Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 13(1): 10644, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391468

ABSTRACT

Mammalian lipoxygenases (LOXs) are involved in the biosynthesis of mediators of anaphylactic reactions and have been implicated in cell maturation, the pathogenesis of bronchial asthma, atherosclerosis, rheumatoid arthritis, cardiovascular diseases, Alzheimer's disease and osteoporosis. Hence LOX inhibition in chronic conditions can lead to reducing the disease progression, which can be a good target for treating these diseases. The present study deals with designing methyl gallate derivatives and their anti-inflammatory effect by in silico, in vitro and in vivo methods. Designed derivatives were docked against LOX enzyme, and molecular dynamic simulations were carried out. Following the synthesis of derivatives, in vitro LOX inhibition assay, enzyme kinetics and fluorescence quenching studies were performed. One of the derivatives of methyl gallate (MGSD 1) was demonstrated as an anti-inflammatory agent for the treatment of rheumatoid arthritis in the animal model. Amelioration of Freund's complete adjuvant (FCA)-induced arthritis by methyl gallate and its derivative with a concentration of 10-40 mg.kg-1 has been assessed in vivo in a 28-day-long study. TNF-α and COX-2 gene expression were also studied. Methyl gallate synthetic derivatives (MGSDs) inhibited LOX with an IC50 of 100 nM, 304 nM, and 226 nM for MGSD 1, MGSD 2, and MGSD 3, respectively. Fluorescence quenching methods also prove their binding characteristics, and 200 ns simulations studies showed that the RMSDs for the entire complex were less than 2.8 Å. The in vivo results showed that methyl gallate was required approximately five times diclofenac for the same level of effect, and the synthesised (MGSD 1) compound required only approximately 1/12 of diclofenac for the same level of effect in in-vivo studies. The preeminent expression of COX-2 and TNF-α genes was significantly decreased after the treatment of the methyl gallate derivative. Hence, the in vivo results showed that the referenced synthetic derivative might have more arthritis-reducing properties than the parent compound methyl gallate and is more potent than the standard drug diclofenac, with no apparent induced toxicity.


Subject(s)
Arthritis, Rheumatoid , Cytokines , Animals , Lipoxygenase , Cyclooxygenase 2/genetics , Tumor Necrosis Factor-alpha , Diclofenac , Lipoxygenases , Gene Expression , Mammals
2.
Appl Microbiol Biotechnol ; 107(7-8): 2209-2221, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36807735

ABSTRACT

Biobased polymers derived from plant oils are sustainable alternatives to petro based polymers. In recent years, multienzyme cascades have been developed for the synthesis of biobased ω-aminocarboxylic acids, which serve as building blocks for polyamides. In this work, we have developed a novel enzyme cascade for the synthesis of 12-aminododeceneoic acid, a precursor for nylon-12, starting from linoleic acid. Seven bacterial ω-transaminases (ω-TAs) were cloned, expressed in Escherichia coli and successfully purified by affinity chromatography. Activity towards the oxylipin pathway intermediates hexanal and 12-oxododecenoic acid in their 9(Z) and 10(E) isoforms was demonstrated for all seven transaminases in a coupled photometric enzyme assay. The highest specific activities were obtained with ω-TA from Aquitalea denitrificans (TRAD), with 0.62 U mg-1 for 12-oxo-9(Z)-dodecenoic acid, 0.52 U mg-1 for 12-oxo-10(E)-dodecenoic acid and 1.17 U mg-1 for hexanal. A one-pot enzyme cascade was established with TRAD and papaya hydroperoxide lyase (HPLCP-N), reaching conversions of 59% according to LC-ELSD quantification. Starting from linoleic acid, up to 12% conversion to 12-aminododecenoic acid was achieved with a 3-enzyme cascade comprising soybean lipoxygenase (LOX-1), HPLCP-N and TRAD. Higher product concentrations were achieved by the consecutive addition of enzymes compared to simultaneous addition at the beginning. KEY POINTS: • Seven ω-transaminases converted 12-oxododecenoic acid into its corresponding amine. • A three-enzyme cascade with lipoxygenase, hydroperoxide lyase, and ω-transaminase was established for the first time. • A one-pot transformation of linoleic acid to 12-aminododecenoic acid, a precursor of nylon-12 was achieved.


Subject(s)
Oxylipins , Transaminases , Transaminases/genetics , Transaminases/metabolism , Linoleic Acid , Lipoxygenase/genetics , Lipoxygenase/metabolism , Polymers
3.
Nat Prod Res ; 37(3): 514-521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34612773

ABSTRACT

The effect of extracting solvents used by two methods on the TPC, TFC, antioxidant as well as lipoxygenase, and tyrosinase inhibition activities of O. ficus-indica fruit (peel and pulp) were studied. The results manifest that extracts with solvent polarities showed different levels of polyphenols contents and antioxidant activities. The extracts acquired by the Soxhlet method were the most fascinating. Interestingly, peel extracts contain more polyphenols than pulp and showed activities. Lipoxygenase and tyrosinase inhibitory activity of the fruit peel and pulp extracts was reported for the first time. The promising results obtained prompted to the formulation of a stable phytocosmetic emulsion system loaded with 1% pre-concentrated peel extract, aiming to revive facial skin properties. The efficacy of the formulations was determined through SPF and UVA protection factors. To the in vitro safety assessment CAM-TBS, HET-CAM, and red blood cell tests were achieved. Importantly, the formulation did not induce any toxicity.


Subject(s)
Opuntia , Polyphenols , Polyphenols/analysis , Antioxidants/pharmacology , Monophenol Monooxygenase , Fruit/chemistry , Flavonoids/pharmacology , Solvents , Lipoxygenase , Saudi Arabia , Plant Extracts/pharmacology
4.
J Agric Food Chem ; 70(40): 12935-12945, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36173729

ABSTRACT

Enzymatic and nonenzymatic oxidation of linoleic (LA) and α-linolenic acid (ALA) during pressing and storage of plant oils leads to a variety of oxylipins. We pressed oils from flaxseeds, rapeseeds, and sunflower seeds and analyzed the oxylipin pattern in freshly pressed oils. 9-/13-Hydro(pero)xy-LA/-ALA occurred in high concentration resulting probably from lipoxygenase-catalyzed reactions as well as autoxidation and photooxidation. However, in flaxseed and rapeseed oil, the highest concentrations were found for the terminal epoxy-ALA (15(16)-EpODE) and the hardly known 15-hydroxy-LA (15-HODE, 80 mg/100 g in flaxseed oil). Oils were stored for 6 months and the peroxide value (PV) as well as oxylipin and secondary volatile aldehyde concentrations were determined. While lipid peroxidation in flaxseed oil was surprisingly low, the oxylipin concentration and PV massively increased in rapeseed oil dependent on oxygen availability. Oxylipin concentrations correlated well with the PV, while secondary volatile aldehydes did not reflect the changes of oxylipins and PVs. The comprehensive analysis of hydroxy-, epoxy-, and dihydroxy-LA/-ALA reveals new and unique insights into the composition of plant oils and ongoing oxidation processes.


Subject(s)
Oxylipins , alpha-Linolenic Acid , Aldehydes , Linseed Oil , Lipoxygenase , Oxygen , Peroxides , Plant Oils , Plants , Rapeseed Oil
5.
Infect Immun ; 90(7): e0002922, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35658510

ABSTRACT

5-Lipoxygenase (5-LO) is an enzyme required for the production of leukotrienes and lipoxins and interferes with parasitic infections. In vitro, Toxoplasma gondii inhibits leukotriene B4 (LTB4) production, and mice deficient in 5-LO are highly susceptible to infection. The aim of this study was to investigate the effects of the pharmacological inhibition of the 5-LO pathway and exogenous LTB4 supplementation during experimental toxoplasmosis. For this purpose, susceptible C57BL/6 mice were orally infected with T. gondii and treated with LTB4 or MK886 (a selective leukotriene inhibitor through inhibition of 5-LO-activating protein [FLAP]). The parasitism, histology, and immunological parameters were analyzed. The infection decreased 5-LO expression in the small intestine, and treatment with MK886 reinforced this reduction during infection; in addition, MK886-treated infected mice presented higher intestinal parasitism, which was associated with lower local interleukin-6 (IL-6), interferon gamma (IFN-γ), and tumor necrosis factor (TNF) production. In contrast, treatment with LTB4 controlled parasite replication in the small intestine, liver, and lung and decreased pulmonary pathology. Interestingly, treatment with LTB4 also preserved the number of Paneth cells and increased α-defensins expression and IgA levels in the small intestine of infected mice. Altogether, these data demonstrated that T. gondii infection is associated with a decrease in 5-LO expression, and on the other hand, treatment with the 5-LO pathway product LTB4 resulted in better control of parasite growth in the organs, adding to the knowledge about the pathogenesis of T. gondii infection.


Subject(s)
Parasites , Toxoplasma , Toxoplasmosis , Animals , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Leukotriene B4 , Lipoxygenase , Mice , Mice, Inbred C57BL , Parasites/metabolism
6.
J Exp Bot ; 73(9): 3044-3052, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35560188

ABSTRACT

KODA (9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid) is a plant oxylipin involved in recovery from stress. As an agrichemical, KODA helps maintain crop production under various environmental stresses. In plants, KODA is synthesized from α-linolenic acids via 9-lipoxygenase (9-LOX) and allene oxide synthase (AOS), although the amount is usually low, except in the free-floating aquatic plant Lemna paucicostata. To improve KODA biosynthetic yield in other plants such as Nicotiana benthamiana and Arabidopsis thaliana, we developed a system to overproduce KODA in vivo via ectopic expression of L. paucicostata 9-LOX and AOS. The transient expression in N. benthamiana showed that the expression of these two genes is sufficient to produce KODA in leaves. However, stable expression of 9-LOX and AOS (with consequent KODA production) in Arabidopsis plants succeeded only when the two proteins were targeted to plastids or the endoplasmic reticulum/lipid droplets. Although only small amounts of KODA could be detected in crude leaf extracts of transgenic Nicotiana or Arabidopsis plants, subsequent incubation of the extracts increased KODA abundance over time. Therefore, KODA production in transgenic plants stably expressing 9-LOX and AOS requires specific sub-cellular localization of these two enzymes and incubation of crude leaf extracts, which liberates α-linolenic acid via breakdown of endogenous lipids.


Subject(s)
Arabidopsis , Oxylipins , Arabidopsis/genetics , Arabidopsis/metabolism , Lipoxygenase/genetics , Oxylipins/metabolism , Plant Extracts , Nicotiana/genetics , Nicotiana/metabolism , alpha-Linolenic Acid/metabolism
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121100, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35272121

ABSTRACT

5-lipoxygenase (5-LOX) was a key enzyme involved in many inflammatory diseases. Sec-O-glucosylhamaudol (SOG) was a chromone found in Saposhnikovia divaricata (Turcz.) Schischk (S. divaricate). The potato-derived 5-LOX (p-5-LOX) and human recombinant 5-LOX (h-5-LOX) were selected as model protein due to their simple usability and high stability in this study. Thus, the binding interactions of p-5-LOX and h-5-LOX with SOG were investigated by multi-spectroscopy and molecular docking. As a result, the fluorescence intensities of the two 5-LOX were quenched statically by SOG. However, the binding ability of SOG to h-5-LOX was higher than that of p-5-LOX at the same temperature. The results of multi-spectroscopy revealed that the conformation and micro-environment of the two 5-LOX proteins were changed after binding with SOG. Fluorescence assay and molecular docking indicated that hydrogen bond and electrostatic gravitation were the main forces between the two 5-LOX and SOG. Our results here suggested that SOG may exert anti-inflammatory effect by inhibiting 5-LOX activity.


Subject(s)
Solanum tuberosum , Arachidonate 5-Lipoxygenase , Humans , Lipoxygenase/chemistry , Lipoxygenase/metabolism , Molecular Docking Simulation , Solanum tuberosum/metabolism , Spectrum Analysis
8.
Nutr Cancer ; 74(2): 724-734, 2022.
Article in English | MEDLINE | ID: mdl-33840317

ABSTRACT

Angiogenesis is a complex physiological process that cannot be treated with single agent therapy. Several edible fungi have been known to encompass bioactive compounds, and are promising sources of multi-component drugs. One such widely consumed edible fungi is Cantharellus cibarius, which has been explored for its biological activities. The present study focused on assessing the anti-angiogenic activity of petroleum ether and ethanol extracts of C. cibarius using chick chorioallantoic membrane (CAM) assay. Both the extracts showed a dose-dependent response which was compared with the anti-angiogenic activity of the positive controls silibinin, and lenalidomide. The extracts were also studied for their lipoxygenase (LOX) inhibitory potential and compared to ascorbic acid as the positive control. The IC50 values of the petroleum ether extract, ethanol extract, and ascorbic acid for LOX inhibition assay were 135.4, 113.1, and 41.5 µg/mL, respectively. Although both the extracts showed similar responses in CAM assay, ethanol extract proved to be more potent in LOX inhibition assay. Finally, the extracts were investigated for their chemical composition using GC-MS. A correlation between LOX inhibition and anti-angiogenic potential was established at the molecular level. A meticulous literature search was carried out to correlate the biochemical composition of the extracts to their anti-angiogenic activity.


Subject(s)
Basidiomycota , Plant Extracts , Angiogenesis Inhibitors/pharmacology , Basidiomycota/chemistry , Lipoxygenase , Plant Extracts/chemistry , Plant Extracts/pharmacology
9.
Ciênc. rural (Online) ; 52(10): e20210372, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1364722

ABSTRACT

The present study investigated the chemical profiles and evaluated the inhibitory effect against 5-Lipoxygenase (5-Lox) activity for extracts of ginger rhizome, callus, and callus treated with the elicitors; yeast extract (100, 300 and 500 mg/L), glycine (100, 200 and 300 mg/L) and salicylic acid (100 and 200 mg/L). Oils and chloroform: methanol (CM) extracts were prepared by maceration in petroleum ether and CM (1:1, v/v), respectively. Chemical profiles were determined by gas chromatography/mass spectrometry (GC/MS) analysis. Oil of the callus recorded higher 5-Lox inhibitory effect (IC50 58.33±4.66 µg/mL) than the oil of rhizome (IC50168.34±15.64 µg/mL) and comparable to that of the positive control; Nordihydroguaiaretic acid (IC50 61.25±1.02 µg/mL). The chemical profile of the callus oil contained large amounts of fatty acids, mainly the unsaturated fatty acid oleic acid (31.11%) and saturated fatty acid palmitic acid (28.56%). Elicitors modified the chemical profile of the callus and ameliorated the anti-5-Lox activity of CM extract of the callus. CM extracts of callus treated with 100 and 300 mg/L yeast extract and 50 mg/L salicylic acid significantly suppressed (P ≤ 0.05) the 5-Lox activity by 33.16%, 25.46% and 16%, respectively as compared to the CM extract of untreated callus. In conclusion, ginger callus could be considered as a valuable dietary supplement in the treatment of various inflammatory disorders.


O presente estudo teve como objetivo investigar os perfis químicos e avaliar o efeito inibitório da atividade da 5-Lipoxigenase (5-Lox) em extratos de rizoma, calo e calo de gengibre tratados com os eliciadores; extrato de levedura (100, 300 e 500 mg / L), glicina (100, 200 e 300 mg / L) e ácido salicílico (100 e 200 mg / L). Extratos de óleos e clorofórmio: metanol (CM) foram preparados por maceração em éter e CM (1: 1, v / v), respectivamente. Os perfis químicos foram determinados por análise de cromatografia gasosa / espectrometria de massa (GC / MS). O óleo do calo registrou maior efeito inibitório de 5-Lox (IC50 58,33 ± 4,66 µg / mL) do que o óleo de rizoma (IC50168,34 ± 15,64 µg / mL) e comparável ao do controle positivo; Ácido nordi-hidroguaiarético (IC50 61,25 ± 1,02 µg / mL). O perfil químico do óleo de calo continha grandes quantidades de ácidos graxos, principalmente o ácido graxo insaturado ácido oleico (31,11%) e ácido graxo saturado palmítico (28,56%). Os elicitores modificaram o perfil químico do calo e melhoraram a atividade anti-5-Lox do extrato de CM do calo. Extratos de CM de calos tratados com 100 e 300 mg / L de extrato de levedura e 50 mg / L de ácido salicílico suprimiram significativamente (P ≤ 0,05) a atividade de 5-Lox em 33,16%, 25,46% e 16%, respectivamente, em comparação com o extrato de CM de calo não tratado. Em conclusão, o calo de gengibre pode ser considerado um suplemento dietético valioso no tratamento de vários distúrbios inflamatórios.


Subject(s)
Lipoxygenase/analysis , Salicylic Acid , Zingiber officinale/chemistry , Rhizome/chemistry , Yeasts
10.
Phytomedicine ; 93: 153813, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34735909

ABSTRACT

BACKGROUND: The bioactive alkaloids identified from Cortex Phellodendri (CP) were highly effective in treating rats with benign prostatic hyperplasia (BPH). Specifically, lipoxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) were identified as two primary targets for alleviating inflammation in BPH rats. However, it remains unknown whether the alkaloid components in CP can interact with the two target proteins. PURPOSE: To further identify bioactive alkaloids targeting LOX/COX pathways. METHODS: An affinity-ultrafiltration mass spectrometry approach was employed to screen dual-target LOX-5/COX-2 ligands from alkaloid extract. The structures of bioactive alkaloids were characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. To understand the molecular mechanisms underlying the effects of bioactive alkaloids, the expression levels of LOX-5 and COX-2 in BPH model rats were investigated at both protein and mRNA levels. The LOX-5/COX-2 enzymes activity experiments and molecular docking analysis were performed to fully evaluate the interactions between bioactive alkaloids and LOX-5/COX-2. RESULTS: After comprehensive analysis, the results showed that bioactive alkaloids could suppress the expression of LOX-5 and COX-2 simultaneously to exert an anti-inflammatory effect on the progression of BPH. In addition, the screened protoberberine, demethyleneberberine was found to exhibit prominent inhibitory activities against both LOX-5 and COX-2 enzymes, palmatine and berberine with moderate inhibitory activities. Molecular docking analysis confirmed that demethyleneberberine could interact well with LOX-5/COX-2. CONCLUSION: This study is the first to explore the inhibitory effects of bioactive alkaloids from CP on LOX-5 and COX-2 activities in BPH rats. Our findings demonstrate that the bioactive alkaloids from CP can ameliorate BPH via dual LOX-5/COX-2 pathways, which serves as an efficient approach for the discovery of novel drug leads from natural products with reduced side effects.


Subject(s)
Alkaloids , Prostatic Hyperplasia , Alkaloids/pharmacology , Animals , Arachidonate 5-Lipoxygenase , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Humans , Lipoxygenase , Lipoxygenase Inhibitors , Male , Molecular Docking Simulation , Prostatic Hyperplasia/drug therapy , Rats
11.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34684809

ABSTRACT

The chemical variability and the in vitro anti-inflammatory activity of the leaf essential oil from Ivorian Isolona dewevrei were investigated for the first time. Forty-seven oil samples were analyzed using a combination of CC, GC(RI), GC-MS and 13C-NMR, thus leading to the identification of 113 constituents (90.8-98.9%). As the main components varied drastically from sample to sample, the 47 oil compositions were submitted to hierarchical cluster and principal components analyses. Three distinct groups, each divided into two subgroups, were evidenced. Subgroup I-A was dominated by (Z)-ß-ocimene, ß-eudesmol, germacrene D and (E)-ß-ocimene, while (10ßH)-1ß,8ß-oxido-cadina-4-ene, santalenone, trans-α-bergamotene and trans-ß-bergamotene were the main compounds of Subgroup I-B. The prevalent constituents of Subgroup II-A were germacrene B, (E)-ß-caryophyllene, (5αH,10ßMe)-6,12-oxido-elema-1,3,6,11(12)-tetraene and γ-elemene. Subgroup II-B displayed germacrene B, germacrene D and (Z)-ß-ocimene as the majority compounds. Germacrene D was the most abundant constituent of Group III, followed in Subgroup III-A by (E)-ß-caryophyllene, (10ßH)-1ß,8ß-oxido-cadina-4-ene, germacrene D-8-one, and then in Subgroup III-B by (Z)-ß-ocimene and (E)-ß-ocimene. The observed qualitative and quantitative chemical variability was probably due to combined factors, mostly phenology and season, then harvest site to a lesser extent. The lipoxygenase inhibition by a leaf oil sample was also evaluated. The oil IC50 (0.020 ± 0.005 mg/mL) was slightly higher than the non-competitive lipoxygenase inhibitor NDGA IC50 (0.013 ± 0.003 mg/mL), suggesting a significant in vitro anti-inflammatory potential.


Subject(s)
Annonaceae/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Anti-Inflammatory Agents/isolation & purification , Cote d'Ivoire , Drug Evaluation, Preclinical , Gas Chromatography-Mass Spectrometry , In Vitro Techniques , Lipoxygenase/drug effects , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/isolation & purification , Lipoxygenase Inhibitors/pharmacology , Magnetic Resonance Spectroscopy , Oils, Volatile/classification , Plant Leaves/chemistry , Plant Oils/classification , Plants, Medicinal/chemistry , Glycine max/enzymology
12.
Plant Cell Rep ; 40(12): 2303-2323, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34427748

ABSTRACT

KEY MESSAGE: Proteomic and lipidomics analyses of WT and GmDGAT1-2 transgenic soybeans showed that GmDGAT1-2 over-expression induced lipoxygenase down-regulatation and oleoin up-regulatation, which significantly changed the compositions and total fatty acid. The main goal of soybean breeding is to increase the oil content. Diacylglycerol acyltransferase (DGAT) is a key rate-limiting enzyme in fatty acid metabolism and may regulate oil content. Herein, 10 GmDGAT genes were isolated from soybean and transferred into wild-type (WT) Arabidopsis. The total fatty acid was 1.2 times higher in T3 GmDGAT1-2 transgenic Arabidopsis seeds than in WT. Therefore, GmDGAT1-2 was transferred into WT soybean (JACK), and four T3 transgenic soybean lines were obtained. The results of high-performance gas chromatography and Soxhlet extractor showed that, compared with those of JACK, oleic acid (18:1), and total fatty acid levels in transgenic soybean plants were much higher, but linoleic acid (18:2) was lower than WT. Palmitic acid (16:0), stearic acid (18:0), and linolenic acid (18:3) were not significantly different. For mechanistic studies, 436 differentially expressed proteins (DEPs) and 180 differentially expressed metabolites (DEMs) were identified between WT (JACK) and transgenic soybean pods using proteomic and lipidomics analyses. Four lipoxygenase proteins were down-regulated in linoleic acid metabolism while four oleosin proteins were up-regulated in the final oil formation. The results showed an increase in the total fatty acid and 18:1 composition, and a decrease in the 18:2 composition of fatty acid. Our study brings new insights into soybean genetic transformation and the deep study of molecular mechanism that changes the total fatty acid, 18:1, and 18:2 compositions in GmDGAT1-2 transgenic soybean.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Glycine max/genetics , Lipoxygenase/metabolism , Membrane Proteins/metabolism , Plant Proteins/metabolism , Soybean Oil/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Gene Expression Regulation, Plant , Linoleic Acid/genetics , Linoleic Acid/metabolism , Lipidomics/methods , Lipoxygenase/genetics , Membrane Proteins/genetics , Multigene Family , Plant Proteins/genetics , Plants, Genetically Modified , Proteomics/methods , Seeds/genetics , Seeds/metabolism , Soybean Oil/genetics , Soybean Proteins/genetics , Soybean Proteins/metabolism , Glycine max/metabolism
13.
J Ethnopharmacol ; 281: 114517, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34389445

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY: During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS: Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS: We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION: The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Asteraceae/microbiology , Bacillus subtilis/chemistry , Complex Mixtures/therapeutic use , Edema/drug therapy , Endophytes/chemistry , Acetates/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Carrageenan , Complex Mixtures/pharmacology , Edema/chemically induced , Formaldehyde , Interleukin-6/metabolism , Lipoxygenase/metabolism , Male , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , Peroxidase/metabolism , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , RAW 264.7 Cells , Solvents/chemistry , Tumor Necrosis Factor-alpha/metabolism
14.
Plant Foods Hum Nutr ; 76(3): 354-362, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34363561

ABSTRACT

Current in vitro methodologies neglect or subestimate the contribution of betalains to antioxidant capacity in foods because they do not reflect their in vivo biological mechanisms. In this study, we assessed the sensibility of the lipoxygenase-fluorescein (LOX-FL) method towards betalains, phenolic compounds and ascorbic acid from Opuntia spp. fruits; and (ii) the antioxidant capacity of peel and pulp extracts from Opuntia ficus-indica L. Mill (var. Fresa, Colorada and Blanco) and Opuntia stricta var. Dillenii; by comparing the LOX-FL method to traditional antioxidant methods (ORAC and TEAC). The spectrophotometric monitoring of the LOX-FL reaction avoided interference caused by betalain pigments. Indicaxanthin and betanin showed high antiperoxidative and radical scavenging mechanisms in the LOX-FL assay. O. stricta var. Dillenii tissues the highest antioxidant capacity which correlated with betanin content. ORAC and TEAC antioxidant methods were less sensible towards betalain antioxidant activity. To our knowledge, this is the first time the LOX-FL antioxidant method has been used on betalains and betalain-rich foods.


Subject(s)
Opuntia , Antioxidants , Betalains , Fruit , Lipoxygenase , Plant Extracts/pharmacology
15.
Nat Commun ; 12(1): 4299, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262038

ABSTRACT

Radiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO3-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel. Upon being fixed inside the residual tumors post RFA, HLCaP NRs exhibit a suppression effect on residual tumors in mice and rabbits by triggering ferroptosis. Moreover, treatment with HLCaP NRs post RFA can prime antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, also in combination with immune checkpoint blockade. This work highlights that tumor-debris-fueled nanoreactors can benefit RFA by inhibiting tumor recurrence and preventing tumor metastasis.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Nanomedicine/methods , Neoplasms/therapy , Radiofrequency Ablation , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/therapeutic use , Catalysis , Cell Line, Tumor , Combined Modality Therapy , Ferroptosis/drug effects , Hemin/chemistry , Hemin/therapeutic use , Humans , Hydrogen-Ion Concentration , Immune Checkpoint Inhibitors/therapeutic use , Immunogenic Cell Death/drug effects , Lipid Peroxidation/drug effects , Lipoxygenase/chemistry , Lipoxygenase/therapeutic use , Mice , Neoplasm Metastasis , Neoplasm, Residual , Neoplasms/immunology , Neoplasms/pathology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Rabbits
16.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200696

ABSTRACT

Passiflora edulis by-products (PFBP) are a rich source of polyphenols, of which piceatannol has gained special attention recently. However, there are few studies involving environmentally safe methods for obtaining extracts rich in piceatannol. This work aimed to concentrate piceatannol from defatted PFBP (d-PFBP) by means of pressurized liquid extraction (PLE) and conventional extraction, using the bio-based solvents selected with the Hansen solubility parameters approach. The relative energy distance (Ra) between solvent and solute was: Benzyl Alcohol (BnOH) < Ethyl Acetate (EtOAc) < Ethanol (EtOH) < EtOH:H2O. Nonetheless, EtOH presented the best selectivity for piceatannol. Multi-cycle PLE at 110 °C was able to concentrate piceatannol 2.4 times more than conventional extraction. PLE exhibited a dependence on kinetic parameters and temperature, which could be associated with hydrogen bonding forces and the dielectric constant of the solvents. The acetylcholinesterase (AChE) and lipoxygenase (LOX) IC50 were 29.420 µg/mL and 27.682 µg/mL, respectively. The results reinforce the demand for processes to concentrate natural extracts from food by-products.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase/chemistry , Passiflora/chemistry , Plant Extracts/pharmacology , Fruit/chemistry , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/enzymology , Seeds/chemistry , Solvents/chemistry
17.
Molecules ; 26(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201147

ABSTRACT

Many plants that are commonly used in folk medicine have multidirectional biological properties confirmed by scientific research. One of them is Aerva lanata (L.) Juss. (F. Amaranthaceae). It is widely used, but there are very few scientific data about its chemical composition and pharmacological activity. The aim of the present study was to investigate the chemical composition of phenolic acid (PA)-rich fractions isolated from methanolic extracts of A. lanata (L.) Juss. herb using the liquid/liquid extraction method and their potential antioxidant, anti-inflammatory, and anti-diabetic properties. The free PA fraction (FA), the PA fraction (FB) released after acid hydrolysis, and the PA fraction (FC) obtained after alkaline hydrolysis were analysed using liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS). The phenolic profile of each sample showed a high concentration of PAs and their presence in A. lanata (L.) Juss. herb mainly in bound states. Thirteen compounds were detected and quantified in all samples, including some PAs that had not been previously detected in this plant species. Bioactivity assays of all fractions revealed high 2,2-diphenyl-1-picrylhydrazyl (DPPH•) (2.85 mM Trolox equivalents (TE)/g) and 2,2-azino-bis-3(ethylbenzthiazoline-6-sulphonic acid) (ABTS•+) (2.88 mM TE/g) scavenging activity. Fraction FB definitely exhibited not only the highest antiradical activity but also the strongest xanthine oxidase (XO) (EC50 = 1.77 mg/mL) and lipoxygenase (LOX)(EC50 = 1.88 mg/mL) inhibitory potential. The fraction had the best anti-diabetic properties, i.e., mild inhibition of α-amylase (EC50 = 7.46 mg/mL) and strong inhibition of α-glucosidase (EC50 = 0.30 mg/mL). The activities of all analysed samples were strongly related to the presence of PA compounds and the total PA content.


Subject(s)
Amaranthaceae/chemistry , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Hydroxybenzoates/chemistry , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Flavonoids/chemistry , Lipoxygenase/chemistry , Medicine, Traditional/methods , Methanol/chemistry , Phenols/chemistry , Xanthine Oxidase/chemistry , alpha-Amylases/chemistry , alpha-Glucosidases/chemistry
18.
Sci Rep ; 11(1): 14166, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238955

ABSTRACT

Short vase life, capitulum wilting, neck bending, and postharvest chilling injury (CI) are major disorders have negative impact on quality and marketing of gerbera cut flowers. Low storage temperatures prolonging the vase life, but on the other hand leads serious CI which decreases the quality and consumer preferences. Spermine (SPER) and γ-aminobutyric acid (GABA) were identified as anti-aging factors delay the senescence and elevate the chilling tolerance in many species. Greenhouse-grown gerbera cv. 'Stanza' sprayed with 2 mM SPER and 1 mM GABA twice (2 T) or thrice (3 T). Cut flowers were stored at 1.5 °C and 8 °C postharvest to study the effects of GABA and SPER on senescence and CI. Vase life, CI and quality of cut flowers were improved by GABA and SPER treatments. No CI was observed in GABA-treated flowers at 1.5 °C; while, flowers sprayed with water showed severe CI. GABA treatments efficiently prolonged the vase life for 6-7 days more than the control (15 days). GABA and SPER increased the fresh weight, solution uptake, protein and proline contents, catalase, peroxidase, and superoxide dismutase activities, while decreased the electrolyte leakage, H2O2, and malondialdehyde contents, polyphenol oxidase, lipoxygenase, and phospholipase D activities. GABA and SPER significantly prolonged the vase life and prevented degradation of proteins and chilling damage and increased capacity of detoxifying and scavenging of H2O2 and reactive oxygen species (ROS), led to alleviate the negative consequences of the senescence and CI.


Subject(s)
Asteraceae/growth & development , Cryopreservation , Flowers/physiology , Spermine/pharmacology , gamma-Aminobutyric Acid/pharmacology , Antioxidants/metabolism , Asteraceae/drug effects , Biomass , Catalase/metabolism , Catechol Oxidase/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Electrolytes/metabolism , Flowers/drug effects , Hydrogen Peroxide/metabolism , Lipoxygenase/metabolism , Malondialdehyde/metabolism , Models, Biological , Peroxidase/metabolism , Phospholipase D/metabolism , Plant Proteins/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism
19.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198914

ABSTRACT

The five-membered heterocyclic group of pyrazoles/pyrazolines plays important role in drug discovery. Pyrazoles and pyrazolines present a wide range of biological activities. The synthesis of the pyrazolines and pyrazole derivatives was accomplished via the condensation of the appropriate substituted aldehydes and acetophenones, suitable chalcones and hydrazine hydrate in absolute ethanol in the presence of drops of glacial acetic acid. The compounds are obtained in good yields 68-99% and their structure was confirmed using IR, 1H-NMR, 13C-NMR and elemental analysis. The novel derivatives were studied in vitro for their antioxidant, anti-lipid peroxidation (AAPH) activities and inhibitory activity of lipoxygenase. Both classes strongly inhibit lipid peroxidation. Compound 2g was the most potent lipoxygenase inhibitor (IC50 = 80 µM). The inhibition of the carrageenin-induced paw edema (CPE) and nociception was also determined, with compounds 2d and 2e being the most potent. Compound 2e inhibited nociception higher than 2d. Pyrazoline 2d was found to be active in a preliminary test, for the investigation of anti-adjuvant-induced disease (AID) activity. Pyrazoline derivatives were found to be more potent than pyrazoles. Docking studies of the most potent LOX inhibitor 2g highlight hydrophobic interactions with VAL126, PHE143, VAL520 and LYS526 and a halogen bond between the chlorine atom and ARG182.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase/chemistry , Pyrazoles/chemical synthesis , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Inhibitory Concentration 50 , Lipid Peroxidation/drug effects , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats
20.
Mol Psychiatry ; 26(11): 6773-6788, 2021 11.
Article in English | MEDLINE | ID: mdl-34131267

ABSTRACT

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can exert antidepressant, anti-inflammatory and neuroprotective properties, but the exact molecular mechanism underlying their effects is still not fully understood. We conducted both in vitro and clinical investigations to test which EPA or DHA metabolites are involved in these anti-inflammatory, neuroprotective and antidepressant effects. In vitro, we used the human hippocampal progenitor cell line HPC0A07/03C, and pre-treated cells with either EPA or DHA, followed by interleukin 1beta (IL1ß), IL6 and interferon-alpha (IFN-α). Both EPA and DHA prevented the reduction in neurogenesis and the increase in apoptosis induced by these cytokines; moreover, these effects were mediated by the lipoxygenase (LOX) and cytochrome P450 (CYP450) EPA/DHA metabolites, 5-hydroxyeicosapentaenoic acid (HEPE), 4-hydroxydocosahexaenoic acid (HDHA), 18-HEPE, 20-HDHA, 17(18)-epoxyeicosatetraenoic acid (EpETE) and 19(20)-epoxydocosapentaenoic acid (EpDPA), detected here for the first time in human hippocampal neurones using mass spectrometry lipidomics of the supernatant. In fact, like EPA/DHA, co-treatment with these metabolites prevented cytokines-induced reduction in neurogenesis and apoptosis. Moreover, co-treatment with 17(18)-EpETE and 19(20)-EpDPA and the soluble epoxide hydroxylase (sEH) inhibitor, TPPU (which prevents their conversion into dihydroxyeicosatetraenoic acid (DiHETE)/ dihydroxydocosapentaenoic acid (DiHDPA) metabolites) further enhanced their neurogenic and anti-apoptotic effects. Interestingly, these findings were replicated in a sample of n = 22 patients with a DSM-IV Major Depressive Disorder, randomly assigned to treatment with either EPA (3.0 g/day) or DHA (1.4 g/day) for 12 weeks, with exactly the same LOX and CYP450 lipid metabolites increased in the plasma of these patients following treatment with their precursor, EPA or DHA, and some evidence that higher levels of these metabolites were correlated with less severe depressive symptoms. Overall, our study provides the first evidence for the relevance of LOX- and CYP450-derived EPA/DHA bioactive lipid metabolites as neuroprotective molecular targets for human hippocampal neurogenesis and depression, and highlights the importance of sEH inhibitors as potential therapeutic strategy for patients suffering from depressive symptoms.


Subject(s)
Depressive Disorder, Major , Fatty Acids, Omega-3 , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Cytochrome P-450 Enzyme System/therapeutic use , Depression , Depressive Disorder, Major/drug therapy , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Hippocampus/metabolism , Humans , Inflammation/metabolism , Lipoxygenase/metabolism , Lipoxygenase/pharmacology , Lipoxygenase/therapeutic use , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL