42). In particular, H-XXD significantly increased the expression of SIRT1 in the hippocampus of mice, reduced the expression levels of NF-κB p65, NLRP3, TNF-α, and IL-1ß in the serum and hippocampus of mice, and decreased the expression of AGER, TLR1, and TLR2 in the hippocampus of mice(P<0.05 or P<0.01). XXD may improve the spatial learning and memory ability of AD model SAMP8 by enhancing the neuroprotective effect and inhibiting neuroinflammation.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Sirtuin 1/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 1/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Hippocampus
8.
Chin J Nat Med ; 21(8): 619-630, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37611980

ABSTRACT

Six new ent-abietane diterpenoids, abientaphlogatones A-F (1-6), along with two undescribed ent-abietane diterpenoid glucosides, abientaphlogasides A-B (7-8) and four known analogs were isolated from the aerial parts ofPhlogacanthus curviflorus (P. curviflorus). The structures of these compounds were determined using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), one-dimensional and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, electronic circular dichroism (ECD) spectra, and quantum chemical calculations. Notably, compounds 5 and 6 represented the first reported instances of ent-norabietane diterpenoids from the genus Phlogacanthus. In the ß-hematin formation inhibition assay, compounds 2, 4, 7-10, and 12 displayed antimalarial activity, with IC50 values of 12.97-65.01 µmol·L-1. Furthermore, compounds 4, 5, 8, and 10 demonstrated neuroprotective activity in PC12 cell injury models induced by H2O2 and MPP+.


Subject(s)
Abietanes , Antimalarials , Abietanes/pharmacology , Hydrogen Peroxide , Biological Assay , Plant Components, Aerial
9.
Molecules ; 28(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37570763

ABSTRACT

Valeriana amurensis (V. amurensis) is widely distributed in Northeast China. In addition to medicines, it has also been used to prepare food, wine, tobacco, cosmetics, perfume, and functional foods. Other studies have investigated the neuroprotective effects of V. amurensis extract. As the therapeutic basis, the active constituents should be further evaluated. In this paper, six new compounds (1-6) were isolated, including five iridoids (Xiecaoiridoidside A-E) and one bisepoxylignan (Xiecaolignanside A), as well as six known compounds (7-12). The neuroprotective effects of 1-12 were also investigated with amyloid ß protein 1-42 (Aß1-42)-induced injury to rat pheochromocytoma (PC12) cells. As a result, iridoids 1 and 2 and lignans 6, 8, and 9 could markedly maintain the cells' viability by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assay.


Subject(s)
Lignans , Neuroprotective Agents , Valerian , Rats , Animals , Lignans/pharmacology , Amyloid beta-Peptides , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Iridoids/pharmacology , Plant Roots
10.
J Zhejiang Univ Sci B ; 24(7): 554-573, 2023 Jul 15.
Article in English, Chinese | MEDLINE | ID: mdl-37455134

ABSTRACT

Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.


Subject(s)
Melaleuca , Oils, Volatile , Tea Tree Oil , Tea Tree Oil/pharmacology , Tea Tree Oil/therapeutic use , Neuroprotection , Drug Repositioning , Neuroinflammatory Diseases , Australia , Anti-Inflammatory Agents/pharmacology
11.
Phytochemistry ; 211: 113680, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37084862

ABSTRACT

The purpose of this study was to identify sesquiterpenoids from Alpinia oxyphylla Miq. fruits under the guidance of LC-MS, and to evaluate their neuroprotective effects on the H2O2-induced SH-SY5Y cells. A total of 35 sesquiterpenoids, including 10 previously unreported ones, were isolated from A. oxyphylla fruits. The neuroprotective effect studies showed that compounds 2, 3, 12, 13, 20, 22, 25, 26, and 35 can improve the viability rates of the H2O2-induced SH-SY5Y cells whose viability rates were ≥ 80% and were higher than that of the positive control. Furthermore, thorough activity studies showed that compounds 3, 13, 22, and 35 can inhibit the production of ROS (reactive oxygen species), and that compounds 13, 22, and 35 can reduce both MDA (Malondialdehyde) and NO levels in the damaged cells in displaying a neuroprotective effect. This study confirmed that the fruits of A. oxyphylla contained abundant sesquiterpenoids with potential neuroprotective effect.


Subject(s)
Alpinia , Neuroblastoma , Neuroprotective Agents , Sesquiterpenes , Humans , Neuroprotective Agents/pharmacology , Fruit , Hydrogen Peroxide/pharmacology , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology
12.
J Nat Med ; 77(3): 544-560, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37115470

ABSTRACT

This study aimed to investigate the neuroprotective and therapeutic effects of Diospyros kaki L.f. leaves (DK) on transient focal cerebral ischemic injury and underlying mechanisms using a middle cerebral artery occlusion (MCAO) model of mice. The animals received the MCAO operation on day 0. The daily administrations of DK (50 and 100 mg/kg, p.o) and edaravone (6 mg/kg, i.v), a reference drug with radical scavenging activity, were started 7 days before (pre-treatment) or immediately after the MCAO operation (post-treatment) and continued during the experimental period. Histochemical, biochemical, and neurological changes and cognitive performance were evaluated. MCAO caused cerebral infarction and neuronal cell loss in the cortex, striatum, and hippocampus in a manner accompanied by spatial cognitive deficits. These neurological and cognitive impairments caused by MCAO were significantly attenuated by pre- and post-ischemic treatments with DK and edaravone, suggesting that DK, like edaravone, has therapeutic potential for cerebral ischemia-induced brain damage. DK and edaravone suppressed MCAO-induced changes in biomarkers for apoptosis (TUNEL-positive cell number and cleaved caspase-3 protein expression) and oxidative stress (glutathione and malondialdehyde contents) in the brain. Interestingly, DK, but not edaravone, mitigated an increase in blood-brain permeability and down-regulation of vascular endothelial growth factor protein expression caused by MCAO. Although the exact chemical constituents implicated in the effects of DK remain to be clarified, the present results indicate that DK exerts neuroprotective and therapeutic activity against transient focal cerebral ischemia-induced injury probably by suppressing oxidative stress, apoptotic process, and mechanisms impairing blood-brain barrier integrity in the brain.


Subject(s)
Brain Injuries , Brain Ischemia , Diospyros , Neuroprotective Agents , Reperfusion Injury , Mice , Animals , Flavonoids/pharmacology , Vascular Endothelial Growth Factor A , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/complications , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Apoptosis , Brain Injuries/complications , Brain Injuries/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reperfusion Injury/drug therapy
13.
Zhongguo Zhong Yao Za Zhi ; 48(3): 762-769, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872240

ABSTRACT

This study aimed to explore the effect of Ganmai Dazao Decoction on the ethology of rats with posttraumatic stress disorder(PTSD) and study the related mechanism through the changes in magnetic resonance imaging and protein expression. Sixty rats were randomly divided into 6 groups, namely the normal group, the model group, the low(1 g·kg~(-1)), medium(2 g·kg~(-1)), and high-dose Ganmai Dazao Decoction groups(4 g·kg~(-1)), and the positive control group(intragastric administration with 10.8 mg·kg~(-1) of fluoxetine), with 10 rats in each group. Two weeks after inducing PTSD by single-prolonged stress(SPS) in rats, the positive control group was given fluoxetine hydrochloride capsule by gavage, the low, medium, and high-dose groups were given Ganmai Dazao Decoction by gavage, and both the normal group and the model group were given the same volume of normal saline by gavage, each for 7 days. The open field experiment, elevated cross elevated maze, forced swimming experiment, and new object recognition test were carried out for the behavioral test. Three rats in each group were selected to detect the expression of neuropeptide receptor Y1(NPY1R) protein in the hippocampus by Western blot. Then, the other three rats in each group were selected to use the 9.4T magnetic resonance imaging experiment to observe the overall structural changes in the brain region and the anisotropy fraction of the hippocampus. The results of the open field experiment showed that the total distance and central distance of rats in the model group were significantly lower than those in the normal group, and the total distance and central distance of rats in the middle and high-dose Ganmai Dazao Decoction groups were higher than those in the model group. The results of the elevated cross maze test showed that medium and high-dose Ganmai Dazao Decoction remarkably increased the number of open arm entries and the residence time of open arm of rats with PTSD. The results of the forced swimming experiment showed that the immobility time in the water of the model group rats was significantly higher than that of the normal group, and Ganmai Dazao Decoction hugely reduced the immobility time in the water of rats with PTSD. The results of the new object recognition test showed that Ganmai Dazao Decoction significantly increased the exploration time of new objects and familiar objects in rats with PTSD. The results of Western blot showed that Ganmai Dazao Decoction significantly reduced the expression of NYP1R protein in the hippocampus of rats with PTSD. The 9.4T magnetic resonance examination found that there was no significant difference in the structural image among the groups. In the functional image, the fractional anisotropy(FA value) of the hippocampus in the model group was significantly lower than that in the normal group. The FA value of the hippocampus in the middle and high-dose Ganmai Dazao Decoction groups was higher than that in the model group. Ganmai Dazao Decoction reduces the injury of hippocampal neurons by inhibiting the expression of NYP1R in the hippocampus of rats with PTSD, thereby improving the nerve function injury of rats with PTSD and playing a neuroprotective role.


Subject(s)
Ethology , Stress Disorders, Post-Traumatic , Animals , Rats , Fluoxetine , Hippocampus , Maze Learning
14.
Am J Chin Med ; 51(3): 595-622, 2023.
Article in English | MEDLINE | ID: mdl-36999542

ABSTRACT

Oxidative stress is an important contributor to the pathogenesis of Alzheimer's disease (AD). The overproduction of reactive oxygen species observed in AD patients results in the loss of mitochondrial function, altered metal ion homeostasis, lipopolysaccharide metabolism disorder, reduced anti-oxidant defense, increased release of inflammatory factors, and the aggravation and accumulation of amyloid-beta and tau hyper-phosphorylation, which directly cause synaptic and neuronal loss and lead to cognitive dysfunction. Thus, oxidative stress proves to be a fundamental part of AD development and progression, suggesting the potential benefits of anti-oxidant-based therapies for AD. In this study, we found that a water-soluble extract of Artemisia annua (WSEAA), a traditional Chinese herbal medicine, has a strong anti-oxidant function. We also found that WSEAA is able to improve the cognitive function of 3xTg AD mice. However, the mechanisms and molecular targets underlying WSEAA action are still not known. In order to uncover the potential molecular mechanisms involved, we used a combination of network pharmacology and different experimental approaches. Obtained results revealed key genes (such as AKT1, BCL2, IL-6, TNF-[Formula: see text] and BAX) and signaling pathways (like PI3K-AKT and BCL2/BAX) are closely associated with the biological processes responding to oxidative stress. Further verification of the survival/anti-oxidant effects of WSEAA in vitro and in vivo showed that the extract has anti-oxidatant/neuronal survival action against H2O2-induced damage, and is thus able to prevent the cognitive decline and pathological changes of 3xTg transgenic (3xTg) mice via the regulation of key target-genes and pathways, such as PI3K-AKT and BCL2/BAX, related to survival/apoptosis. Our findings strongly indicate the potential of WSEAA for the prevention and treatment of AD.


Subject(s)
Alzheimer Disease , Artemisia annua , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Artemisia annua/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Network Pharmacology , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases , Hydrogen Peroxide , bcl-2-Associated X Protein , Mice, Transgenic
15.
J Ethnopharmacol ; 309: 116325, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36906157

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dementias including Alzheimer disease (AD) are three times higher in menopausal women than in men. Phytoestrogens, a group of plant-derived compounds are known to alleviate menopausal complaints including dementia. Millettia griffoniana Baill is a phytoestrogen-rich plant used to treat menopausal complaints and dementia. AIM: Evaluating the estrogenic and neuroprotective potential of Millettia griffoniana on ovariectomized (OVX) rats. MATERIALS AND METHODS: The in vitro safety of M. griffoniana ethanolic extract was assayed by MTT in human mammary epithelial (HMEC) and mouse neuronal (HT-22) cells and its lethal dose 50 (LD50) was estimated following OECD 423 guidelines. For estrogenicity, in vitro the well known E-screen assay on MCF-7 cells was performed and in vivo four groups of OVX rats were treated either with 75, 150 and 300 mg/kg M. griffoniana extract doses or estradiol (1 mg/kg BW) for three days; and changes in uterine and vagina were analyzed. Then, for neuroprotective effect, Alzheimer-type dementia induction was achieved by scopolamine (1.5 mg/kg B.W., i.p.) injection four days/week and M. griffoniana extract as well as piracetam (standard) were administered daily for 2 weeks to evaluate the extract's neuroprotective potential. The endpoints were the assessment of learning and working memory, oxidative stress state (SOD, CAT, and MDA) in brain, acetylcholine esterase (AChE) activity and the histopathological changes in hippocampus. RESULTS: No toxic effect was observed when incubating mammary (HMEC) and neuronal (HT-22) cells with M. griffoniana ethanol extract for 24 h and its LD50 was found >2000 mg/kg. The extract also exhibited both in vitro and in vivo estrogenic activities, displayed by a significant (p < 0.01) increment in MCF-7 cells population in vitro and an increase in the epithelium height of the vagina and the wet weight of the uterus mainly with the 150 mg/kg BW extract dose compared to untreated OVX rats. The extract also reversed scopolamine-induced memory impairment in rat by improving learning, working and reference memory. This was associated with an increment in CAT and SOD expression, alongside a decrement in MDA content and AChE activity in hippocampus. Further, the extract reduced neuronal cell loss in hippocampal structures (CA1, CA3 and dentate gyrus). High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS) spectra, revealed the presence of numerous phytoestrogens in M. griffoniana extract. CONCLUSION: M. griffoniana ethanolic extract has estrogenic, anticholinesterase and antioxidant activities that could account for its anti-amnesic effects. These findings therefore sheds light on why this plant is commonly used in the therapy of menopausal complaints and dementia.


Subject(s)
Dementia , Millettia , Rats , Female , Mice , Humans , Animals , Phytoestrogens/pharmacology , Rats, Wistar , Millettia/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Ethanol , Estrone , Superoxide Dismutase , Scopolamine Derivatives
16.
Antioxidants (Basel) ; 12(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36829803

ABSTRACT

Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as 'chelates' to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity.

17.
J Sci Food Agric ; 103(9): 4413-4420, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36806249

ABSTRACT

BACKGROUND: Panax ginseng Meyer, a traditional herb in Asia, contains bioactive compounds such as polyphenolic compounds, flavonoids, and ginsenosides. Furthermore, fermentation with probiotics can promote the biofunctional activities of ginseng. This study's object was to investigate the neuroprotective effect of hydroponic ginseng against hydrogen peroxide (H2 O2 )-induced cytotoxicity and its effect on the fermentation time. RESULTS: Nonfermented hydroponic ginseng (HNF) was fermented with Lactococcus lactis KC24 at 37 °C for 12 h (H12F) or 24 h (H24F). As fermentation progressed, the content of ginsenosides Rd and F2 increased slightly. The viability of cells pretreated with H2 O2 -exposed nonfermented soil-cultivated ginseng (SNF), HNF, H12F, and H24F gradually improved. In addition, a similar cytotoxicity trend was observed for the level of lactate dehydrogenase released. Fermentation with L. lactis KC24 also enhanced the protective effect of HNF in all assays related to the neuroprotective pathway. In other words, superoxide dismutase and catalase messenger RNA (mRNA) expression levels were upregulated in H24F-treated cells. Similarly, H24F also upregulated the mRNA and protein expression of brain-derived neurotrophic factor to the highest observed concentration. Moreover, the Bax/Bcl-2 ratio was the lowest after H24F pretreatment in H2 O2 -induced SH-SY5Y cells. Attenuating the cytotoxicity in H2 O2 -induced SH-SY5Y cells, H24F markedly reduced caspase-3 and -9 mRNA expression and caspase-3 activity. CONCLUSION: These results suggest that HNF exhibited higher neuroprotection than SNF, which was enhanced after fermentation. This study demonstrates that H12F and H24F can be potential ingredients for developing healthy functional foods and pharmaceutical materials. © 2023 Society of Chemical Industry.


Subject(s)
Ginsenosides , Lactococcus lactis , Neuroblastoma , Neuroprotective Agents , Panax , Humans , Ginsenosides/metabolism , Neuroprotective Agents/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Panax/chemistry , Hydroponics , Neuroblastoma/metabolism
18.
Article in English | WPRIM | ID: wpr-982400

ABSTRACT

Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.


Subject(s)
Tea Tree Oil/therapeutic use , Melaleuca , Neuroprotection , Drug Repositioning , Neuroinflammatory Diseases , Australia , Oils, Volatile , Anti-Inflammatory Agents/pharmacology
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(5): 563-572, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36581582

ABSTRACT

OBJECTIVE: To investigate the effect and mechanism of Pinus massoniana needle extracts (PNE) on oxidative stress injury in cerebral ischemia reperfusion rats. METHODS: The SD male rats were randomly divided into sham group, model control group, Edaravone (3 mg/kg) group, PNE low-dose (200 mg/kg), medium-dose (400 mg/kg) and high-dose (800 mg/kg) groups. PNE was administered by gavage for 7 d before modeling and 6 h after modeling in PNE treatment groups; Edaravone was given by intraperitoneal injection 7 d before modeling and 6 h after reperfusion. The rat model of cerebral ischemia reperfusion injury was established by middle cerebral artery occlusion method. After 24 h of reperfusion, the neurological deficit score, brain water content and cerebral infarction volume of rats were measured. The pathological changes of cerebral cortex and hippocampus were observed by HE staining, and the number of normal nerve cells was counted. The apoptosis rate of neurons in cerebral cortex was detected by TUNEL method. The content of nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) activity in ischemic brain tissue were detected. The protein expression of c-Jun N-terminal kinase (JNK) 3, phosphorylated JNK3 (p-JNK3), B-cell lymphoma protein(Bcl) -2, Bcl-2 associated X (Bax), cytochrome C and caspase-3 in cerebral cortex were detected by Western blotting method. RESULTS: Compared with the model control group, the behavioral score, brain water content and cerebral infarction volume in PNE groups were significantly reduced (all P<0.05), the pathological damage of cerebral cortex and hippocampal CA1 area was significantly alleviated, and the number of normal nerve cells in ischemic cortex and hippocampal CA1 area was increased (all P<0.05). The medium-dose PNE group had the best effect. Compared with the model control group, the apoptosis rate of cortical neurons, the content of NO and MDA in cerebral cortex, the ratio of p-JNK3/JNK3, the expression level of cytochrome C and caspase-3 protein in PNE medium-dose group were significantly reduced , and the activity of SOD, the Bcl-2/Bax ratio were significantly improved (all P<0.05). CONCLUSION: PNE ameliorates brain injury after cerebral ischemia reperfusion in rats, which may be related to scavenging NO and MDA, inhibiting oxidative stress-mediated JNK3/caspase-3 signsal transduction to inhibit neuronal apoptosis.


Subject(s)
Brain Ischemia , Oxidative Stress , Plant Extracts , Reperfusion Injury , Animals , Male , Rats , Apoptosis , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , bcl-2-Associated X Protein/therapeutic use , Brain Ischemia/drug therapy , Caspase 3/metabolism , Caspase 3/pharmacology , Cytochromes c/metabolism , Cytochromes c/pharmacology , Cytochromes c/therapeutic use , Edaravone/pharmacology , Edaravone/therapeutic use , Infarction, Middle Cerebral Artery , Rats, Sprague-Dawley , Reperfusion , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Signal Transduction , Superoxide Dismutase , Plant Extracts/pharmacology , Pinus/chemistry
20.
Am J Chin Med ; 50(8): 2033-2056, 2022.
Article in English | MEDLINE | ID: mdl-36222119

ABSTRACT

Ginsenoside Rg5 (G-Rg5) is a rare ginsenoside isolated from ginseng (Panax ginseng C.A. Meyer), and this compound is increasingly known for its potent pharmacological activities. This study aimed to provide a comprehensive review of the main activities and mechanisms of G-Rg5 by adopting network pharmacological analysis combined with a summary of published articles. The 100 target genes of G-Rg5 were searched through available database, subjected to protein-protein interaction (PPI) network generation and then core screening. The results showed that G-Rg5 has promising anticancer and neuroprotective effects. By summarizing these two pharmacological activities, we found that G-Rg5 exerts its therapeutic effects mainly through PI3K/AKT, MAPK signaling pathways, and the regulation of apoptosis and cell cycle. And these results were corroborated by KEGG analysis. Likewise, molecular docking of the related proteins was performed, and the binding energies were all less than [Formula: see text]7.0[Formula: see text]kJ/mol, indicating that these proteins had excellent binding capacity with G-Rg5. The network pharmacology results revealed many potential G-Rg5 mechanisms, which need to be further explored. We expect that the network pharmacology approach and molecular docking techniques can help us gain a deeper understanding of the therapeutic mechanisms of different ginsenosides and even the ginseng plant, for further developing their therapeutic potential as well as clinical applications.


Subject(s)
Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Neuroprotection , Molecular Docking Simulation , Network Pharmacology , Panax/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL