Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.585
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Planta Med ; 89(15): 1457-1467, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37541436

ABSTRACT

A novel acidic heteropolysaccharide (LCP-90-1) was isolated and purified from a traditional "heat-clearing" Chinese medicine, Lysimachia christinae Hance. LCP-90-1 (Mw, 20.65 kDa) was composed of Man, Rha, GlcA, Glc, Gal, and Ara, with relative molar ratios of 1.00: 3.00: 11.62: 1.31: 1.64: 5.24. The backbone consisted of 1,4-α-D-GlcpA, 1,4-α-D-Glcp, 1,4-ß-L-Rhap, and 1,3,5-α-L-Araf, with three branches of ß-D-Galp-(1 → 4)-ß-L-Rhap-(1→, α-L-Araf-(1→ and α-D-Manp-(1→ attached to the C-5 position of 1,3,5-α-L-Araf. LCP-90-1 exhibited potent anticomplement activity (CH50: 135.01 ± 0.68 µg/mL) in vitro, which was significantly enhanced with increased glucuronic acid (GlcA) content in its degradation production (LCP-90-1-A, CH50: 28.26 ± 0.39 µg/mL). However, both LCP-90-1 and LCP90-1-A were inactivated after reduction or complete acid hydrolysis. These observations indicated the important role of GlcA in LCP-90-1 and associated derivatives with respect to anticomplement activity. Similarly, compared with LCP-90-1, the antioxidant activity of LCP-90-1-A was also enhanced. Thus, polysaccharides with a high content of GlcA might be important and effective substances of L. christinae.


Subject(s)
Lysimachia , Polysaccharides , Humans , Carbohydrate Sequence , Polysaccharides/chemistry , Hydrolysis , Glucuronic Acid
2.
Int J Biol Macromol ; 246: 125643, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37394216

ABSTRACT

Oil-tea camellia fruit shell (CFS) is a very abundant waste lignocellulosic resource. The current treatments of CFS, i.e. composting and burning, pose a severe threat on environment. Up to 50 % of the dry mass of CFS is composed of hemicelluloses. However, chemical structures of the hemicelluloses in CFS have not been extensively studied, which limits their high-value utilization. In this study, different types of hemicelluloses were isolated from CFS through alkali fractionation with the assistance of Ba(OH)2 and H3BO3. Xylan, galacto-glucomannan and xyloglucan were found to be the major hemicelluloses in CFS. Through methylation, HSQC and HMBC analyses, we have found that the xylan in CFS is composed of →4)-ß-D-Xylp-(1→ and →3,4)-ß-D-Xylp-(1→ linked by (1→4)-ß glycosidic bond as the main chain; the side chains are α-L-Fucp-(1→, →5)-α-L-Araf-(1→, ß-D-Xylp-(1→, α-L-Rhap-(1→ and 4-O-Me-α-D-GlcpA-(1→, connected to the main chain through (1→3) glycosidic bond. The main chain of galacto-glucomannan in CFS consists of →6)-ß-D-Glcp-(1→, →4)-ß-D-Glcp-(1→, →4,6)-ß-D-Glcp-(1→ and →4)-ß-D-Manp-(1→; the side chains are ß-D-Glcp-(1→, →2)-ß-D-Galp-(1→, ß-D-Manp-(1→ and →6)-ß-D-Galp-(1→ connected to the main chain through (1→6) glycosidic bonds. Moreover, galactose residues are connected by α-L-Fucp-(1→. The main chain of xyloglucan is composed of →4)-ß-D-Glcp-(1→, →4,6)-ß-D-Glcp-(1→ and →6)-ß-D-Glcp-(1→; the side groups, i.e. ß-D-Xylp-(1→ and →4)-ß-D-Xylp-(1→, are connected to the main chain by (1→6) glycosidic bond; →2)-ß-D-Galp-(1→ and α-L-Fucp-(1→ can also connect to →4)-ß-D-Xylp-(1→ forming di- or trisaccharide side chains.


Subject(s)
Camellia , Xylans , Fruit , Carbohydrate Sequence , Polysaccharides/chemistry , Glycosides , Tea
3.
Carbohydr Res ; 521: 108650, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35998422

ABSTRACT

A halotolerant hydrocarbon-oxidizing bacterium Halomonas titanicae strain TAT1 was isolated from a petroleum reservoir. The O-polysaccharide (O-antigen) was isolated from the lipopolysaccharide of H. titanicae TAT1 and studied by component analyses and 1D and 2D NMR spectroscopy. The following structure of the repeating linear pentasaccharide O-unit, containing only aminosugars, was established: →4)-ß-d-GlcpNAc3NAcA-(1 â†’ 4)-ß-d-GlcpNAc3NAcA-(1 â†’ 6)-α-d-GlcpNAc-(1 â†’ 4)-ß-d-GlcpNAc3NAcA-(1 â†’ 6)-α-d-GlcpNAc-(→, where d-GlcNAc3NAcA indicates 2,3-diacetamido-2,3-dideoxy-d-glucuronic acid. The O-antigen gene cluster was identified in the genome of H. titanicae TAT1 and compared with available database sequences. The genes revealed in the O-antigen gene cluster and the assigned functions of putative proteins were consistent with the established polysaccharide structure.


Subject(s)
O Antigens , Petroleum , Carbohydrate Sequence , Glucuronates , Glucuronic Acid , Halomonas , Lipopolysaccharides/chemistry , Multigene Family , O Antigens/chemistry
4.
Int J Biol Macromol ; 209(Pt A): 923-934, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35447261

ABSTRACT

Determining the structure of REPI, an immunostimulatory polysaccharide fraction from radish leaves, is an important health objective. Herein, we show that REP-I contains nine different monosaccharides, including GalA (22.2%), Gal (32.6%), Ara (27.5%), and Rha (10.2%) as main sugars. REP-I was also reacted with ß-glucosyl Yariv reagent (29.8%), suggesting the presence of the arabino-ß-3,6-galactan. Furthermore, methylated-product analysis revealed that REP-I contains 13 different glycosyl linkages, including 4-linked GalpA (21.0%), 2,4-linked Rhap (7.0%), 4-linked Galp (5.8%), 5-linked Araf (10.1%), and 3,6-linked Galp (7.9%), which are characteristic of RG-I. Microstructural information was obtained by sequential degradation using four linkage-specific glycosylases and ß-elimination, with fragments analyzed on the basis of sugar composition, methylation, and MS/MS spectra. The results show that the immunostimulatory activity of REP-I is possibly due to the structure of RG-I, which is composed of a main chain with repeating [→2)-Rhap-(1 â†’ 4)-GalpA-(1→] linkage units and three side-chains: a branched α(1 â†’ 5)arabinan, a ß(1 â†’ 4)galactan, and arabino-ß-3,6-galactan, which are branched at the C(O)4 position of each Rha residue in the REP-I main chain.


Subject(s)
Raphanus , Carbohydrate Sequence , Galactans/analysis , Pectins/chemistry , Plant Leaves/chemistry , Polysaccharides/chemistry , Rhamnogalacturonans , Tandem Mass Spectrometry
5.
Carbohydr Polym ; 285: 118971, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35287839

ABSTRACT

Ligusticum chuanxiong, the dried rhizome of Ligusticum chuanxiong Hort, has been widely applied in traditional Chinese medicine for treating plague, and it has appeared frequently in the prescriptions against COVID-19 lately. Ligusticum chuanxiong polysaccharide (LCPs) is one of the effective substances, which has various activities, such as, anti-oxidation, promoting immunity, anti-tumor, and anti-bacteria. The purified fractions of LCPs are considered to be pectic polysaccharides, which are mainly composed of GalA, Gal, Ara and Rha, and are generally linked by α-1,4-d-GalpA, α-1,2-l-Rhap, α-1,5-l-Araf, ß-1,3-d-Galp and ß-1,4-d-Galp, etc. The pectic polysaccharide shows an anti-infective inflammatory activity, which is related to antiviral infection of Ligusticum chuanxiong. In this article, the isolation, purification, structural features, and biological activities of LCPs in recent years are reviewed, and the potential of LCPs against viral infection as well as questions that need future research are discussed.


Subject(s)
COVID-19 Drug Treatment , Ligusticum/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Carbohydrate Conformation , Carbohydrate Sequence , Drugs, Chinese Herbal , Humans , Polysaccharides/isolation & purification , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
6.
Carbohydr Polym ; 284: 119186, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35287905

ABSTRACT

We report that in birch leaf pectin, rhamnogalacturonan-I (RG-I) and galacturonan (HG) were found as separate polymers rather than domains of a complex macromolecule. RG-I and HG were separated by anion-exchange and size-exclusion chromatography and studied by using NMR spectroscopy. NMR spectra showed that methyl-esterified D-galactosyluronic acid residues were located only in HG. Oligosaccharides of similar structure to the backbone, but without terminal reducing residues in the NMR spectra, were found in RG-I. We hypothesize, these oligosaccharides and RG-I backbone can be covalently bound due to its co-eluted of from DEAE-cellulose and Sepharose CL-4B. This result differs from the classical RG-I model, which assumes that all Rhap and GalpA residues are located only in the RG-I backbone. In the heteronuclear multiple bond correlation (HMBC) and rotating frame Overhauser effect spectroscopy (ROESY) spectra, the correlation peaks confirming the substitution of 2,4-rhamnose residues at O-4 by only single D-galactose residues were identified.


Subject(s)
Betula , Pectins , Carbohydrate Sequence , Magnetic Resonance Spectroscopy , Pectins/chemistry , Plant Leaves/chemistry
7.
Int J Biol Macromol ; 195: 12-21, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34890634

ABSTRACT

In order to better utilize the citrus pectin (CP) resource, the crude citrus pectin (CCP), obtained from the citrus fruit canning processing waste water, was purified by cellulose DEAE-52 column, providing neutral polysaccharide CP0 and two acidic polysaccharides (CP1 and CP3). CP1 had the highest yield among the three fractions, being 44.29%. The chemical composition, structure and morphology of these pectin components were analyzed. Monosaccharide composition analysis revealed that arabinose was the most abundant composition in these pectin samples. CCP, CP1 and CP3 were mainly composed of rhamnogalacturonan-I (RG-I) regions. Compared with CP3, CCP and CP1 had longer side chains, which are mainly consisted of arabinose. FT-IR and NMR analysis indicated that α-type glycosidic bonds are the main linkage in the four pectin components. These CP samples were found to possess different conformation, but no triple-helical conformation was observed in all these CP fractions. Scanning electron microscopy revealed that CCP, CP1 and CP3 all had irregular sheet-like structures and partly porous structures. The four pectin components showed the characteristics of non-Newtonian fluids and possessed good viscoelasticity. Due to these properties, the pectin might have potential application in food industry as food thickening agent.


Subject(s)
Arabinose/isolation & purification , Citrus/chemistry , Glycosides/isolation & purification , Pectins/chemistry , Pectins/isolation & purification , Carbohydrate Sequence , Chromatography, DEAE-Cellulose , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
8.
J Sci Food Agric ; 102(1): 280-290, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34091920

ABSTRACT

BACKGROUND: A polysaccharide was purified in this study, which was acquired from the fermentation broth of Dendrobium officinale Kimura et Migo. We aimed to investigate the structural features and bioactivity of this polysaccharide. RESULTS: The polysaccharide was purified and the main polysaccharide fraction (i.e., DOP-1) was obtained. High-performance gel permeation chromatography (HPGPC) revealed that the molecular weight of DOP-1 was 447.48 kDa. Galactose, glucose and mannose were found to be present in DOP-1 via monosaccharide composition analysis, at a ratio of 1:1.79:6.71. Methylation and nuclear magnetic resonance spectroscopic analysis indicated that the backbone of DOP-1 was →4)-α-d-Glcp-(1 → 4)-α-d-Manp-(1 → 4)-α-d-Manp-(1 → 4,6)-α-d-Manp-(1→, and its repeating units were also preliminarily established. In vitro tests proved that DOP-1 not only protects RAW264.7 macrophages from the cytotoxic effect induced by lipopolysaccharide (LPS), but also inhibits cytokines (i.e., interleukin-6 and tumour necrosis factor-α) induced by LPS. DOP-1 demonstrated good scavenging activity in vitro toward 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals, as well as good metal chelating activity. Therefore, DOP-1 has potential antioxidant applications. CONCLUSION: The structural characteristics of DOP-1 support its favourable biological activities and lay a strong foundation for further exploration of its structure-activity relationships and activity development, providing experimental data for the development and utilisation of fermentation broth of D. officinale. © 2021 Society of Chemical Industry.


Subject(s)
Dendrobium/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Carbohydrate Sequence , Chromatography, Gel , Fermentation , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Magnetic Resonance Spectroscopy , Mice , Molecular Weight , Plant Extracts/isolation & purification , Polysaccharides/isolation & purification , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884845

ABSTRACT

In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.


Subject(s)
Culture Media/chemistry , Fungal Polysaccharides/analysis , Selenium/chemistry , Shiitake Mushrooms/metabolism , Amino Acids/analysis , Carbohydrate Sequence , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Fungal Polysaccharides/isolation & purification , Fungal Polysaccharides/pharmacology , Humans , Molecular Weight , Oxidative Stress/drug effects , Shiitake Mushrooms/growth & development , Spectroscopy, Fourier Transform Infrared , X-Ray Absorption Spectroscopy
10.
Int J Biol Macromol ; 184: 1000-1013, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34197847

ABSTRACT

Dendrobium officinale Kimura et Migo (D. officinale) is used as herbal medicine and new food resource in China, which is nontoxic and harmless, and can be used as common food. Polysaccharide as one of the main bioactive components in D. officinale, mainly composed of glucose and mannose (Manp: Glcp = 2.01:1.00-8.82:1.00), along with galactose, xylose, arabinose, and rhamnose in different molar ratios and types of glycosidic bonds. Polysaccharides of D. officinale exhibit a variety of biological effects, including immunomodulatory, anti-tumor, gastro-protective, hypoglycemic, anti-inflammatory, hepatoprotective, and vasodilating effects. This paper presents the extraction, purification, structural characteristics, bioactivities, structure-activity relationships and analyzes gaps in the current research on D. officinale polysaccharides. In addition, based on in vitro and in vivo experiments, the possible mechanisms of bioactivities of D. officinale polysaccharides were summarized. We hope that this work may provide helpful references and promising directions for further study and development of D. officinale polysaccharides.


Subject(s)
Dendrobium/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Carbohydrate Sequence , China , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Structure-Activity Relationship
11.
Carbohydr Polym ; 267: 118172, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119144

ABSTRACT

The fruit of Lycium ruthenicum Murr is used as traditional medicine and functional food. Previously we reported that one RG-I pectin from this fruit might inhibit pancreatic cancer cells growth. We further hypothesized that there might be other type of polysaccharides in this fruit also have anti-tumor effect. Here, we showed novel structure of a homogeneous polysaccharide named LRP1-S2 from this fruit and its anti-pancreatic cancer effect. Structure analyses suggested that LRP1-S2 was a novel arabinogalactan with the molecular weight (Mw) of 17.0 kDa. Bioactivity test showed that LRP1-S2 might attenuate the proliferation of pancreatic cancer cells in vitro and in vivo without significant cytotoxicity to normal pancreatic HPDE6-C7 cells and LO2 liver cells. Mechanism study indicated that it might induce apoptosis of BxPC-3 by inactivating P38 MAPK/NF-κB and GSK-3ß/ß-Catenin signaling pathways. These results suggested that LRP1-S2 could be a potential anti-tumor leading compound for functional food and new drug development. CHEMICAL COMPOUNDS: arabinogalactan, pectin, galactan, arabinan, RN-1, HH1-1, LRP1-S2, LRP3-S1.


Subject(s)
Antineoplastic Agents/therapeutic use , Galactans/therapeutic use , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Carbohydrate Sequence , Cell Line , Cell Proliferation/drug effects , Fruit/chemistry , Galactans/chemistry , Galactans/isolation & purification , Galactans/toxicity , Humans , Lycium/chemistry , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
12.
Carbohydr Polym ; 267: 118194, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119161

ABSTRACT

Allium sativum L. is a widely distributed plant used as a spice, vegetable and medicine. In this study, one novel water-soluble polysaccharide (GBP-1a), with a molecular weight of 15.0 kDa, was isolated from the scape of A. sativum (garlic bolt). GBP-1a consists of galactose, glucose and arabinose at a ratio of 73.29:4.36:1.70. It has a backbone, which is composed of 1,4-linked Galp, with 1,2,6-linked Galp branches and 1-linked Glcp residue. In addition, the anti-oxidant activities of GBP-1a, as well as the two main polysaccharide fractions on ABTS radicals, metal ions and superoxide anion radicals, were evaluated in vitro. This study added new data to the study of polysaccharides from garlic bolt.


Subject(s)
Free Radical Scavengers/chemistry , Garlic/chemistry , Polysaccharides/chemistry , Carbohydrate Sequence , Free Radical Scavengers/isolation & purification , Molecular Weight , Polysaccharides/isolation & purification
13.
Carbohydr Polym ; 267: 118219, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119173

ABSTRACT

Polygonatum cyrtonema is a known tonic herb in Chinese Materia Medica, extensively consumed in China, but the structure and activity of its polysaccharide components remain to be clarified. Herein, two new polysaccharides (a fructan and a galactan) were purified from the dried and the processed P. cyrtonema rhizome, respectively. Structural analysis suggested that the fructan consisted of a (2 â†’ 6) linked ß-d-Fruf residues backbone with an internal α-d-Glcp residue and two (2 â†’ 1) linked ß-d-Fruf residues branches, and that the galactan was a (1 â†’ 4)-ß-d-galactan branched with a single ß-d-galactose at C-6 at about every nine residues in its main chain. The bioactive assay showed that the fructan and the galactan remarkably promoted growth of Bifidobacterium and Lactobacillus strains, indicating that they possess prebiotic activity. These findings may help expand the application of the polysaccharides from the tonic herb P. cyrtonema as functional ingredients in food products.


Subject(s)
Fructans/chemistry , Fructans/metabolism , Galactans/chemistry , Galactans/metabolism , Polygonatum/chemistry , Bifidobacterium/metabolism , Carbohydrate Sequence , Fructans/isolation & purification , Galactans/isolation & purification , Lactobacillus/metabolism , Molecular Weight , Prebiotics
14.
Carbohydr Polym ; 268: 118214, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34127216

ABSTRACT

Phellinus baumii is used to treat inflammatory bowel disease (IBD) and gastroenteritis. In this study, a 46 kDa heteropolysaccharide SHPS-1 was isolated from fruiting bodies of P. baumii. SHPS-1 consisted of arabinose, mannose, glucose, and galactose at a molar ratio of 2.2:15.7:49.3:32.8. SHPS-1 had a backbone containing 1,3-linked ß-D-Glcp and 1,6-linked α-D-Galp residues, and Araf, Manp and Galp units were attached as oligosaccharidic side chains to the backbone at C-6 of some glucopyranoses. SHPS-1 decreased phosphorylation level of STAT-1 and expression levels of STAT-1 targeted genes such as iNOS and TNF-α in lipopolysaccharide-stimulated macrophage RAW 264.7 cells. Furthermore, SHPS-1 promoted the expression of IL-10 and macrophage mannose receptor CD 206, markers of tissue repairing macrophages. SHPS-1 alleviated ulcerative colitis in mice by decreasing pro-inflammatory genes and increasing anti-inflammatory and tissue repairing genes. Collectively, SHPS-1 polysaccharide from P. baumii had anti-inflammatory activity and can potentially treat IBD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Basidiomycota/chemistry , Colitis, Ulcerative/drug therapy , Fungal Polysaccharides/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Carbohydrate Sequence , Colitis, Ulcerative/chemically induced , Cytokines/metabolism , Dextran Sulfate , Fruiting Bodies, Fungal/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , RAW 264.7 Cells , STAT1 Transcription Factor/chemistry , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects
15.
Food Chem ; 358: 129908, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33933948

ABSTRACT

A fucoidan SFP, having novel structure, was extracted from Sargassum fusiforme. It had a molecular weight of 703 kDa and was composed of fucose and galactose with the ratio of 73.16:26.84 (mol%). Structural analyses showed that it mainly consisted of 1,3-, 1,4-, 1,3,4-linked-α-l-Fucp and 1,3-, 1,6-linked-ß-d-Galp, with partial sulfation at C-4, C-3 of fucose units and C-6, C-3 of galactose units. The branches consisted of sulfated fucosyl and galactofucosyl oligosaccharides. The regulatory effects of SFP on the intestinal microbiota in high-fat diet-fed mice were investigated. The high-dosage SFP exhibited good hypolipidemic effects, especially in regulating the high-densitylipoproteincholesterol, non-esterified fatty acid levels and lipase activity. It also significantly decreased the ratio of phyla Firmicutes/Bacteroidetes (P < 0.05). Besides, SFP had certain effects on the richness and diversity of intestinal microbiota. Therefore, SFP exhibited novel structure and certain beneficial effects on the disorder of intestinal microbiota in high-fat diet-fed mice.


Subject(s)
Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Polysaccharides/chemistry , Polysaccharides/pharmacology , Sargassum/chemistry , Animals , Carbohydrate Sequence , Fucose/chemistry , Galactose/chemistry , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Male , Mice , Molecular Weight , Sulfates/chemistry
16.
Int J Biol Macromol ; 183: 1574-1584, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34044027

ABSTRACT

The aim of this study is to explore the characterization of Amomum longiligulare T.L. Wu fruits polysaccharide (ALP) and their immune enhancement effects. Two homogeneous polysaccharides (ALP1 and ALP2) were isolated from the fruits. The structural characterization results showed that ALP1 (26.10 kDa) and ALP2 (64.10 kDa) were both mainly composed of glucose. Furthermore, ALP1 was consisted of (1,2)-α-D-Glcp, (1,2,3)-α-D-Glcp and T-α-D-Glcp, while ALP2 was consisted of T-α-D-Glcp, (1,3)-α-D-Glcp and (1,3,6)-α-D-Glcp. Afterwards, the immune enhancement effects of two polysaccharides were evaluated by determining their effects on immunogenicities of infectious bursal disease virus (IBDV) VP2 protein. Chickens were immunized with IBDV VP2 protein accompanied with ALP1/ALP2. And the results indicated both ALP1 and ALP2 promoted the weights and bursa of fabricius indexes of chickens. In addition, both two polysaccharides increased specific IBDV antibody levels, while ALP1 possessed higher immune enhancement ability and was expected to be an adjuvant for IBDV VP2 protein.


Subject(s)
Amomum/chemistry , Glucose/chemistry , Infectious bursal disease virus/immunology , Polysaccharides/administration & dosage , Viral Structural Proteins/administration & dosage , Adjuvants, Immunologic , Animals , Antibodies, Viral/metabolism , Carbohydrate Sequence , Chickens , Immunization , Molecular Weight , Plant Extracts/chemistry , Polysaccharides/chemistry , Polysaccharides/immunology , Viral Structural Proteins/immunology
17.
Carbohydr Polym ; 255: 117326, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436169

ABSTRACT

Two novel arabinose- and galactose-rich pectic polysaccharides, AELP-B5 (Mw, 4.25 × 104 g/mol) and B6 (Mw, 1.56 × 104 g/mol), were rapidly obtained from the leaves of Aralia elata (Miq.) Seem. with anion resin and sequenced ultrafiltration membrane columns. The structural backbone and branched chains of AELP-B5 and B6 were preliminarily elucidated by mild acid hydrolysis with HILIC-ESI--MS/MS. The planar structures and spatial configurations were further identified using UPLC-QDa and GC-MS for compositions, Smith degradation and methylation analysis, FT-IR, NMR (1H/13C, DEPT, HSQC, HMBC, COSY, NOESY and TOCSY) and SEC-MALLS-RID. (1) AELP-B5 possessed →4GalA1→ as smooth regions (HG) and a repeating disaccharide moiety of →4GalA1→2Rha1→ as hairy regions (RG-I) with a 1:5 molar ratio, whereas AELP-B6 had a distinguishing 1:1 molar ratio between the HG and RG-I; (2) complex side chains were constituted of T-α-Araf, 1,3-α-Araf, 1,5-α-Araf, T-ß-Galp, 1,3-ß-Galp, 1,4-ß-Galp, 1,6-ß-Galp, 1,3,4-ß-Galp and 1,3,4,6-ß-Galp connected at C-4 of the rhamnosyl units in RG-I of AELP-B5 and B6; and (3) both possessed highly branched and compact coil conformations. The CCK-8 assay illustrated that AELP-B6 possessed higher cytotoxicity against HepG2 and HT-29 than that of AELP-B5. Surface plasmon resonance showed the binding affinity of AELP-B6 to galectin-3 (6.488 × 10-5 M) was about 10 times stronger than that of AELP-B5 (4.588 × 10-4 M). The above findings provide a molecular structure and bioactivity basis for future potential applications of AELP in the food and medical industries.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Arabinose/chemistry , Aralia/chemistry , Blood Proteins/metabolism , Galactose/chemistry , Galectins/metabolism , Pectins/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Arabinose/isolation & purification , Blood Proteins/genetics , Carbohydrate Sequence , Cell Survival/drug effects , Dose-Response Relationship, Drug , Galactose/isolation & purification , Galectins/genetics , HT29 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrolysis , Pectins/isolation & purification , Pectins/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Protein Binding , Structure-Activity Relationship
18.
Int J Biol Macromol ; 173: 307-314, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33476621

ABSTRACT

Pore size distribution is a crucial structural element affecting the adsorption and diffusion of reagents and enzymes within starch granules. An accurate and credible method of determining the pore size distribution of starch granules especially for smooth ones is therefore required. In this work, low-field NMR cryoporometry (LF-NMRC) was applied to analyze the pore structure of potato starch (PS). The reliability of the LF-NMRC method is verified by comparing with the traditional method, i.e. the low temperature nitrogen adsorption (LT-NA). Both LF-NMRC and LT-NA could characterize the PS pore structure in mesoporous range. However, LF-NMRC has superiority over LT-NA in terms of the distinguishment and determination of pore size distribution approaching to the micropores, gives more accurate and reliable results than LT-NA does. Structural evidences from scanning electron microscope (SEM) and atomic force microscope (AFM) further indicated that the new proposed method is a non-destructive method that does not induce structural changes during sample preparation.


Subject(s)
Solanum tuberosum/chemistry , Starch/chemistry , Adsorption , Carbohydrate Sequence , Cold Temperature , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Porosity , Water/chemistry
19.
Int J Biol Macromol ; 171: 185-197, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33412197

ABSTRACT

Alhagi pseudalhagi, commonly known as camel thorn, is used as an indigenous medicinal plant in China. The present study was designed to elucidate the structure of a novel polysaccharide, APP90-2, isolated from Alhagi pseudalhagi and evaluate its osteogenic activity. A homogeneous polysaccharide (APP90-2) was obtained from A. pseudalhagi via DEAE-52 and Sephacryl S-100 columns, with a molecular weight of 5.9 kDa. Monosaccharide, GC-MS, and NMR analyses showed that APP90-2 consisted of α-l-Rhap-(1→, →3)-α-l-Araf-(1→, →5)-α-l-Araf-(1→, →4)-ß-d-Xylp-(1→, α-d-Glcp-(1→, →3,5)-α-l-Araf-(1→, →4)-ß-d-GlcAp-(1→, →4)-3-OAc-α-d-Glcp-(1→, →3)-α-d-Galp-(1→, →3)-ß-d-GalAp-(1→, →4)-α-d-Galp-(1→, →6)-α-d-Manp-(1→, →4,6)-ß-d-Galp-(1→, and →3,6)-ß-d-Glcp-(1→ with relative molar ratios of 4.1:1.8:6.1:6.7:1.7:1.0:1.5:2.7:2.4:1.1:2.3:2.6:1.4:2.0. Morphological analyses revealed that APP90-2 interacted with Congo-red and had an obvious honeycomb structure. Additionally, APP90-2 significantly promoted proliferation, differentiation, and mineralization of MC3T3-E1 cells, indicating that APP90-2 exhibited pronounced osteogenic activity. Therefore, our findings suggest that A. pseudalhagi may be used as an alternative medicine or health supplement for the prevention and treatment of osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Calcification, Physiologic/drug effects , Fabaceae/chemistry , Osteoblasts/drug effects , Osteogenesis/drug effects , Polysaccharides/pharmacology , Animals , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/isolation & purification , Carbohydrate Sequence , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , China , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Plants, Medicinal , Polysaccharides/chemistry , Polysaccharides/isolation & purification
20.
Int J Biol Macromol ; 171: 177-184, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33421465

ABSTRACT

A water-soluble polysaccharide (LCP-05) was isolated from the flowers of Leucosceptrum canum Smith. LCP-05 was an acidic polysaccharide with a molecular weight of approximately 8.9 kDa. Monosaccharide composition analysis indicated that LCP-05 was composed of Man, Rha, GlcA, GalA, Glc, Gal and Ara in a molar ratio of 0.83:1.68:0.33:2.15:1.00:1.45:1.22. The framework of LCP-05 was speculated to be a branched rhamnogalacturonan with the backbone consisting of α-1,2,4-linked Rhap and α-1,4-linked GalAp, and bearing branches at the O-4 position of the Rha residues. The side chains are terminated primarily with the Araf and Glcp residues. LCP-05 was found to be able to significantly induce the production of NO, IL-6, and TNF-α in RAW 264.7 cells, and to induce RAW 264.7 cell's suppressive effect on both cell growth and cell migration of 4 T1 mammary breast cancer cells.


Subject(s)
Epithelial Cells/drug effects , Immunologic Factors/pharmacology , Lamiaceae/chemistry , Polysaccharides/pharmacology , Animals , Carbohydrate Sequence , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial Cells/pathology , Flowers/chemistry , Humans , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Interleukin-6/agonists , Interleukin-6/immunology , Mice , Molecular Weight , Monosaccharides/chemistry , Monosaccharides/isolation & purification , Nitric Oxide/agonists , Nitric Oxide/immunology , Plant Extracts/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , RAW 264.7 Cells , Solubility , Tumor Necrosis Factor-alpha/agonists , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL