Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560776

ABSTRACT

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Subject(s)
Ornithine , Putrescine , Ornithine/metabolism , Putrescine/metabolism , Arginine , Escherichia coli/genetics , Escherichia coli/metabolism , Chromatography, Liquid , Staphylococcus aureus/metabolism , Tandem Mass Spectrometry , Bacteria/metabolism , Klebsiella pneumoniae/metabolism
2.
BMC Pregnancy Childbirth ; 24(1): 295, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643102

ABSTRACT

BACKGROUND: Vitamin D deficiency is common in pregnancy, however, its effects has not been fully elucidated. Here, we conducted targeted metabolomics profiling to study the relationship. METHODS: This study enrolled 111 pregnant women, including sufficient group (n = 9), inadequate group (n = 49) and deficient group (n = 53). Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based targeted metabonomics were used to characterize metabolite profiles associated with vitamin D deficiency in pregnancy. RESULTS: Many metabolites decreased in the inadequate and deficient group, including lipids, amino acids and others. The lipid species included fatty acyls (FA 14:3, FA 26:0; O), glycerolipids (MG 18:2), glycerophospholipids (LPG 20:5, PE-Cer 40:1; O2, PG 29:0), sterol lipids (CE 20:5, ST 28:0; O4, ST 28:1; O4). Decreased amino acids included aromatic amino acids (tryptophan, phenylalanine, tyrosine) and branched-chain amino acids (valine, isoleucine, leucine), proline, methionine, arginine, lysine, alanine, L-kynurenine,5-hydroxy-L-tryptophan, allysine. CONCLUSIONS: This targeted metabolomics profiling indicated that vitamin D supplementation can significantly affect lipids and amino acids metabolism in pregnancy.


Subject(s)
Tandem Mass Spectrometry , Vitamin D Deficiency , Female , Humans , Pregnancy , Amino Acids , Alanine , Metabolomics , Vitamin D Deficiency/complications , Lipids
3.
Heliyon ; 10(7): e28582, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586416

ABSTRACT

The combination of Chaidangbo (CDB) is an antidepressant traditional Chinese medicine (TCM) prescription simplified by Xiaoyaosan (a classic antidepressant TCM prescription) through dismantling research, which has the effect of dispersing stagnated liver qi and nourishing blood in TCM theory. Although the antidepressant effect of CBD has been confirmed in animal studies, the material basis and possible molecular mechanism for antidepressant activity in CBD have not been clearly elucidated. Herein, we investigated the effects and potential mechanisms of CDB antidepressant fraction (petroleum ether fraction of CDB, PEFC) on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice using network pharmacology and metabolomics. First, a UPLC-QE/MS was employed to identify the components of PEFC. To extract active ingredients, SwissADME screening was used to the real PEFC components that were found. Potential PEFC antidepressant targets were predicted based on a network pharmacology approach, and a pathway enrichment analysis was performed for the predicted targets. Afterward, a CUMS mouse depression model was established and LC-MS-based untargeted hippocampal metabolomics was performed to identify differential metabolites, and related metabolic pathways. Finally, the protein expressions in mouse hippocampi were determined by Western blot to validate the network pharmacology and metabolomics deduction. A total of 16 active compounds were screened in SwissADME that acted on 73 core targets of depression, including STAT3, MAPKs, and NR3C1; KEGG enrichment analysis showed that PEFC modulated signaling pathways such as PI3K-Akt signaling pathway, endocrine resistance, and MAPK to exert antidepressant effects. PEFC significantly reversed abnormalities of hippocampus metabolites in CUMS mice, mainly affecting the synthesis and metabolism of glycine, serine, and threonine, impacting catecholamine transfer and cholinergic synapses and regulating the activity of the mTOR signaling pathway. Furthermore, Western blot analysis confirmed that PEFC significantly influenced the main protein levels of the PI3K/Akt/mTOR signaling pathways in the hippocampus of mice subjected to CUMS. This study integrated metabolomics, network pharmacology and biological verification to explore the potential mechanism of PEFC in treating depression, which is related to the regulation of amino acid metabolism dysfunction and the activation of PI3K/Akt/mTOR signaling pathways in the hippocampus. The comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in TCM with antidepressant effect.

4.
J Pharm Anal ; 14(2): 225-243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38464790

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.

5.
Phytomedicine ; 128: 155509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452403

ABSTRACT

BACKGROUND: Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS: A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS: WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [ß-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor ß-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1ß, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION: WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.


Subject(s)
Azoxymethane , Colitis-Associated Neoplasms , Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal , Metabolomics , Transcriptome , Animals , Drugs, Chinese Herbal/pharmacology , Mice , Male , Colorectal Neoplasms , Mice, Inbred C57BL , Colon/drug effects , Colon/pathology , Colon/metabolism , Colitis/chemically induced
6.
Ultrason Sonochem ; 105: 106857, 2024 May.
Article in English | MEDLINE | ID: mdl-38552299

ABSTRACT

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Subject(s)
Ananas , Antioxidants , Fermentation , Plant Extracts , Yogurt , Yogurt/microbiology , Yogurt/analysis , Ananas/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Sonication , Temperature , Hydrogen-Ion Concentration , Food Handling/methods , Food Quality
7.
Microbiol Spectr ; 12(4): e0409423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411058

ABSTRACT

Insulin resistance is the primary pathophysiological basis for metabolic syndrome and type 2 diabetes. Gut microbiota and microbiota-derived metabolites are pivotal in insulin resistance. However, identifying the specific microbes and key metabolites with causal roles is a challenging task, and the underlying mechanisms require further exploration. Here, we successfully constructed a model of insulin resistance in mice induced by a high-fat diet (HFD) and screened potential biomarkers associated with insulin resistance by integrating metagenomics and untargeted metabolomics. Our findings showed a significant increase in the abundance of 30 species of Alistipes in HFD mice compared to normal diet (ND) mice, while the abundance of Desulfovibrio and Candidatus Amulumruptor was significantly lower in HFD mice than in ND mice. Non-targeted metabolomics analysis identified 21 insulin resistance-associated metabolites, originating from the microbiota or co-metabolized by both the microbiota and the host. These metabolites were primarily enriched in aromatic amino acid metabolism (tryptophan metabolism, tyrosine metabolism, and phenylalanine metabolism) and arginine biosynthesis. Further analysis revealed a significant association between the three distinct genera and 21 differentiated metabolites in the HFD and ND mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of representative genomes from 12 species of the three distinct genera further revealed the functional potential in aromatic amino acid metabolism and arginine biosynthesis. This study lays the groundwork for future investigations into the mechanisms through which the gut microbiota and its metabolites impact insulin resistance. IMPORTANCE: In this study, we aim to identify the microbes and metabolites linked to insulin resistance, some of which have not been previously reported in insulin resistance-related studies. This adds a complementary dimension to existing research. Furthermore, we establish a correlation between alterations in the gut microbiota and metabolite levels. These findings serve as a foundation for identifying the causal bacterial species and metabolites. They also offer insights that guide further exploration into the mechanisms through which these factors influence host insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Diet, High-Fat , Metabolomics , Biomarkers , Amino Acids, Aromatic , Arginine
8.
Food Chem X ; 21: 101159, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38328697

ABSTRACT

Dioscorea opposita Thumb. cv. Tiegun is commonly consumed as both food and traditional Chinese medicine, which has a history of more than two thousand years. Harvest time directly affects its quality, but few studies have focused on metabolic changes during the harvesting process. Here, a comprehensive metabolomics approach was performed to determine the metabolic profiles during six harvest stages. Thirty eight metabolites with significant differences were determined as crucial participants. Related metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylpropanoid biosynthesis, flavonoid biosynthesis and tryptophan metabolism were the most active pathways during harvest. The results revealed that temperature has a significant impact on quality formation, which suggested that Dioscorea opposita thumb. cv. Tiegun harvested after frost had higher potential value of traditional Chinese medicine. This finding not only offered valuable guidance for yam production, but also provided essential information for assessing its quality.

9.
Zhongguo Zhong Yao Za Zhi ; 49(2): 443-452, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403320

ABSTRACT

Chinese patent medicine preparations containing Epimedii Folium and Psoraleae Fructus have been associated with the occurrence of idiosyncratic drug-induced liver injury(IDILI). However, the specific toxic biomarkers and mechanisms underlying these effects remain unclear. This study aimed to comprehensively assess the impact of bavachin and epimedin B, two principal consti-tuents found in Psoraleae Fructus and Epimedii Folium, on an IDILI model induced by tumor necrosis factor-α(TNF-α) treatment, both in vitro and in vivo. To evaluate the extent of liver injury, various parameters were assessed. Lactate dehydrogenase(LDH) release in the cell culture supernatant, as well as the levels of alanine aminotransferase(ALT) and aspartate transaminase(AST) in mouse plasma were measured. Additionally, histological analysis employing hematoxylin-eosin staining was performed to observe liver tissue changes indicative of the severity of liver injury. Furthermore, a pseudo-targeted metabolomics approach was employed, followed by multivariate analysis, to identify differential metabolites. These identified metabolites were subsequently subjected to Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. The results showed that at the cellular level, after 2 hours of TNF-α stimulation, bavachin significantly increased the release of LDH in HepG2 cells compared to the normal group and the group treated alone; after the combination of bavachin and epimedin B, the release of LDH further significantly increased on the original basis. Similarly, although the individual or combination treatments of bavachin and epimedin B did not induce liver injury in normal mice, the combination of both drugs induced marked liver injury in TNF-α treated mice, leading to a significant elevation in plasma AST and ALT levels and substantial infiltration of inflammatory immune cells in the liver tissue. Pseudo-targeted metabolomics analysis identified seven common differential metabolites. Among these, D-glucosamine-6-phosphate, N1-methyl-2-pyridone-5-carboxamide, 17beta-nitro-5a-androstane, irisolidone-7-O-glucuronide, and N-(1-deoxy-1-fructosyl) valine emerged as potential biomarkers, with an area under the curve(AUC) exceeding 0.9. Furthermore, our results suggest that the metabolism of nicotinic acid and nicotinamide, as well as the linoleic acid metabolic pathway, may play pivotal roles in bavachin and epimedin B-induced IDILI. In conclusion, within an immune-stressed environment mediated by TNF-α, bavachin and epimedin B appear to induce IDILI through disruptions in metabolic processes.


Subject(s)
Chemical and Drug Induced Liver Injury , Flavonoids , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Liver , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology
10.
J Pharm Biomed Anal ; 242: 116062, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38387127

ABSTRACT

Gushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Butyric Acid , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Yang Deficiency/metabolism , Kidney/metabolism , Biomarkers/metabolism
11.
J Chromatogr A ; 1719: 464732, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38387153

ABSTRACT

The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.


Subject(s)
Drugs, Chinese Herbal , Myocardial Infarction , Pueraria , Rats , Animals , Arginine , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics/methods , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Amino Acids , DNA, Ribosomal
12.
Vet Q ; 44(1): 1-11, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38404134

ABSTRACT

Chinese herbal formula (CHF) has the potential to improve the performance of aged laying hens through integrated regulation of various physiological functions. The present study aimed to investigate the effects of dietary CHF supplementation on the yolk fatty acid profile in aged laying hens. A total of 144 healthy 307-day-old Xinyang black-feather laying hens were randomly allocated into two groups: a control group (CON, fed a basal diet) and a CHF group (fed a basal diet supplemented with 1% CHF; contained 0.30% Leonurus japonicus Houtt., 0.20% Salvia miltiorrhiza Bge., 0.25% Ligustrum lucidum Ait., and 0.25% Taraxacum mongolicum Hand.-Mazz. for 120 days). The fatty acid concentrations in egg yolks were analyzed using a targeted metabolomics technology at days 60 and 120 of the trial. The results showed that dietary CHF supplementation increased (p < .05) the concentrations of several saturated fatty acids (SFA, including myristic acid and stearic acid), monounsaturated fatty acids (MUFA, including petroselinic acid, elaidic acid, trans-11-eicosenoic acid, and cis-11-eicosenoic acid), polyunsaturated fatty acids (PUFA, including linolelaidic acid, linoleic acid, γ-linolenic acid, α-linolenic acid, 11c,14c-eicosadienoic acid, eicosatrienoic acid, homo-γ-linolenic acid, arachidonic acid, and docosapentaenoic acid), and fatty acid indexes (total MUFA, n-3 and n-6 PUFA, PUFA/SFA, hypocholesterolemic/hypercholesterolaemic ratio, health promotion index, and desirable fatty acids) in egg yolks. Collectively, these findings suggest that dietary CHF supplementation could improve the nutritional value of fatty acids in egg yolks of aged laying hens, which would be beneficial for the production of healthier eggs to meet consumer demands.


Subject(s)
Chickens , Fatty Acids , Animals , Female , Fatty Acids/pharmacology , Chickens/physiology , Dietary Supplements , Diet/veterinary , Egg Yolk , Linoleic Acid/pharmacology , Animal Feed/analysis
13.
Food Chem ; 443: 138519, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38301549

ABSTRACT

A large number of plant metabolites were discovered, but their biosynthetic and metabolic pathways are still largely unknown. However, the spatial distribution of metabolites and their changes in metabolic pathways can be supplemented by mass spectrometry imaging (MSI) techniques. For this purpose, the combination of desorption electrospray ionization (DESI)-MSI and non-targeted metabolomics was used to obtain the spatial distribution information of metabolites in the leaves of Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus). The sample pretreatment method was optimized to have higher detection sensitivity in DESI. The changes of metabolites in C. paliurus were analyzed in depth with the integration of the spatial distribution information of metabolites. The main pathways for biosynthesis of flavonoid precursor and the effect of changes in compound structure on the spatial distribution were found. Spatial metabolomics can provide more metabolite information and a platform for the in-depth understanding of the biosynthesis and metabolism in plants.


Subject(s)
Flavonoids , Juglandaceae , Flavonoids/analysis , Metabolome , Plant Extracts/chemistry , Mass Spectrometry , Plant Leaves/chemistry , Juglandaceae/chemistry , Juglandaceae/metabolism
14.
Food Chem ; 445: 138715, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38382251

ABSTRACT

The green-tea manufacturing process showed good effect of flavor improving, debittering and shaping in making Penthorum chinensePursh leaf (PL) tea (PLT), which serves as a polyphenol dietary supplement and beverage raw material. GC-MS results showed that its unpleasant grassy odor decreased by 42.8% due to dodecanal, geranylacetone, and (E)-2-nonenal reduction, coupled with 1-hexadecanol increasing. UPLC-ESI-TOF-MS identified 95 compounds and showed that the debittering effect of green-tea manufacturing process was attributed to decreasing of flavonols and lignans, especially quercetins, kaempferols and luteolins, and increasing of dihydrochalcones which act as sweeteners bitterness-masking agents, while astringency was weakened by reducing delphinidin-3,5-O-diglucoside chloride, kaempferol-7-O-ß-d-glucopyranoside, and tannins. The increase of pinocembrins and catechins in aqueous extracts of PLT, maintained its hepatoprotective, NAFLD-alleviation, and hepatofibrosis-prevention activities similar to PL in high fat-diet C57BL/6 mice, with flavonoids, tannins, tannic acids, and some newfound chemicals, including norbergenin, gomisin K2, pseudolaric acid B, tanshinol B, as functional ingredients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Tea/chemistry , Tannins , Mice, Inbred C57BL , Plant Leaves
15.
Diabetes Metab Syndr Obes ; 17: 203-212, 2024.
Article in English | MEDLINE | ID: mdl-38222033

ABSTRACT

Purpose: Amino acids are the important metabolites in the body and play a crucial role in biological processes. The purpose of this study is to provide a profile of amino acids change in the serum of T2DM patients and identify potential biomarkers. Patients and Methods: In this study, we quantitatively determined the serum amino acid profiles of 30 T2DM patients and 30 healthy volunteers. T test and multivariate statistical analysis were used to identify candidate biomarkers with GraphPad Prism 9.5 software and MetaboAnalyst 5.0 on-line platform. Results: Thirty-four amino acids were quantified, and 19 amino acid levels differed significantly between T2DM and Healthy groups. Screened by the specific screening criteria (VIP>1.0; P<0.05; FC>1.5, or FC<0.67) in MetaboAnalyst 5.0 platform, 8 amino acids were identified as potential biomarkers. Pearson rank correlation test showed 14 differential amino acids were significantly correlated with T2DM-related physiological parameters. Conclusion: The results of this study provide theoretical basis for the subsequent development of dietary supplements for the prevention or treatment of T2DM and its complications.

16.
Phytomedicine ; 123: 155201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976693

ABSTRACT

BACKGROUND: Astragali Radix (AR) is a widely used herbal medicine. The quality of AR is influenced by several key factors, including the production area, growth mode, species, and grade. However, the markers currently used to distinguish these factors primarily focus on secondary metabolites, and their validation on large-scale samples is lacking. PURPOSE: This study aims to discover reliable markers and develop classification models for identifying the production area, growth mode, species, and grade of AR. METHODS: A total of 366 batches of AR crude slices were collected from six provinces in China and divided into learning (n = 191) and validation (n = 175) sets. Three ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were developed and validated for determining 22 primary and 10 secondary metabolites in AR methanol extract. Based on the quantification data, seven machine learning algorithms, such as Nearest Neighbors and Gradient Boosted Trees, were applied to screen the potential markers and build the classification models for identifying the four factors associated with AR quality. RESULTS: Our analysis revealed that secondary metabolites (e.g., astragaloside IV, calycosin-7-O-ß-D-glucoside, and ononin) played a crucial role in evaluating AR quality, particularly in identifying the production area and species. Additionally, fatty acids (e.g., behenic acid and lignoceric acid) were vital in determining the growth mode of AR, while amino acids (e.g., alanine and phenylalanine) were helpful in distinguishing different grades. With both primary and secondary metabolites, the Nearest Neighbors algorithm-based model was constructed for identifying each factor of AR, achieving good classification accuracy (>70%) on the validation set. Furthermore, a panel of four metabolites including ononin, astragaloside II, pentadecanoic acid, and alanine, allowed for simultaneous identification of all four factors of AR, offering an accuracy of 86.9%. CONCLUSION: Our findings highlight the potential of integrating large-scale targeted metabolomics and machine learning approaches to accurately identify the quality-associated factors of AR. This study opens up possibilities for enhancing the evaluation of other herbal medicines through similar methodologies, and further exploration in this area is warranted.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Astragalus propinquus/chemistry , Tandem Mass Spectrometry/methods , Alanine
17.
J Sci Food Agric ; 104(4): 2417-2428, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37989713

ABSTRACT

BACKGROUND: Hyperlipidemia is characterized by abnormally elevated blood lipids. Quinoa saponins (QS) have multiple pharmacological activities, including antitumor, bactericidal and immune-enhancing effects. However, the lipid-lowering effect and mechanisms of QS in vivo have been scarcely reported. METHODS: The effect of QS against hyperlipidemia induced by high-fat diet in rats was explored based on gut microbiota and serum non-targeted metabolomics. RESULTS: The study demonstrated that the supplementation of QS could reduce serum lipids, body weight, liver injury and inflammation. 16S rRNA sequencing demonstrated that QS mildly increased alpha-diversity, altered the overall structure of intestinal flora, decreased the relative richness of Firmicutes, the ratio of Firmicutes/Bacteroidetes (P < 0.05) and increased the relative richness of Actinobacteria, Bacteroidetes, Bifidobacterium, Roseburia and Coprococcus (P < 0.05). Simultaneously, metabolomics analysis showed that QS altered serum functional metabolites with respect to bile acid biosynthesis, arachidonic acid metabolism and taurine and hypotaurine metabolism, which were closely related to bile acid metabolism and fatty acid ß-oxidation. Furthermore, QS increased protein levels of farnesoid X receptor, peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1, which were related to the screened metabolic pathways. Spearman correlation analysis showed that there was a correlation between gut microbiota and differential metabolites. CONCLUSION: QS could prevent lipid metabolism disorders in hyperlipidemic rats, which may be closely associated with the regulation of the gut microbiota and multiple metabolic pathways. This study may provide new evidence for QS as natural active substances for the prevention of hyperlipidemia. © 2023 Society of Chemical Industry.


Subject(s)
Chenopodium quinoa , Gastrointestinal Microbiome , Hyperlipidemias , Rats , Animals , Diet, High-Fat/adverse effects , Chenopodium quinoa/metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , RNA, Ribosomal, 16S , Lipids/pharmacology , Metabolic Networks and Pathways , Bile Acids and Salts
18.
J Sci Food Agric ; 104(2): 1039-1050, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37743412

ABSTRACT

BACKGROUND: Withering is the first processing procedure of beauty tea, and there are few reports on the impact of withering methods on the quality of beauty tea and its regulatory mechanisms. RESULTS: Through comparison of fresh tea leaves (FT) with the leaves after indoor natural withering for 18 h (IWT-18) and outdoor solar withering for 6 h (OWT-6), which were collected at the end of the two withering processes, 17 282 and 13 984 differentially expressed genes (DEGs) were respectively screened and 267 and 154 differential metabolites (DMs) were respectively identified. The coexpression network revealed that a large number of DEGs and DMs were enriched in phenylpropanoid, flavonoid, and adenosine triphosphate binding cassette (ABC) transporter pathways, and the number of DMs and DEGs in IWT-18 versus FT exceeded that in OWT-6 versus FT. Both withering methods promoted a significant increase in content of phenylalanine and upregulation of ß-glucoside expression in the phenylpropanoid metabolism pathway. Five theaflavin-type proanthocyanidins in the flavonoid synthesis pathway were more significantly accumulated in FT versus IWT-18 than in FT versus OWT-6. Meanwhile, both withering methods can affect the ABC transporter pathway to promote the accumulation of amino acids and their derivatives, but different withering methods affect different ABC transporter families. Outdoor withering with more severe abiotic stress has a greater impact on the ABCG family, whereas indoor withering has a more significant effect on the ABCC family. Sensory evaluation results showed that the dry tea of IWT-18 was slightly better than that of OWT-6 because of the longer withering time and more thorough substance transformation. CONCLUSION: In conclusion, the formation of honey flavor in beauty tea may be closely related to the DEGs and DMs in these three pathways. Our research provides theoretical data support for further revealing the mechanism of quality formation during the withering process of beauty tea. © 2023 Society of Chemical Industry.


Subject(s)
Camellia sinensis , Camellia sinensis/chemistry , Transcriptome , Beauty , Metabolome , Flavonoids/analysis , Tea/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/analysis , ATP-Binding Cassette Transporters/metabolism , Plant Leaves/chemistry
19.
J Ethnopharmacol ; 319(Pt 3): 117272, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37820995

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla var. Yunnanensis (Franch.) Hand.-Mazz., a perennial medicinal herb commonly known as "Chonglou" in Chinese, is mainly effective against innominate toxin swelling, insect sting, snake bite, traumatic injuries and various inflammatory. It is also recorded with mild toxicity. The rare species Paris luquanensis H. Li has been also used as folk medicine in Yunnan province for the same effects. Compared with P. polyphylla var. Yunnanensis (35-100 cm in height), this species has variegated leaves, and grows slower and is therefore shorter (6-23 cm in height). There are a number of different cultivars based on the shape of the petal and the height of Paris plant. However, currently, investigations into the differences of the chemical profiling of these cultivars are lacking. AIM OF THE STUDY: This study aims to: (1) examine metabolites variations in Paris polyphylla var. Yunnanensis cultivars and Paris luquanensis; (2) investigate the different metabolite accumulation patterns between rhizomes and leaves and provide more useful information for the application of P. polyphylla var. Yunnanensis leaves; (3) compare in vivo effects on the recruitment of reactive oxygen species (ROS) and Neutrophils and toxic effects in zebrafish model between leaves and rhizomes of P. polyphylla var. Yunnanensis and P. luquanensis. MATERIALS AND METHODS: The change patterns of metabolites in the leaves and rhizomes of four P. polyphylla var. Yunnanensis cultivars and one P. luquanensis cultivar were analyzed using an UPLC-ESI-MS/MS system. The total phenolic acid, total flavonoid, total saponin components and in vitro antioxidant activities were determined by spectrophotometric methods. The in vivo toxicity and their effects on the recruitment of ROS and neutrophils in zebrafish model were performed. RESULTS: The widely targeted metabolomics method detected 695 metabolites in tested samples and classified as 15 known classes according to structures of the metabolites. By overall-comparing the SDMs discerned between leaves and rhizomes of each samples, 161 metabolites were substantially altered in all the cultivars. There are 62 and 64 SDMs showing constitutive differential accumulation between leaves and rhizomes of P. polyphylla var. Yunnanensis (samples A-D) and P. luquanensis (sample E), respectively. The levels of TSC, TPC and TFC decreased significantly in leaves as compared to rhizomes for all cultivars, with the exception of TPC in cultivar A, which is almost the same in leave and rhizome. The DPPH scavenging property and FRAP values of rhizomes are higher than those of leaves for all cultivars. However, there is no distinct different between leaves and rhizomes of different sample extracts for in vivo effects on the recruitment of ROS and neutrophils in zebrafish model. BL extracts showed high toxicity to the developing embryos. CONCLUSION: As far as we are concerned, this study analyzes the P. polyphylla var. Yunnanensis and P. luquanensis variegation from the perspective of the metabolites pattern for the first time. The results give a valuable insight into the specie metabolic profiling and in vivo anti-oxidant, anti-inflammatory and toxic effects of these Paris plants.


Subject(s)
Ascomycota , Coleoptera , Liliaceae , Melanthiaceae , Humans , Animals , Reactive Oxygen Species , Tandem Mass Spectrometry , Zebrafish , China , Metabolome , Antioxidants/pharmacology
20.
J Ethnopharmacol ; 319(Pt 3): 117343, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37879509

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Yiqi Jiedu formula (YQJDF), rooted in the traditional Chinese medicinal principle of "tonifying qi and detoxifying", is remarkably efficacious in the clinical treatment of nasopharyngeal carcinoma (NPC). Previous studies have shed light on some of its anti-NPC effects and mechanisms, but the responsible pharmacological substances and their precise mechanisms of action remain unclear. AIM OF THE STUDY: The purpose of this study was to identify components of YQJDF that entered the bloodstream and to investigate their mechanisms of action against NPC through network pharmacology and serum metabolomics. MATERIAL AND METHODS: Components of YQJDF in serum were identified using liquid chromatography-tandem mass spectrometry. With these serum species as the focus of our research, network pharmacology analysis was used to identify active compounds and target genes that might mediate the efficacy of YQJDF in the treatment of NPC. Following establishment of an NPC xenograft model in nude mice, a non-targeted metabolomics approach was adopted to identify significant serum metabolites and metabolic pathways influenced by YQJDF. RESULTS: Thirty-six components of YQJDF were identified, primarily consisting of alkaloids, phenylpropanoids, and flavonoids. Notably, pathways such as PI3K/AKT, factors associated with Epstein-Barr virus infection, IL-17 signaling, and lipid metabolism, were highlighted as potential therapeutic targets of YQJDF during NPC treatment. Additionally, our findings suggested that YQJDF modified the metabolism of arginine and proline in the serum of mice bearing nasopharyngeal tumor grafts. CONCLUSIONS: This study identified the primary active components of YQJDF, highlighting its holistic role in the treatment of NPC through multiple targets and pathways. Furthermore, our findings provided a roadmap for future research into the mechanism of YQJDF in the therapy of NPC, setting the stage for its clinical application.


Subject(s)
Drugs, Chinese Herbal , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Animals , Mice , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Mice, Nude , Network Pharmacology , Phosphatidylinositol 3-Kinases , Herpesvirus 4, Human , Metabolomics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL