Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Food Res Int ; 178: 113876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309897

RESUMEN

The species and contents of ɑ-dicarbonyls in commercial black tea were examined, along with the effects of the manufacturing process and drying temperature on the formation of ɑ-dicarbonyls. Ten ɑ-dicarbonyls were quantified in commercial and in-process black tea samples by using UPLC-MS/MS and their derived quinoxalines. The ɑ-dicarbonyls content in commercial black tea decreased significantly (p < 0.05) in the following order: 3-deoxyglucosone > glucosone > 3-deoxypentosone = threosone > galactosone ≥ methylglyoxal = glyoxal ≥ 3-deoxygalactosone = 3-deoxythreosone = diacetyl. Except for 3-deoxyglucosone and 3-deoxygalactosone, a further eight ɑ-dicarbonyls were identified in all manufacturing steps of black tea. Except for the drying step, the rolling and fermenting played important roles in the formation of ɑ-dicarbonyls. The total contents of ɑ-dicarbonyls in black tea infusion ranged from 16.48 to 75.32 µg/g based on our detected ten ɑ-dicarbonyls.


Asunto(s)
Camellia sinensis , , Reacción de Maillard , Cromatografía Liquida , Espectrometría de Masas en Tándem , Glioxal/análisis
2.
Food Chem ; 439: 138154, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071844

RESUMEN

Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.


Asunto(s)
Camellia sinensis , , Té/química , Temperatura , Camellia sinensis/química , Flavonoides/análisis , Metabolómica/métodos
3.
Food Chem ; 427: 136641, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37393635

RESUMEN

To characterize the key odorants of floral aroma green tea (FAGT) and reveal its dynamic evolution during processing, the volatile metabolites in FAGT during the whole processing were analyzed by integrated volatolomics techniques, relative odor activity value (rOAV), aroma recombination, and multivariate statistical analysis. The volatile profiles undergone significant changes during processing, especially in the withering and fixation stages. A total of 184 volatile compounds were identified (∼53.26% by GC-MS). Among them, 7 volatiles with rOAV > 1 were identified as characteristic odorants of FAGT, and most of these compounds reached the highest in withering stage. According to the formation pathways, these key odorants could be divided into four categories: fatty acid-derived volatiles, glycoside-derived volatiles, amino acid-derived volatiles, and carotenoid-derived volatiles. Our study provides a comprehensive strategy to elucidate changes in volatile profiles during processing and lays a theoretical foundation for the targeted processing of high-quality green tea.


Asunto(s)
, Compuestos Orgánicos Volátiles , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Nariz Electrónica , Compuestos Orgánicos Volátiles/análisis
4.
Food Chem ; 404(Pt B): 134665, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283306

RESUMEN

Ripened Pu-erh tea (RPT) is a unique microbial fermented tea. Herein, we investigated the lipid composition of RPT and its metabolic changes during pile fermentation, by nontargeted lipidomics profiling and quantitative analysis using liquid chromatography-mass spectrometry (LC-MS). A total of 485 individual lipid species covering 26 subclasses were detected, and fatty acid ester of hydroxy fatty acid (FAHFA) was detected in tea for the first time. Among them, 362 species were significantly altered during fermentation. Chlorophylls decomposition, phospholipids degradation (especially phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine), formation of free fatty acid (FFA) (especially FFA18:3, FFA18:2), and formation of FAHFA, were annotated as the key pathways. Particularly, FAHFAs were undetected in raw tea and gradually enriched to 227.0 ± 9.6 nmol/g after fermentation (p < 0.001), which could serve as marker compounds of RPT associated with microbial fermentation. This study will advance understanding the lipid metabolic fate in microbial fermentation and its role in RPT quality. Chemical compounds studied in this article: Linolenic acid (PubChem CID: 5280934); Linoleic acid (PubChem CID: 5280450); Oleic acid (PubChem CID: 445639); PS(22:0/18:2) (PubChem CID: 52925820); PS(20:0/18:3) (PubChem CID: 52925629); Pheophytin a (PubChem CID: 135398712); Pheophorbide a (PubChem CID: 253193).


Asunto(s)
Lipidómica , , Fermentación , Cromatografía Liquida , Té/química , Espectrometría de Masas en Tándem , Biomarcadores , Lípidos , Ácidos Grasos
5.
J Microbiol Biotechnol ; 33(2): 151-166, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36474327

RESUMEN

Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.


Asunto(s)
Suplementos Dietéticos , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/metabolismo , Fermentación , Aromatizantes
6.
Food Res Int ; 162(Pt B): 112099, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461339

RESUMEN

Strip green tea (SGT) is widely distributed in China owing to its unique appearance and aroma but the evolution and formation mechanisms of volatile metabolites (VMs) during SGT processing, and especially in the unique process of rubbing, remain unclear. In this study, based on untargeted metabolomics, 217 VMs (8 categories) were identified, and fixation and rubbing processes were found to be key for SGT aroma formation. Moreover, targeted metabolomics was applied to obtain 38 differential VMs and their related substances, of which fatty acid-derived volatiles (14 VMs) and glycoside-derived volatiles (8 VMs) showed significant contributions to SGT aroma, and their derivation laws during SGT manufacturing were clarified. Furthermore, the effect of rubbing degree on volatile metabolite formation was explored, and 11 key differential VMs were screened by variable importance in projection, and odor activity value analyses. Appropriate rubbing promoted the loss of grassy VMs (such as 1-octanol and 2-pentyl-furan) and enrichment of floral/fruity VMs (such as trans-ß-ionone, nonanal, geraniol, citral, (Z)-3,7-dimethyl-2,6-octadien-1-ol, and (Z)-hexanoic acid, 3-hexenyl ester). Our study not only enriches the chemical theory of green tea processing but also provides technical support for the precision directional processing of high-quality SGT.


Asunto(s)
Metabolómica , , 1-Octanol , China , Comercio
7.
Food Chem ; 387: 132813, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429930

RESUMEN

Processing is the crucial factor for green tea aroma quality. In this study, the aroma dynamic changes throughout the manufacturing process of chestnut-like aroma green tea were investigated with gas chromatography electronic nose (GC-E-Nose), gas chromatography-ion mobility spectrometry (GC-IMS), and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). GC-IMS identified 33 volatile compounds while GC × GC-TOFMS identified 211 volatile components. Drying exerted the greatest influence on the volatile components of chestnut-like aroma green tea, and promoted the generation of heterocyclic compounds and sulfur compounds which were commonly generated via the Maillard reaction during the roasting stage. A large number of heterocyclic compounds such as 1-methyl-1H-pyrrole, pyrrole, methylpyrazine, furfural, 2-ethyl-5-methylpyrazine, 1-ethyl-1H-pyrrole-2-carboxaldehyde, and 3-acetylpyrrole were newly formed during the drying process. This study also validated the suitability of GC-E-Nose combined with GC-IMS and GC × GC-TOFMS for tracking the changes in volatile components of green tea throughout the manufacturing process.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Pirroles/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis
8.
Food Chem ; 378: 132126, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35033721

RESUMEN

Ripened Pu-erh tea is a unique tea type produced from microbial fermentation. Recently, a novel ripened Pu-erh tea (NPT) produced using a patented pile fermentation method has become increasingly popular due to its improved flavor and enriched bioactive gallic acid (GA). However, the detailed chemical features of NPT and their formation during pile fermentation remain unclear. Herein, untargeted metabolomics revealed enrichment of GA, amino acids, free sugars and reduction in catechins and flavonol glycosides in NPT. Mainly, GA was 1.99 times higher in NPT than traditional Pu-erh tea (p < 0.001). The metabolic changes were tracked during pile fermentation, and possible pathways were mapped. GA enrichment may be produced from enhanced hydrolysis of galloyl catechins and phenolic acid esters. Degradation of flavonol glycosides and formation of other metabolites were observed. This study will advance our understanding of conversions during pile fermentation and provide new insights into directional manufacturing of high-quality ripened tea.


Asunto(s)
Catequina , , Catequina/análisis , Fermentación , Ácido Gálico , Metabolómica
9.
J Sci Food Agric ; 102(7): 2750-2760, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34719036

RESUMEN

BACKGROUND: The phenol oxidative pathway during fermentation remains unclear. To elucidate the effect of fermentation on phenol conversion, we investigated the effects of fermentation temperature and duration on the conversion of catechins and the formation of theasinensins (TSs), theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). RESULTS: During fermentation, TSs formation increased initially and then decreased. Long fermentation durations were unfavorable for liquor brightness (LB) and resulted in the production of large amounts of TRs and TBs. Low fermentation temperatures (20 °C and 25 °C) favored the maintenance of polyphenol oxidase activity and the continuous formation of TFs, TSs, and TRSI (a TRs fraction), resulting in better LB and liquor color. Higher temperatures (30 °C, 35 °C, and 40 °C) resulted in higher peroxidase activity, higher oxidative depletion rates of catechins, and excessive production of TRSII (a TRs fraction) and TBs. Analysis of the conversion pathway of polyphenolic compounds during fermentation showed that, during early fermentation, large amounts of catechins were oxidized and converted to TFs and theasinensin B. As fermentation progressed, considerable amounts of theaflavin-3'-gallate, theasinensin A, theaflavin-3-gallate, theaflavin-3,3'-digallate, and theasinensin C were produced and then converted to TRSI; in the final stage, TRSII and TBs were converted continuously. CONCLUSION: Different fermentation temperature and duration combinations directly affected the type and composition of phenolic compounds. The key conditions for controlling phenolic compound conversion and fermentation direction were 60 or 90 min and 25 or 30 °C. Our study provides insights into the regulation of phenolic compound conversion during black tea fermentation. © 2021 Society of Chemical Industry.


Asunto(s)
Biflavonoides , Camellia sinensis , Catequina , Antioxidantes/análisis , Biflavonoides/análisis , Camellia sinensis/química , Catequina/análisis , Fermentación , Fenol/análisis , Té/química , Temperatura
10.
Appl Microbiol Biotechnol ; 105(20): 7619-7634, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34559284

RESUMEN

In this work, the application of chemical surfactants, including cooking aids, detergents, surface sizing agents, and deinking agents as core components, is introduced in the wet end of pulping and papermaking. This method for the combined application of enzymes and surfactants has expanded, promoting technological updates and improving the effect of surfactants in practical applications. Finally, the potential substitution of green surfactants for chemical surfactants is discussed. The source, classification, and natural functions of green surfactants are introduced, including plant extracts, biobased surfactants, fermentation products, and woody biomass. These green surfactants have advantages over their chemically synthesized counterparts, such as their low toxicity and biodegradability. This article reviews the latest developments in the application of surfactants in different paper industry processes and extends the methods of use. Additionally, the application potential of green surfactants in the field of papermaking is discussed. KEY POINTS: • Surfactants as important chemical additives in papermaking process are reviewed. • Deinking technologies by combined of surfactants and enzymes are reviewed. • Applications of green surfactant in papermaking industry are prospected.


Asunto(s)
Industrias , Tensoactivos , Biomasa , Fermentación
11.
Food Chem ; 363: 130131, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34120048

RESUMEN

Non-volatile metabolites significantly influence the color, taste, and aromatic qualities of green tea. However, the evolutionary trajectories of non-volatile metabolites, and their transformational relationship with volatile metabolites during processing, remain unclear. In this study, ultra-performance liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry were used to analyze a widely targeted metabolome during green tea processing. In total, 527 non-volatile metabolites, covering 11 subclasses, were identified, along with 184 volatile metabolites, covering 8 subclasses. Significant variations in metabolites were observed during processing, especially in the fixation stage, and the conversion intensity of non-volatile metabolites was consistent with the law of "Fixation > Drying > Rolling." A total of 153 non-volatile metabolites were screened out, and amino acids and esters were found to be closely associated with volatile metabolite formation. The results of the present study provide a theoretical basis that could guide green tea processing based on desired quality and components.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , , Compuestos Orgánicos Volátiles/análisis
12.
J Food Sci ; 86(6): 2358-2373, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33929725

RESUMEN

Aroma plays an important role in the quality of Pu-erh tea. However, the quality evaluation of Pu-erh tea aroma is heavily relied on the experience of sensory evaluation, and the theoretical research is relatively scarce. In the present work, the volatile compounds in Pu-erh tea were characterized by using gas phase electronic nose (e-nose) and microchamber/thermal extractor (µ-CTE) combined with thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). A satisfactory discrimination model (R2 Y = 0.95, Q2  = 0.807) was obtained by using orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor fingerprint of different brands of Pu-erh tea. In addition, based on the double criterion of multivariate analysis with VIP >1.0 and univariate analysis with p ≤ 0.001, 39 volatile components were identified to contribute greatly to the discrimination of five brands of Pu-erh tea. The results suggested that gas phase e-nose and µ-CTE combined with TD-GC/MS were simple, rapid techniques to characterize the volatile compounds in Pu-erh tea and were allowed to effectively distinguish different brands of Pu-erh tea, which would provide an important reference on the quality assessment of Pu-erh tea. PRACTICAL APPLICATION: This work demonstrates that the volatile compounds in Pu-erh tea are simply and rapidly characterized by using µ-CTE/TD-GC/MS and gas phase e-nose, allowing to effectively distinguish different brands of Pu-erh tea, which can provide an important reference for the quality assessment and authentication of Pu-erh tea.


Asunto(s)
Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis , Análisis Discriminante , Análisis Multivariante
13.
Food Chem ; 339: 128114, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152890

RESUMEN

Lipids are hydrophobic metabolites implicated in tea flavor quality. Understanding their transformations during tea manufacture is of particular interest. To date, the detailed lipid composition and variations during green tea manufacture are largely unknown. Herein, we performed a comprehensive characterization of the dynamic changes of lipids during green tea manufacture, by applying nontargeted lipidomics using ultrahigh performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Exactive/MS) combined with chemometric tools. Totally, 283 lipid species were detected, covering 20 subclasses. Significant lipidomic variations were observed during green tea manufacture, especially in the fixation stage, mainly associated with chlorophyll decomposition, phosphatidic acids (PAs) reduction and glycolipids degradation, which potentially contribute to tea color and aroma quality. Specifically, the most prominent decrease of PAs content during green tea manufacture was identified for the first time. This study provides insights into the lipid metabolic fates upon green tea manufacture, and their roles in green tea sensory quality.


Asunto(s)
Lipidómica/métodos , Lípidos/análisis , Lípidos/química , Té/química , China , Cromatografía Líquida de Alta Presión , Color , Industria de Procesamiento de Alimentos , Metabolismo de los Lípidos , Espectrometría de Masas , Odorantes/análisis
14.
Food Res Int ; 137: 109656, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233235

RESUMEN

The drying technology is crucial to the quality of Congou black tea. In this study, the aroma dynamic characteristics during the variable-temperature final firing of Congou black tea was investigated by electronic nose (e-nose) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). Varying drying temperatures and time obtained distinctly different types of aroma characteristics such as faint scent, floral aroma, and sweet fragrance. GC × GC-TOFMS identified a total of 243 volatile compounds. Clear discrimination among different variable-temperature final firing samples was achieved by using partial least squares discriminant analysis (R2Y = 0.95, Q2 = 0.727). Based on a dual criterion of variable importance in the projection value (VIP > 1.0) and one-way ANOVA (p < 0.05), ninety-one specific volatile biomarkers were identified, including 2,6-dimethyl-2,6-octadiene and 2,5-diethylpyrazine with VIP > 1.5. In addition, for the overall odor perception, e-nose was able to distinguish the subtle difference during the variable-temperature final firing process.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Nariz Electrónica , Odorantes/análisis , , Temperatura , Compuestos Orgánicos Volátiles/análisis
15.
Food Res Int ; 136: 109479, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846562

RESUMEN

Fixation is the key process to ensure green tea quality; however, the effect of various fixation methods on the formation of green tea with a chestnut-like aroma and the evolution of key volatile compounds has not been assessed to date. In this study, we compared four types of fixation methods for green tea: roller-hot air-steam, roller-hot air, roller-steam, and single roller. Infrared-assisted headspace solid-phase microextraction and gas chromatography-tandem dual mass spectrometry technology were used to detect the volatile compounds of green tea samples during processing. Partial least-squares discriminant analysis (PLS-DA), multiple experiment viewer (MEV), odor activity value (OAV), and least-significant difference analyzes were then applied to clarify the best fixation method for forming a chestnut-like aroma and associated compounds, and to explore the change law of key volatile compounds using different green tea fixation processes. One hundred and eighty-four volatile compounds were detected in the processed samples, with roller-hot air fixation found as the optimal method for generating an intense and long-lasting chestnut-like aroma and floral taste, based on sensory evaluation. The PLS-DA model clearly distinguished the four kinds of fixation samples and obtained 32 differential volatile compounds. Combining OAVs with screening by MEV analysis, 2,6,10,10-tetramethyl-1-oxaspiro [4.5] dec-6-ene, linalool, cedrol, 3-methyl-butanal, trans-ß-ionone, and τ-cadinol emerged as key differential volatile compounds between green teas with and without a chestnut-like aroma. The evolution of these six differential volatile compounds throughout the tea-making process confirmed that rolling-hot air coupling treatment is most conducive to produce a chestnut-like aroma, which is beneficial to form and transform 2,6,10,10-tetramethyl-1-oxaspiro[4.5] dec-6-ene, 3-methyl-butanal, and τ-cadinol with baking aromas and fruity substances. These results provide a theoretical basis and technical guidance for the precise and directional processing of high-quality green tea with a chestnut-like aroma.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Microextracción en Fase Sólida , , Compuestos Orgánicos Volátiles/análisis
16.
Food Res Int ; 134: 109167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32517930

RESUMEN

Pyrazines play an important role in the characteristic flavor of roasted green tea due to powerful strong odours and low sensory thresholds. It is important to analyze these compounds reliably and rapidly in roasted green tea. In this study, infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) and gas chromatography-triple quadrupole-tandem mass spectrometry (GC-QqQ-MS/MS) were developed and validated to determine the pyrazines in roasted green tea. Good linear correlation coefficients (0.9955-0.9996) were obtained over the concentration ranges of 10-5000 ng/mL. The limits of detection (LODs) and limits of quantification (LOQs) for the pyrazines were in the range of 1.46-3.27 ng/mL and 4.89-10.90 ng/mL, respectively. The average recoveries varied from 84% to 119%. The method was used to analyze the pyrazines in roasted green tea manufactured by different final firing methods, the results revealed that microwave final firing method had maximum contents of pyrazines, and significantly improved the aroma quality. In addition, there were great disparities of pyrazines in flatten-shaped green tea and strip-shaped green tea according to the appearance. The result is expected to better understand the role of pyrazines related to aroma quality of roasted green tea and improve processing technology.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Pirazinas/análisis , Microextracción en Fase Sólida/métodos , Té/química , Adulto , Femenino , Manipulación de Alimentos/métodos , Calor , Humanos , Rayos Infrarrojos , Límite de Detección , Masculino , Persona de Mediana Edad , Odorantes , Espectrometría de Masas en Tándem/métodos , Gusto , Compuestos Orgánicos Volátiles/análisis
17.
J Food Sci ; 84(12): 3411-3417, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31750940

RESUMEN

Aroma assessment remains difficult and uncertain in the present sensory assessment system. It is highly desirable to develop a new assessment method to discriminate the quality of various teas in the tea market. In the present work, based on linear discriminant analysis and principal component analysis, the aroma of dry and wet samples of different Xi-hu Longjing and Pu-erh teas were tested and differentiated by electronic noses (e-nose). The results confirm that e-nose can discriminate different priced Xi-hu Longjing tea samples in the range of 80-800 RMB/500 g and varying storage years of Pu-erh tea samples. Furthermore, for the detection of both dry and wet samples of Longjing and Pu-erh teas, the results reveal that all samples have specific aroma characteristics that e-nose can recognize. More importantly, contribution analysis in sensors indicates that nitrogen oxides, methane and alcohols are the characteristic components that contribute to the fragrances of different priced Xi-hu Longjing teas, while nitrogen oxides, aromatic benzene and amines make the fragrances of Pu-erh teas with different storage years disparate. PRACTICAL APPLICATION: This work demonstrates that e-nose can rapidly distinguish tea products with different price levels and varying storage years. With the advantages of ease of use, high portability and flexibility, e-nose will be widely expanded and applied in refined processing and the development of flavored foods.


Asunto(s)
Camellia sinensis/química , Nariz Electrónica , Hojas de la Planta/química , Análisis Discriminante , Análisis Multivariante , Análisis de Componente Principal , Control de Calidad , Té/química
18.
Molecules ; 24(23)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757064

RESUMEN

The sweet-mellow taste sensation is a unique and typical feature of premium congou black tea infusions. To explore the key taste-active compounds that influence the sweet-mellow taste, a sensory and molecular characterization was performed on thirty-three congou black tea infusions presenting different taste qualities, including the sweet-mellow, mellow-pure, or less-mellow taste. An integrated application of quantitative analysis of 48 taste-active compounds, taste contribution analysis, and further validation by taste supplementation experiments, combined with human sensory evaluation revealed that caffeine, γ-aminobutyric acid, rutin, succinic acid, citric acid, and gallic acid negatively affect the sweet-mellow taste, whereas glucose, sucrose, and ornithine positively contribute to the sweet-mellow taste of congou black tea infusions. Particularly, rutin, γ-aminobutyric acid, gallic acid, and caffeine, which impart the major inhibitory effect to the manifestation of the sweet-mellow taste, were identified as the key influencing components through stepwise screening and validation experiments. A modest level of these compounds was found to be favorable for the development and manifestation of the sweet-mellow taste. These compounds might potentially serve as the regulatory targets for oriented-manufacturing of high-quality sweet-mellow congou black tea.


Asunto(s)
Cafeína/análisis , Camellia sinensis/química , Ácido Gálico/análisis , Rutina/análisis , Gusto , Té/química , Ácido gamma-Aminobutírico/análisis , Camellia sinensis/crecimiento & desarrollo , Femenino , Humanos , Masculino
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 205: 227-234, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30029185

RESUMEN

The theaflavin-to-thearubigin ratio (TF/TR) is an important parameter for evaluating the degree of fermentation and quality characteristics of Congou black tea. Near infrared (NIR) spectroscopy, one of the most promising techniques for evaluating large-scale tea processing quality, in association with chemometrics, can be used as a selection tool when a fast determination of the requested parameters is required. The aim of this work is to develop a unique model for the determination of TF/TR. First, 11 key wavelength variables were screened by synergy interval partial least-squares regression (SI-PLS) and competitive adaptive reweighted sampling (CARS). Based on these characteristic variables, a new extreme learning machine (ELM) combined with an adaptive boosting (ADABOOST) algorithm (ELM-ADABOOST) was applied to construct the nonlinear prediction model for TF/TR, and an independent external set was used for the validation. A determinate coefficient (Rp2) of 0.893, root mean square error of prediction (RMSEP) of 0.0044, RSD below 10%, and RPD above 3 were acquired in the prediction model. These results demonstrate that NIR can be used to rapidly determine the TF/TR value during fermentation, and it effectively simplify the model and improve the prediction accuracy when combined with the SI-CARS variable.


Asunto(s)
Biflavonoides/análisis , Catequina/análogos & derivados , Polifenoles/análisis , Espectroscopía Infrarroja Corta/métodos , Té/química , Algoritmos , Catequina/análisis , Fermentación , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Reproducibilidad de los Resultados
20.
Sci Rep ; 8(1): 7854, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777147

RESUMEN

Withering is the first step in the processing of congou black tea. With respect to the deficiency of traditional water content detection methods, a machine vision based NDT (Non Destructive Testing) method was established to detect the moisture content of withered leaves. First, according to the time sequences using computer visual system collected visible light images of tea leaf surfaces, and color and texture characteristics are extracted through the spatial changes of colors. Then quantitative prediction models for moisture content detection of withered tea leaves was established through linear PLS (Partial Least Squares) and non-linear SVM (Support Vector Machine). The results showed correlation coefficients higher than 0.8 between the water contents and green component mean value (G), lightness component mean value (L*) and uniformity (U), which means that the extracted characteristics have great potential to predict the water contents. The performance parameters as correlation coefficient of prediction set (Rp), root-mean-square error of prediction (RMSEP), and relative standard deviation (RPD) of the SVM prediction model are 0.9314, 0.0411 and 1.8004, respectively. The non-linear modeling method can better describe the quantitative analytical relations between the image and water content. With superior generalization and robustness, the method would provide a new train of thought and theoretical basis for the online water content monitoring technology of automated production of black tea.


Asunto(s)
Camellia sinensis/química , Máquina de Vectores de Soporte , Agua/análisis , Camellia sinensis/metabolismo , Color , Análisis de los Mínimos Cuadrados , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA