Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.051
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Sci Food Agric ; 104(11): 6461-6469, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38501369

ABSTRACT

BACKGROUND: Fried foods are favored for their unique crispiness, golden color and flavor, but they also face great challenge because of their high oil content, high calories and the existence of compounds such as acrylamide and polycyclic aromatic hydrocarbons. Long-term consumption of fried foods may adversely affect health. Therefore, it is necessary to explore fried foods with lower oil contents and a high quality to meet the demand. RESULTS: A method of enzyme treatment was explored to investigate the effects of maltogenic amylase (MA), transglutaminase (TG) and bromelain (BRO) on the physicochemical properties of the batter and the quality of fried spring roll wrapper (FSRW). The results showed that the MA-, TG- or BRO-treated batters had a significant shear-thinning behavior, especially with an increase in viscosity upon increasing TG contents. FSRW enhanced its fracturability from 419.19 g (Control) to 616.50 g (MA-6 U g-1), 623.49 g (TG-0.75 U g-1) and 644.96 g (BRO-10 U g-1). Meanwhile, in comparison with BRO and MA, TG-0.5 U g-1 endowed batter with the highest density and thermal stability. MA-15 U g-1 and TG-0.5 U g-1 displayed FSRW with uniform and dense pores, and significantly reduced its oil content by 18.05% and 25.02%, respectively. Moreover, compared to MA and TG, BRO-50 U g-1 improved the flavor of FSRW. CONCLUSION: MA, TG or BRO played a key role in affecting the physicochemical properties of the batter and the quality of FSRW. TG-0.5 U g-1 remarkly reduced the oil content of FSRW with a great potential in practical application. © 2024 Society of Chemical Industry.


Subject(s)
Bromelains , Cooking , Transglutaminases , Transglutaminases/chemistry , Bromelains/chemistry , Viscosity , Fruit/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Flour/analysis , Taste , Food Handling/methods
2.
An Acad Bras Cienc ; 96(1): e20191322, 2024.
Article in English | MEDLINE | ID: mdl-38359285

ABSTRACT

Dry residue of cassava was studied on the digestibility, performance, intestinal measurements, with or without inclusion of carbohydrases, of slow-growing broilers. 160 Label Rouge broiler chickens, 21-d-old, were distributed in a randomized, 2x5 factorial arrangement (male and female x 0, 10, 20, 30 and 40% residue) (metabolism trial). 1,100 male chicks were distributed in a 2x5 factorial arrangement (with/without carbohydrases x 0; 2.5; 5.0; 7.5; and 10.0% residue), with five replicates (performance trial). Increasing residue levels led to increases in energetic values. Feed intake from 1-21-d-old and 1-63-d-old decreased linearly. At 42 d-old, feed intake and weight gain levels exhibited a quadratic response, which predicted a highest value at 3.32% and 4.77%, respectively, for diets without carbohydrases. For 21- and 42-d-old chickens, the inclusion of carbohydrases reduced the weight and length of the small intestine. The energetic values of the diets were positively influenced by the residue and had similar digestibility values for both sexes. Inclusion of up to 10% of residue in slow-growing broiler diets does not impaired performance and intestinal morphology. The addition of carbohydrases reduced the viscosity of the digesta but it was not enough to improve the performance of the birds.


Subject(s)
Chickens , Glycoside Hydrolases , Manihot , Animals , Female , Male , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens/physiology , Diet/veterinary , Dietary Supplements , Digestion , Manihot/chemistry , Vegetables
3.
Vet Med Sci ; 10(1): e1344, 2024 01.
Article in English | MEDLINE | ID: mdl-38227704

ABSTRACT

BACKGROUND: Enzyme combinations, particularly phytase (PHY) with various carbohydrases and proteases, are utilized in commercial broiler production to enhance nutrient and energy bioavailability. OBJECTIVE: A feeding study was undertaken to determine whether the efficiency of an Escherichia coli-derived PHY and a feed enzyme complex (FEC) derived from Bacillus spp. containing carbohydrase and protease as main activities in broiler chickens is dependent on diet quality. A total of 900 male one-day-old broiler chickens (Ross 308) were assigned to a 2 × 3 factorial arrangement of the treatments with 2 different nutrient density diets, standard nutrient diet (SN diet) and a low-nutrient diet (LN diet; -100 kcal/kg for AMEn and -5% for crude protein [CP] and limiting amino acids), and 3 enzyme treatments (control [no enzymes], PHY and PHY + FEC). Each treatment group was composed of 6 replicates of 25 birds each. RESULTS: The LN diet caused a decrease in performance index, tibia length and diameter, tibia calcium content and jejunal villus surface area (VSA). The interaction effects between diet and enzyme supplementation were observed (p < 0.05) on overall average daily gain (ADG), performance index, tibia ash content and jejunal villus height (VH) and VSA, with the favourable benefits of PHY + FEC treatment being more pronounced in the LN diets. Regardless of dietary nutrient density, supplementation with PHY alone or combined with FEC enhanced (p < 0.05) final body weight, overall ADG and jejunal villus height (VH)/crypt depth, with the highest values observed in the PHY + FEC group. The PHY + FEC treatment also improved (p < 0.05) overall feed conversion ratio, apparent ileal digestibility of dry matter, organic matter, CP, and energy, and tibia phosphorus content compared to the control treatment. CONCLUSIONS: The results indicate that the simultaneous addition of PHY and FEC to the LN diets improved the growth rate, bone mineralization and gut morphology.


Subject(s)
6-Phytase , Dietary Supplements , Glycoside Hydrolases , Animals , Male , Chickens , 6-Phytase/metabolism , 6-Phytase/pharmacology , Peptide Hydrolases/pharmacology , Calcification, Physiologic , Escherichia coli , Digestion , Diet/veterinary , Nutrients , Animal Feed/analysis
4.
Int J Biol Macromol ; 254(Pt 3): 127966, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944726

ABSTRACT

Endo-1,4-ß-galactanase is an indispensable tool for preparing prebiotic ß-galacto-oligosaccharides (ß-GOS) from pectic galactan resources. In the present study, a novel endo-1,4-ß-galactanase (PoßGal53) belonging to glycoside hydrolase family 53 from Penicillium oxalicum sp. 68 was cloned and expressed in Pichia pastoris GS115. Upon purification by affinity chromatography, recombinant PoßGal53 exhibited a single band on SDS-PAGE with a molecular weight of 45.0 kDa. Using potato galactan as substrate, PoßGal53 showed optimal reaction conditions of pH 4.0, 40 °C, and was thermostable, retaining >80 % activity after incubating below 45 °C for 12 h. Significantly, PoßGal53 exhibited relatively conserved substrate specificity for (1 â†’ 4)-ß-D-galactan with an activity of 6244 ± 282 U/mg. In this regard, the enzyme is in effect the most efficient endo-1,4-ß-galactanase identified to date. By using PoßGal53, ß-GOS monomers were prepared from potato galactan and separated using medium pressure liquid chromatography. HPAEC-PAD, MALDI-TOF-MS and ESI-MS/MS analyses demonstrated that these ß-GOS species ranged from 1,4-ß-D-galactobiose to 1,4-ß-D-galactooctaose (DP 2-8) with high purity. This work provides not only a highly active tool for enzymatic degradation of pectic galactan, but an efficient protocol for preparing ß-GOS.


Subject(s)
Penicillium , Tandem Mass Spectrometry , Glycoside Hydrolases/metabolism , Penicillium/genetics , Penicillium/metabolism , Galactans/chemistry , Oligosaccharides/metabolism , Pectins , Substrate Specificity
5.
N Biotechnol ; 79: 39-49, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38097138

ABSTRACT

4-α-glucanotransferases (4αGTs, EC 2.4.1.25) from glycoside hydrolase family 77 (GH77) catalyze chain elongation of starch amylopectin chains and can be utilized to structurally modify starch to tailor its gelation properties. The potential relationship between the structural design of 4αGTs and functional starch modification is unknown. Here, family GH77 was mined in silico for enzyme candidates based on sub-grouping guided by Conserved Unique Peptide Patterns (CUPP) bioinformatics categorization. From + 12,000 protein sequences a representative set of 27 4αGTs, representing four different domain architectures, different bacterial origins and diverse CUPP groups, was selected for heterologous expression and further study. Most of the enzymes catalyzed starch modification, but their efficacies varied substantially. Five of the 4αGTs were characterized in detail, and their action was compared to that of the industrial benchmark enzyme, Tt4αGT (CUPP 77_1.2), from Thermus thermophilus. Reaction optima of the five 4αGTs ranged from ∼40-60 °C and pH 7.3-9.0. Several were stable for a minimum 4 h at 70 °C. Domain architecture type A proteins, consisting only of a catalytic domain, had high thermal stability and high starch modification ability. All five novel 4αGTs (and Tt4αGT) induced enhanced gelling of potato starch. One, At4αGT from Azospirillum thermophilum (CUPP 77_2.4), displayed distinct starch modifying abilities, whereas T24αGT from Thermus sp. 2.9 (CUPP 77_1.2) modified the starch similarly to Tt4αGT, but slightly more effectively. T24αGT and At4αGT are thus interesting candidates for industrial starch modification. A model is proposed to explain the link between the 4αGT induced molecular modifications and macroscopic starch gelation.


Subject(s)
Glycogen Debranching Enzyme System , Solanum tuberosum , Solanum tuberosum/metabolism , Glycoside Hydrolases , Starch , Glycogen Debranching Enzyme System/genetics , Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/metabolism , Peptides
6.
Plant Physiol Biochem ; 206: 108239, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113720

ABSTRACT

Xyloglucan endotransglucosylase/hydrolases (XTHs) play a crucial role in plant growth and development. However, their functional response to phytohormone in sugar beet still remains obscure. In this study, we identified 30 putative BvXTH genes in the sugar beet genome. Phylogenetic and evolutionary relationship analysis revealed that they were clustered into three groups and have gone through eight tandem duplication events under purifying selection. Gene structure and motif composition analysis demonstrated that they were highly conserved and all contained one conserved glycoside hydrolase family 16 domain (Glyco_hydro_16) and one xyloglucan endotransglycosylase C-terminus (XET_C) domain. Transcriptional expression analysis exhibited that all BvXTHs were ubiquitously expressed in leaves, root hairs and tuberous roots, and most of them were up-regulated by brassinolide (BR), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA3). Further mutant complementary experiment demonstrated that expression of BvXTH17 rescued the retarded growth phenotype of xth22, an Arabidopsis knock out mutant of AtXTH22. The findings in our work provide fundamental information on the structure and evolutionary relationship of the XTH family genes in sugar beet, and reveal the potential function of BvXTH17 in plant growth and hormone response.


Subject(s)
Arabidopsis , Beta vulgaris , Plant Growth Regulators , Beta vulgaris/genetics , Beta vulgaris/metabolism , Phylogeny , Glycosyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Glycoside Hydrolases/metabolism , Sugars , Gene Expression Regulation, Plant
7.
PeerJ ; 11: e16417, 2023.
Article in English | MEDLINE | ID: mdl-38144177

ABSTRACT

Jellyfish are economically important organisms in diverse countries, carnivorous organisms that consume various prey (crustaceans, mollusks, bivalves, etc.) and dissolved carbohydrates in marine waters. This study was focused on detecting and quantifying the activity of digestive glycosidases from the cannonball jellyfish (Stomolophus sp. 2) to understand carbohydrate digestion and its temporal-spatial variation. Twenty-three jellyfish gastric pouches were collected in 2015 and 2016 in the Gulf of California in three localities (Las Guásimas, Hermosillo, and Caborca). Nine samples were in intra-localities from Las Guásimas. Chitinase (Ch), ß-glucosidase (ß-glu), and ß-N-acetylhexosaminidase (ß-NAHA) were detected in the gastric pouches. However, cellulase, exoglucanase, α-amylase, polygalacturonase, xylanase, and κ-carrageenase were undetected. Detected enzymes showed halotolerant glycolytic activity (i = 0-4 M NaCl), optimal pH, and temperature at 5.0 and 30-50 °C, respectively. At least five ß-glucosidase and two ß-N-acetylhexosaminidase were detected using zymograms; however, the number of proteins with chitinase activity is not precise. The annual variation of cannonball jellyfish digestive glycosidases from Las Guásimas between 2015-2016 does not show significant differences despite the difference in phytoplankton measured as chlorophyll α (1.9 and 3.4 mg/m3, respectively). In the inter-localities, the glycosidase activity was statistically different in all localities, except for ß-N-acetylhexosaminidase activity between Caborca and Hermosillo (3,009.08 ± 87.95 and 3,101.81 ± 281.11 mU/g of the gastric pouch, respectively), with chlorophyll α concentrations of 2.6, 3.4 mg/m3, respectively. For intra-localities, the glycosidase activity did not show significant differences, with a mean chlorophyll α of 1.3 ± 0.1 mg/m3. These results suggest that digestive glycosidases from Stomolophus sp. 2 can hydrolyze several carbohydrates that may belong to their prey or carbohydrates dissolved in marine waters, with salinity over ≥ 0.6 M NaCl and diverse temperature (4-80 °C) conditions. Also, chlorophyll α is related to glycosidase activity in both seasons and inter-localities, except for chitinase activity in an intra-locality (Las Guásimas).


Subject(s)
Cellulases , Chitinases , Scyphozoa , Animals , Glycoside Hydrolases , Sodium Chloride , Scyphozoa/chemistry , beta-N-Acetylhexosaminidases , Carbohydrates , Chlorophyll
8.
J Agric Food Chem ; 71(44): 16669-16680, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37812684

ABSTRACT

ß-Glycosidase from Sulfolobus solfataricus (SS-BGL) is a highly effective biocatalyst for the synthesis of compound K (CK) from glycosylated protopanaxadiol ginsenosides. In order to improve the thermal stability of SS-BGL, molecular dynamics simulations were used to determine the residue-level binding energetics of ginsenoside Rd in the SS-BGL-Rd docked complex and to identify the top ten critical contributors. Target sites for mutations were determined using dynamic cross-correlation mapping of residues via the Ohm server to identify networks of distal residues that interact with the key binding residues. Target mutations were determined rationally based on site characteristics. Single mutants and then recombination of top hits led to the two most promising variants SS-BGL-Q96E/N97D/N302D and SS-BGL-Q96E/N97D/N128D/N302D with 2.5-fold and 3.3-fold increased half-lives at 95 °C, respectively. The enzyme activities relative to those of wild-type for ginsenoside conversion were 161 and 116%, respectively..


Subject(s)
Ginsenosides , Ginsenosides/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Plant Extracts/chemistry , Half-Life
9.
Chem Biodivers ; 20(8): e202300414, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37338138

ABSTRACT

In this study, methanol, ethanol, methanol-dichloromethane (1 : 1, v/v), acetone, ethyl acetate, diethyl ether, and chloroform extracts of lavender (Lavandula stoechas L. subsp. stoechas) were prepared by maceration, and the ursolic acid contents in the extracts were determined quantitatively by HPLC analyses. The present results show that the methanol-dichloromethane (1 : 1, v/v) solvent system is the most efficient solvent system for the extraction of ursolic acid from the plant sample with the highest yield (2.22 g/100 g plant sample). In the present study, a new practical method for the isolation of ursolic acid from polar extracts was also demonstrated for the first time. The inhibition effects of the extracts and ursolic acid were also revealed on α-glycosidase, acetylcholinesterase, butyrylcholinesterase, and human carbonic anhydrase I and II enzymes by determining IC50 values for the first time. The extracts and ursolic acid acted as potent antidiabetic agents by strongly inhibiting the α-glycosidase activity, whereas they were found to be very weak neuroprotective agents. In view of the present results, L. stoechas and its major metabolite, ursolic acid, can be recommended as a herbal source to control postprandial blood sugar levels and prevent diabetes by delaying the digestion of starch in food.


Subject(s)
Lavandula , Oils, Volatile , Triterpenes , Humans , Oils, Volatile/pharmacology , Methanol , Acetylcholinesterase , Butyrylcholinesterase , Methylene Chloride , Triterpenes/pharmacology , Plant Extracts/pharmacology , Solvents , Glycoside Hydrolases , Ursolic Acid
10.
Chem Biodivers ; 20(5): e202201231, 2023 May.
Article in English | MEDLINE | ID: mdl-37096958

ABSTRACT

In the study, water, ethanol, methanol, dichloromethane, and acetone extracts of Asparagus officinalis L. were obtained by maceration. DPPH⋅, ABTS⋅+ , FRAP, and CUPRAC methods determined the antioxidant capacities of all extracts. Moreover, the in vitro effects of extracts on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase (CA)-I, CA-II and α-Glycosidase were investigated. At a 10 µg/ml concentration, the extract with the highest Fe3+ reduction capacity was ethanol (AE), and the extract with the highest Cu2+ reduction capacity was acetone (AA). AE for AChE (IC50 =21.19 µg/ml) and α-Glycosidase (IC50 : 70.00 µg/ml), methanol (AM) for BChE (IC50 =17.33 µg/ml), CA-I and II (IC50 =79.65 and 36.09 µg/ml, respectively) showed the most potent inhibition effect. The content analysis of acetone extract was performed with LC/MS-MS, the first three phytochemicals found most were p-Coumaric acid, rutin, and 4-hydroxybenzoic acid (284.29±3.97, 135.39±8.19, and 102.06±5.51 µg analyte/g extract, respectively).


Subject(s)
Antioxidants , Asparagus Plant , Antioxidants/chemistry , Butyrylcholinesterase , Acetylcholinesterase , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Methanol , Acetone , Phytochemicals/pharmacology , Phytochemicals/chemistry , Ethanol , Glycoside Hydrolases
11.
Plant Physiol Biochem ; 197: 107663, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36989986

ABSTRACT

Momordica charantia seeds are known to contain a galactose specific lectin that has been well characterized. Seed extracts also contain glycosidases such as the ß-hexosaminidase, α-mannosidase and α-galactosidase. In the present study, lectin was affinity purified from the seed extracts and protein bodies isolated by sucrose density gradient centrifugation. From the protein bodies, lectin was identified and ß-hexosaminidase was isolated by lectin affinity chromatography and subsequently separated from other glycosidases by gel filtration. In the native PAGE, the purified ß-hexosaminidase migrated as a single band with a molecular weight of ∼235 kDa and by zymogram analysis using 4-methylumbelliferyl N-acetyl-ß-D-glucosaminide substrate it was confirmed as ß-hexosaminidase. Under reducing conditions in SDS-PAGE, the purified enzyme dissociated into three bands (Mr 33, 20 and 15 kDa). The prominent bands (20 and 15 kDa) showed immunological cross-reactivity with the human Hexosaminidase B antibody in a western blot experiment. In gel digestion of the purified enzyme, followed by proteomic analysis using tandom MS/MS revealed sequence identity as compared to the genomic sequence of the Momordica charantia with a score of 57 (24% sequence coverage). Additionally, by CD analysis the purified ß-hexosaminidase showed 39.1% of α-helix. Furthermore, secondary structure variations were observed in presence of substrate, lectin and at different pH values. Protein body membrane prepared from the isolated protein bodies showed a pH dependent interaction with the purified lectin and mixture of glycosidases.


Subject(s)
Lectins , Momordica charantia , Humans , Glycoside Hydrolases/metabolism , beta-N-Acetylhexosaminidases/metabolism , Tandem Mass Spectrometry , Proteomics , Seeds/metabolism , Plant Extracts/metabolism
12.
Enzyme Microb Technol ; 165: 110212, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804180

ABSTRACT

To solve the insufficient availability of mogrol, an 11α-hydroxy aglycone of mogrosides in Siraitia grosvenorii, snailase was employed as the enzyme to completely deglycosylate LHG extract containing 50% mogroside V. Other commonly used glycosidases performed less efficiently. Response surface methodology was conducted to optimize the productivity of mogrol, which peaked at 74.7% in an aqueous reaction. In view of the differences in water-solubility between mogrol and LHG extract, we employed an aqueous-organic system for the snailase-catalyzed reaction. Of five tested organic solvents, toluene performed best and was relatively well tolerated by snailase. After optimization, biphasic medium containing 30% toluene (v/v) could produce a high-quality mogrol (98.1% purity) at a 0.5 L scale with a production rate of 93.2% within 20 h. This toluene-aqueous biphasic system would not only provide sufficient mogrol to construct future synthetic biology systems for the preparation of mogrosides, but also facilitate the development of mogrol-based medicines.


Subject(s)
Cucurbitaceae , Glycoside Hydrolases , Water , Plant Extracts
13.
J Agric Food Chem ; 71(8): 3852-3861, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36790033

ABSTRACT

Ginsenosides are the main bioactive ingredients in plants of the genus Panax. Vina-ginsenoside R7 (VG-R7) is one of the rare high-value ginsenosides with health benefits. The only reported method for preparing VG-R7 involves inefficient and low-yield isolation from highly valuable natural resources. Notoginsenoside Fc (NG-Fc) isolated in the leaves and stems of Panax notoginseng is a suitable substrate for the preparation of VG-R7 via specific hydrolysis of the outside xylose at the C-20 position. Here, we first screened putative enzymes belonging to the glycoside hydrolase (GH) families 1, 3, and 43 and found that KfGH01 can specifically hydrolyze the ß-d-xylopyranosyl-(1 → 6)-ß-d-glucopyranoside linkage of NG-Fc to form VG-R7. The I248F/Y410R variant of KfGH01 obtained by protein engineering displayed a kcat/KM value (305.3 min-1 mM-1) for the reaction enhanced by approximately 270-fold compared with wild-type KfGH01. A change in the shape of the substrate binding pockets in the mutant allows the substrate to sit closer to the catalytic residues which may explain the enhanced catalytic efficiency of the engineered enzyme. This study identifies the first glycosidase for bioconversion of a ginsenoside with more than four sugar units, and it will inspire efforts to investigate other promising enzymes to obtain valuable natural products.


Subject(s)
Ginsenosides , Panax notoginseng , Panax , Ginsenosides/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Panax/chemistry , Panax notoginseng/metabolism , Hydrolysis
14.
Chem Biodivers ; 20(2): e202200760, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36693786

ABSTRACT

This study aimed to quantify verbascoside (VEB), perform molecular docking studies of VEB with the α-glucosidase (GL) of Bacillus stearothermophilus, and evaluate the inhibition of the enzyme by L. dulcis preparations. The substrate concentration and presence of reduced glutathione were evaluated for their effect on the in vitro inhibition of the GL enzyme. Assays were also performed in the presence and absence of simulated gastric fluid. The antidiabetic fractions 2 and 3 were the most inhibited GL, but their activity were significantly decreased in the presence of gastric fluid. Chromatographic analyses confirmed the predominant presence of VEB in the samples. The samples had VEB concentrations between 49.9 and 243.5 mg/g. Simulation of the molecular docking of VEB were consistent with its GL-inhibitory activity. It can conclude that the crude ethanol extract and fractions show inhibitory activity against the GL enzyme.


Subject(s)
Lippia , Verbenaceae , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolases , Plant Extracts/chemistry , Hyaluronoglucosaminidase , Hypoglycemic Agents/chemistry , alpha-Glucosidases/chemistry
15.
Int J Biol Macromol ; 224: 105-114, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36257364

ABSTRACT

4-α-glucanotransferase (EC 2.4.1.25) mediated glucan transfer in starch provides opportunities for production of clean label starch ingredients with unique gelling properties. 4-α-glucanotransferases can be found in glycoside hydrolase (GH) family GH13, GH57, and in the monospecific glycoside hydrolase family 77 (GH77). Here, pH-temperature optima, steady-state kinetics, potato starch modifying properties and structural folds are reported for six phylogenetically distinct GH77 members, representing four different domain architectures including a novel multi-domain 4-α-glucanotransferase from Lactococcus lactis. Four of the enzymes exhibited starch modifying activity leading to a gradual decrease of the amylose content, elongation of amylopectin chains, and enabled formation of firm starch gels. Unexpectedly, these diverse enzymes catalyzed similar changes in chain length distributions. However, the amylose depletion and amylopectin elongation rates spanned more than two orders of magnitude between the enzyme showing very different specific activities. Tt4αGT from Thermus thermophilus had highest temperature optimum (73 °C) and superior potato starch modifying efficacy compared to the other five enzymes.


Subject(s)
Amylopectin , Solanum tuberosum , Amylopectin/chemistry , Glycoside Hydrolases , Amylose/chemistry , Starch
16.
São Paulo; s.n; 2023. 78 p.
Thesis in Portuguese | LILACS | ID: biblio-1532219

ABSTRACT

Introdução: A diabetes mellitus (DM) é uma doença crônica não transmissível importante e crescente problema de saúde pública no mundo. Mudanças no estilo de vida, como um hábito alimentar saudável, contribuem para redução da glicemia e controle do diabetes. O café é um alimento amplamente consumido e rico em compostos fenólicos com propriedades antioxidantes, com estudos sugerindo que seu maior consumo pode estar associado a um menor risco de mortalidade no diabetes. Objetivos: Analisar os efeitos das bebidas à base de café em cápsula em enzimas do metabolismo glicídico e captação de glicose em modelo de células intestinais Caco-2. Métodos: As amostras de bebidas foram preparadas com cápsulas de café espresso regular e descafeinado com ou sem adição de leite. Essas bebidas à base de café foram submetidas à digestão in vitro e seus compostos fenólicos foram quantificados e identificados. Foram realizados ensaios de permeação e quantificação de glicose nas células Caco-2, ensaios da inibição da α-glicosidase, inibição α-amilase e inibição de dipeptidil peptidase-IV (DPP-IV). Análises da capacidade antioxidante foram realizadas por meio de ensaio da capacidade de absorbância de radical oxigênio (ORAC), inibição da peroxidação lipídica (TBARS) e, também foram analisados kits comerciais o ensaio da catalase e atividade antioxidante total (TAC). Os resultados foram expressos como média e desvio padrão. Resultados Não houve diferença estatística (p>0,05) na permeação de glicose entre as diferentes bebidas de café nas células Caco-2. Na análise da capacidade de inibição da enzima α-amilase o café regular apresentou melhor inibição na fase oral, e na fase intestinal o café descafeinado apresentou melhor resultado. A inibição da e α-glicosidase os cafés descafeinado e puro foram mais efetivos. Quanto à atividade da enzima catalase na porção apical, as menores concentrações de café regular e descafeinado foram mais efetivas. A melhor capacidade antioxidante foi observada no café descafeinado. Leite e cafeína foram efetivos em estimular a enzima DPPIV. Conclusão: Todas as bebidas apresentaram capacidade antioxidante, onde se destaca a superior capacidade antioxidante do café descafeinado. As bebidas puras foram mais efetivas para inibição das enzimas α-amilase e α-glicosidase após digestão e nas células Caco-2, leite e cafeína foram melhor ativadores de DPPIV.


Background: Diabetes mellitus (DM) is an important chronic non-communicable disease and a growing public health problem worldwide. Lifestyle changes, such as healthy eating habits, contribute to lowering blood glucose levels and controlling diabetes. Coffee is a widely consumed food rich in phenolic compounds with antioxidant properties, with studies suggesting that its higher consumption may be associated with a lower risk of mortality in diabetes. Aims: To analyze the effects of capsule coffee drinks on enzymes of glucose metabolism and glucose uptake in a Caco-2 intestinal cell model. Methods: The beverage samples were prepared with espresso and decaffeinated coffee capsules with or without added milk. These coffee drinks were subjected to in vitro digestion and their phenolic compounds were quantified and identified. Glucose permeation and quantification tests were carried out on Caco-2 cells, as well as α-glucosidase inhibition, α-amylase inhibition and dipeptidyl peptidase-IV (DPP-IV) inhibition tests. Antioxidant capacity analyses were carried out using the oxygen radical absorbance capacity (ORAC) assay, lipid peroxidation inhibition (TBARS), and the catalase assay and total antioxidant activity (TAC) were also analyzed using commercial kits. The results were expressed as mean and standard deviation. Results: There was no statistical difference (p>0.05) in glucose permeation between the different coffee drinks in Caco-2 cells. In the analysis of the ability to inhibit the α-amylase enzyme, regular coffee showed better inhibition in the oral phase, and decaffeinated coffee showed better results in the intestinal phase. Decaffeinated and pure coffees were more effective at inhibiting α-glucosidase. As for the activity of the enzyme catalase in the apical portion, the lower concentrations of normal and decaffeinated coffee were more effective. The best antioxidant capacity was observed in decaffeinated coffee. Milk and caffeine were effective in stimulating the DPPIV enzyme. Conclusion: All the beverages showed antioxidant capacity, with the superior antioxidant capacity of decaffeinated coffee standing out. The pure drinks were more effective in inhibiting the enzymes α-amylase and α-glucosidase after digestion and, in Caco-2 cells, milk and caffeine were better activators of DPPIV.


Subject(s)
Coffee , Diabetes Mellitus , alpha-Amylases , Phenolic Compounds , Dipeptidyl-Peptidase IV Inhibitors , Noncommunicable Diseases , Glycoside Hydrolases , Antioxidants
17.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144513

ABSTRACT

Bee products are known for their beneficial properties widely used in complementary medicine. This study aims to unveil the physicochemical, nutritional value, and phenolic profile of bee pollen and honey collected from Boulemane-Morocco, and to evaluate their antioxidant and antihyperglycemic activity. The results indicate that Citrus aurantium pollen grains were the majority pollen in both samples. Bee pollen was richer in proteins than honey while the inverse was observed for carbohydrate content. Potassium and calcium were the predominant minerals in the studied samples. Seven similar phenolic compounds were found in honey and bee pollen. Three phenolic compounds were identified only in honey (catechin, caffeic acid, vanillic acid) and six phenolic compounds were identified only in bee pollen (hesperidin, cinnamic acid, apigenin, rutin, chlorogenic acid, kaempferol). Naringin is the predominant phenolic in honey while hesperidin is predominant in bee pollen. The results of bioactivities revealed that bee pollen exhibited stronger antioxidant activity and effective α-amylase and α-glycosidase inhibitory action. These bee products show interesting nutritional and bioactive capabilities due to their chemical constituents. These features may allow these bee products to be used in food formulation, as functional and bioactive ingredients, as well as the potential for the nutraceutical sector.


Subject(s)
Catechin , Hesperidin , Honey , Animals , Antioxidants/chemistry , Apigenin/analysis , Bees , Calcium/analysis , Catechin/analysis , Chlorogenic Acid/analysis , Glycoside Hydrolases/analysis , Hesperidin/analysis , Honey/analysis , Hypoglycemic Agents/analysis , Kaempferols/analysis , Minerals/analysis , Morocco , Phenols/chemistry , Pollen/chemistry , Potassium/analysis , Rutin/analysis , Rutin/pharmacology , Vanillic Acid , alpha-Amylases
18.
Biomed Res Int ; 2022: 9636436, 2022.
Article in English | MEDLINE | ID: mdl-36119934

ABSTRACT

The galls of Pistacia integerrima are used in folk medicine for curing diabetes. The main aim of this study was the purification of flavonoids from galls of P. integerrima. The methanolic extract was subjected to column chromatographic analysis which afforded six flavonoids, namely, 3,5,7,4'-tetrahydroxy-flavanone (1), naringenin (2), 3,5,4'-trihydroxy,7-methoxy-flavanone (3), sakuranetin (4), spinacetin (5), and patuletin (6). These isolated compounds (1-6) were tested against α-glycosidase. The maximum antagonistic effect was noted against compound 6 (97.65%) followed by compound 5 (90.42%) and compound 1 (90.01%) at the same concentration (0.2 µg). The inhibitory potential of all tested compounds was significant with a degree of variation from each other. Docking studies showed that all studied compounds interact with the active site residues via hydrogen bond interactions with hydroxyl groups, and thus, inhibition was enhanced. Hence, this finding would be the first screening of isolated flavonoids for α-glycosidase activity and with the mechanism of action. These flavonoids should be further investigated as candidate drugs for combating diabetes mellitus.


Subject(s)
Flavanones , Pistacia , Flavanones/chemistry , Flavanones/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Glycoside Hydrolases , Pistacia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
19.
Chem Biodivers ; 19(9): e202200348, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36045318

ABSTRACT

This study was designed to screen the phytochemical composition and investigate the biological activities of Hedysarum candidissimum extracts and also support the results with molecular docking studies. LC/MS/MS analysis revealed the presence of 22 phytochemical constituents (mainly phenolic acids, flavonoids, and flavonoid glycosides) in the plant structure. The methanol extract exhibited the strongest antioxidant activity among all the extracts with its strong DPPH radical scavenging and iron reducing capacity, as well as high phenolic and flavonoid contents. Additionally, it was found to be the most promising acetylcholinesterase (AChE: IC50 : 93.26 µg/mL) and α-glycosidase (AG: IC50 : 28.57 µg/mL) inhibitory activities, supported by the major phenolics of the species through in silico studies. Ethyl acetate extract had the strongest cytotoxic effect on HT-29 (IC50 : 63.03 µg/mL) and MDA-MB-453 (IC50 : 95.36 µg/mL) cancer cell lines. Both extracts exhibited considerable apoptotic and anti-migrative effects on HT-29 cells. The investigations provide phyto-analytical and bio-pharmacological results which can be extended by in vivo studies in the future.


Subject(s)
Acetylcholinesterase , Antioxidants , Acetylcholinesterase/metabolism , Antioxidants/chemistry , Flavonoids/analysis , Glycoside Hydrolases , Glycosides , Iron , Methanol , Molecular Docking Simulation , Phenols/analysis , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Turkey
20.
Food Chem ; 395: 133651, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35820274

ABSTRACT

Brassica vegetables, especially broccoli, have health benefits such as anticancer activity, which are attributed to isothiocyanate (ITC), products of glucosinolate hydrolysis. This study aimed to explore the effect of cooking time and addition of exogenous myrosinase (MYR) from moringa seeds on the yield of ITCs. The results showed that raw broccoli produced a significantly high amount of ITCs, which decreased by almost 40% after microwaving the broccoli for 1 min. Introducing exogenous MYR by adding ground moringa seeds to cooked broccoli caused a notable increase in ITC of 38%. At pH 4.0-6.0, MYR showed optimal activity, and the thermal stability of MYR from moringa seeds was better than that from broccoli. The kinetic parameters indicated that MYR from moringa seeds had a higher affinity to sinigrin than that from broccoli seeds. This study was novel in reporting that adding ground moringa seeds to cooked broccoli enhanced ITC formation.


Subject(s)
Brassica , Moringa , Cooking , Dietary Supplements , Glucosinolates/analysis , Glycoside Hydrolases , Isothiocyanates
SELECTION OF CITATIONS
SEARCH DETAIL