Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 113(12): 2187-2196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37287124

RESUMEN

Pantoea vagans C9-1 (C9-1) is a biological control bacterium that is applied to apple and pear trees during bloom for suppression of fire blight, caused by Erwinia amylovora. Strain C9-1 has three megaplasmids: pPag1, pPag2, and pPag3. Prior bioinformatic studies predicted these megaplasmids have a role in environmental fitness and/or biocontrol efficacy. Plasmid pPag3 is part of the large Pantoea plasmid (LPP-1) group that is present in all Pantoea spp. and has been hypothesized to contribute to environmental colonization and persistence, while pPag2 is less common. We assessed fitness of C9-1 derivatives cured of pPag2 and/or pPag3 on pear and apple flowers and fruit in experimental orchards. We also assessed the ability of a C9-1 derivative lacking pPag3 to reduce populations of E. amylovora on flowers and disease incidence. Previously, we determined that tolerance to stresses imposed in vitro was compromised in derivatives of C9-1 lacking pPag2 and/or pPag3; however, in this study, the loss of pPag2 and/or pPag3 did not consistently reduce the fitness of C9-1 on flowers in orchards. Over the summer, pPag3 contributed to survival of C9-1 on developing apple and pear fruit in two of five trials, whereas loss of pPag2 did not significantly affect survival of C9-1. We also found that loss of pPag3 did not affect C9-1's ability to reduce E. amylovora populations or fire blight incidence on apple flowers. Our findings partially support prior hypotheses that LPP-1 in Pantoea species contributes to persistence on plant surfaces but questions whether LPP-1 facilitates host colonization.


Asunto(s)
Erwinia amylovora , Malus , Pantoea , Pyrus , Malus/microbiología , Frutas , Pantoea/genética , Pyrus/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Plásmidos , Erwinia amylovora/genética , Flores/microbiología
2.
Phytopathology ; 113(10): 1853-1866, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311718

RESUMEN

Plant secondary metabolites are well known for their biological functions in defending against pathogenic microorganisms. Tea saponin (TS), one type of secondary metabolite of the tea plant (Camellia sinensis), has been shown to be a valuable botanical pesticide. However, its antifungal activity in controlling the fungi Valsa mali, Botryosphaeria dothidea, and Alternaria alternata, which induce major diseases in apple (Malus domestica), has not been determined. In this study, we first determined that TS has higher inhibitory activity than catechins against the three types of fungi. We further utilized in vitro and in vivo assays to confirm that TS showed high antifungal activity against the three types of fungi, especially for V. mali and B. dothidea. In the in vivo assay, application of a 0.5% TS solution was able to restrain the fungus-induced necrotic area in detached apple leaves efficiently. Moreover, a greenhouse infection assay also confirmed that TS treatment significantly inhibited V. mali infection in leaves of apple seedlings. In addition, TS treatment activated plant immune responses by decreasing accumulation of reactive oxygen species and promoting the activity of pathogenesis-related proteins, including chitinase and ß-1,3-glucanase. This indicated that TS might serve as a plant defense inducer to activate innate immunity to fight against fungal pathogen invasion. Therefore, our data indicated that TS might restrain fungal infection in two ways, by directly inhibiting the growth of fungi and by activating plant innate defense responses as a plant defense inducer.


Asunto(s)
Malus , Malus/microbiología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Té/metabolismo
3.
Food Res Int ; 163: 112293, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596197

RESUMEN

Nature-derived chemicals have recently gained increased attention to settle down the challenges in the food industry. Quercetin has long been used as a natural medicine but its photoactivity has been neglected. In this work, by combining photodynamic bacteria inactivation (PDI) with an edible coating (Pectin/Quercetin) derived from FDA-approved chemicals, extend shelf-life and protected commercial quality of fresh-cut apples were achieved. Firstly, the potential photoactivated antibacterial performance of Quercetin (a natural plant flavonoid) was clarified with the treatment of a simulated sunlight lamp, realizing antibacterial efficacy of 100 % towards S. aureus (50 min) and L. monocytogenes (80 min) with light treatment. To develop safe and effective preservation of fresh-cut apples, Pectin/Quercetin edible coatings with 100 µmol/L quercetin were adopted. The results showed that the prepared edible coatings form a protective barrier over the surface of apples, effectively resisting bacterial infection and extending shelf life to 10 days while maintaining good commercial quality (including preferable color, keeping 100 % hardness, 80 % sugar content and 17.3 % weightlessness rate). Therefore, the prepared light-driven Pectin/Quercetin in this work has the potential to develop as fresh-cut fruit preservation technology.


Asunto(s)
Películas Comestibles , Malus , Malus/microbiología , Conservación de Alimentos/métodos , Quercetina/farmacología , Staphylococcus aureus , Fitoquímicos , Pectinas , Antibacterianos
4.
Biomed Res Int ; 2022: 8440304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312853

RESUMEN

Edible coatings have several advantages in preserving foods, such as avoiding water loss, controlling microbial growth, and reducing the need for preservatives added directly to the product. Antimicrobial action can be obtained by adding antimicrobial substances including phenolic compounds commonly found in plant extracts. This study evaluated the phenolic compounds content, antioxidant and antimicrobial activity of pulp, and seed extracts of Mimusopsis comersonii (popularly known in Brazil as abrico), besides the phenolic compounds were identified and quantified in the pulp extract. Edible coatings were incorporated with pulp extract in order to evaluate the preservation of minimally processed apples and baroa potatoes against foodborne bacteria, and enzymatic browning was also determined. Myricetin-3-glucoside, quercetin-3-glucoside, and kaempferol-3-glucoside were identified as major flavonoids in the apricot pulp extract. The seed and pulp extracts inhibited all tested microorganisms, especially Staphylococcus aureus and Salmonella Typhimurium. Edible coatings added with 9% of phenolic extract showed in vitro antimicrobial activity, in addition to being effective in preventing enzymatic browning in minimally processed apples and baroa potatoes for up to 15 days of storage. They were also effective in reducing up to 2 log CFU/g of aerobic mesophiles after 15 days of storage for apples, even though no microbial inhibition in baroa potatoes was observed under the same conditions. The addition of pulp phenolic extract in edible coatings proved to be an alternative in the preservation of apples and in the antibrowning activity of minimally processed baroa potatoes.


Asunto(s)
Antiinfecciosos , Películas Comestibles , Malus , Prunus armeniaca , Antioxidantes/farmacología , Antioxidantes/análisis , Verduras , Conservación de Alimentos , Frutas/química , Malus/microbiología , Fenoles/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Glucósidos
5.
J Biomater Sci Polym Ed ; 33(8): 995-1011, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35044283

RESUMEN

In this study, the chitosan, a polysaccharide, was encapsulated with the bee pollen and the apple cider vinegar. The freeze-drying method was used in the encapsulation process. The freeze cooling temperature was determined as -80 °C. The obtained encapsulated chitosan compounds were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and their molecular weights were determined by the cryoscopy method. The total amount of the phenol compounds and % the antioxidant activity of the synthesized compounds were measured by UV spectrophotometer and, the loading capacity of the polyphenol compounds in encapsulation was determined. The success of encapsulation was calculated based on the % encapsulation efficiency (%EE) calculation. The antibacterial and the surface activity properties of the obtained CSx and CSy compounds were analyzed against Listeria monocytogenes, Staphylococcus aureus, E. coli and Salmonella bacteria using the well diffusion method and the Zeiss microscope.


Asunto(s)
Quitosano , Malus , Ácido Acético , Animales , Antibacterianos/farmacología , Antioxidantes/farmacología , Abejas , Quitosano/química , Escherichia coli , Malus/microbiología , Polen
6.
Braz J Biol ; 84: e253203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34932677

RESUMEN

Bacteria were isolated from samples of Fresh Apple juices from shops of three different localities of Lahore. Analysis of samples from Liberty, Anarkali and Yateem khana Markets show different levels of contamination. There were pathogenic and non-pathogenic bacteria in all samples and were identified by the morphological and biochemical tests. Most of the plasmids of pathogenic bacteria were 4kb in their molecular size. Ribotyping of 16S ribosomal RNA gene sequencing was done to confirm Helicobacter pylori strain and Gluconobacter oxydans. The highest sensitivity of 210mm was shown by Enterobacter sp. against Aztheromysine disk (15µg) while Micrococcus sp. was highly resistant against all of the Antibiotics applied. The antibiotic resistance of pathogenic bacteria was also checked against Ricinus communis plant's extracts, all isolated bacterial pathogens were resistant but only, E.coli was inhibited at 300µl of the extracts. Presence of pathogenic bacteria in Apple juice samples was due to contamination of sewage water in drinking water while some of these pathogenic bacteria came from Apple's tree and other from store houses of fruits.


Asunto(s)
Antibacterianos , Gluconobacter oxydans , Helicobacter pylori , Extractos Vegetales , Ricinus/química , Antibacterianos/farmacología , Jugos de Frutas y Vegetales/microbiología , Gluconobacter oxydans/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Malus/microbiología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología
7.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361746

RESUMEN

New agricultural strategies aim to reduce the use of pesticides due to their damage to the environment and humans, and the caused resistance to pathogens. Therefore, alternative sources of antifungal compounds from plants are under investigation lately. Extracts from plants have a wide composition of chemical compounds which may complicate the development of pathogen resistance. Botrytis cinerea, causing grey mould, is an important horticultural and ornamental pathogen, responsible for the relevant yield and quality losses. B. cinerea isolated from a different plant host may differ in the sensitivity to antifungal substances from plants. Assessing the importance of research covering a wide range of pathogens for the rapid development of biopesticides, this study aims to determine the sensitivity of the B. cinerea isolate complex (10 strains) to plant extracts, describe morphological changes caused by the extract treatment, and detect differences between the sensitivity of different plant host isolates. The results showed the highest sensitivity of the B. cinerea isolates complex to cinnamon extract, and the lowest to laurel extract. In contrast, laurel extract caused the most changes of morphological attributes in the isolates. Five B. cinerea isolates from plant hosts of raspberry, cabbage, apple, bell pepper, and rose were grouped statistically according to their sensitivity to laurel extract. Meanwhile, the bell pepper isolate separated from the isolate complex based on its sensitivity to clove extract, and the strawberry and apple isolates based on their sensitivity to cinnamon extract.


Asunto(s)
Antifúngicos/farmacología , Agentes de Control Biológico/farmacología , Botrytis/efectos de los fármacos , Cinnamomum zeylanicum/química , Hifa/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Antifúngicos/aislamiento & purificación , Agentes de Control Biológico/aislamiento & purificación , Botrytis/crecimiento & desarrollo , Botrytis/aislamiento & purificación , Brassica/microbiología , Capsicum/microbiología , Cinnamomum camphora/química , Fragaria/microbiología , Humanos , Hifa/crecimiento & desarrollo , Hifa/aislamiento & purificación , Malus/microbiología , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Extractos Vegetales/química , Syzygium/química , Vitis/microbiología
8.
Pharm Res ; 37(12): 246, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33215292

RESUMEN

PURPOSE: The present study made an attempt to develop copper nanoparticles (Cu-NP) with antifungal property using green synthesis method. Copper oxide nanoparticles (CuO-NPs) botanically synthesized using Neem leaf extract (Azadirachta indica A. Juss) were characterized by using different techniques like; UV-visible spectrophotometry, FTIR, XRD, SEM and TEM. METHODS: Materials were chosen the disease free and fresh Azadirachta indica A. Juss were collected and identified at Center of Biodiversity and Taxonomy. The plant samples were vigorously washed with distilled water then shade dried followed by sterilization with 0.1% mercuric chloride for 20 s and again it was washed with distilled water. 15 g powder form of plant material was added to 200 ml double distilled, CO2 free and deionized water and kept in shaker at 80°C and 1500 rpm for six hours. After agitation, the extract was separated by regular centrifugation at 10,000 rpm followed by filtration by using whatmann filter paper. The final volume of 100 ml of supernatant was collected as pure extract and stored in cool place for further use. RESULTS: The final results confirm a significant inhibition of CuO-NPs for the test fungi. Additionally, CuO-NPs demonstrated an enhanced effect when combined with Neem leaf extract. A total of 20-30% improvement in activity was noticed after combination, which correlates with commonly used synthetic fungicides. The toxicity results reveal that A. indica extract and their combined fractions with CuO-NP were less toxic to the test seeds of experimental plant while as bulk Cu followed by biosynthesized CuO-NPs influenced the germination rate as compared to control pots. CONCLUSIONS: The study drops a concern of research and offers a promising route of developing Copper based green fungicides that can help to combat with modern issues of synthetic fungicides. An average size of 80 ± 15 nm monoclinic cupric oxide (CuO) and cubic cuprous oxides (Cu2O) nanocrystals that existed in mixed form were successfully developed.


Asunto(s)
Azadirachta/metabolismo , Cobre/metabolismo , Frutas/microbiología , Fungicidas Industriales/metabolismo , Tecnología Química Verde , Malus/microbiología , Nanopartículas del Metal , Extractos Vegetales/metabolismo , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Cobre/farmacología , Fungicidas Industriales/farmacología , Hojas de la Planta/metabolismo
9.
Food Microbiol ; 92: 103590, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950134

RESUMEN

Peroxyacetic acid (PAA) is a commonly used antimicrobial in apple spray bar interventions during post-harvest packing. However, limited information is available about its efficacy against foodborne pathogens on fresh apples under commercial packing conditions. In this study, the practical efficacies of PAA against Listeria monocytogenes on fresh apples during spray bar operation at ambient and elevated temperature were validated in three commercial packing facilities using Enterococcus faecium NRRL B-2354 as a surrogate strain. Apples were inoculated with E. faecium at ~6.5 Log10 CFU/apple and subjected to PAA spray bar interventions per commercial packing line practice. At each temperature and contact time intervention combination, 20-24 inoculated apples were processed together with 72-80 non-inoculated apples. Applying 80 ppm PAA at ambient temperature (17-21 °C) achieved a similar log reduction (P > 0.05) of E. faecium on Granny Smith apples (GSA) in three apple packing facilities, which caused 1.12-1.23 and 1.18-1.32 Log10 CFU/apple reductions of E. faecium on GSA for 30-sec and 60-sec intervention, respectively. Increasing the temperature of the PAA solution to 43-45 °C enhanced its bactericidal effect against E. faecium, causing 1.45, 1.86 and 2.19 Log10 CFU/apple reductions in three packing facilities for a 30-sec contact, and 1.50, 2.24, and 2.29 Log10 CFU/apple reductions for a 60-sec contact, respectively. Similar efficacies (P > 0.05) of PAA at both ambient and elevated temperature were also observed on Fuji apples. Spraying PAA on apples at ambient or elevated temperature reduced the level of E. faecium cross-contamination from inoculated apples to non-inoculated apples but could not eliminate cross-contamination. Data from this study provides valuable technical information and a reference point for the apple industry in controlling L. monocytogenes and verifying the effectiveness of their practices.


Asunto(s)
Enterococcus faecium/efectos de los fármacos , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Ácido Peracético/farmacología , Enterococcus faecium/crecimiento & desarrollo , Microbiología de Alimentos , Conservación de Alimentos/instrumentación , Frutas/microbiología , Listeria monocytogenes/crecimiento & desarrollo , Malus/microbiología
10.
Int J Food Microbiol ; 331: 108786, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-32659617

RESUMEN

Sweet orange essential oil is obtained from the peels of Citrus sinensis (CSEO) by cold pressing, and used as a valuable product by the food industry. Nanoencapsulation is known as a valid strategy to improve chemical stability, organoleptic properties, and delivery of EO-based products. In the present study we encapsulated CSEO using chitosan nanoemulsions (cn) as nanocarrier, and evaluated its antimicrobial activity in combination with mild heat, as well as its sensorial acceptability in orange and apple juices. CSEO composition was analyzed by GC-MS, and 19 components were identified, with limonene as the predominant constituent (95.1%). cn-CSEO was prepared under low shear conditions and characterized according to droplet size (<60 nm) and polydispersity index (<0.260 nm). Nanoemulsions were stable for at least 3 months at 4 ± 2 °C. cn-CSEO were compared with suspensions of CSEO (s-CSEO) (0.2 µL of CSEO/mL) in terms of antibacterial activity in combination with mild heat (52 °C) against Escherichia coli O157:H7 Sakai. cn-CSEO displayed a greater bactericidal activity than s-CSEO at pH 7.0 and pH 4.0. The validation in fruit juices showed an improved bactericidal effect of cn-CSEO in comparison with s-CSEO when combined with mild heat in apple juice, but not in orange juice. In both juices, the combination of CSEO and mild heat exerted synergistic lethal effects, reducing the treatment time to cause the inactivation of up to 5 Log10 cycles of E. coli O157:H7 Sakai cells. Finally, the sensory characteristics of both juices were acceptable either when using s-CSEO or CSEO nanoemulsified with chitosan. Therefore, as a promising carrier for lipophilic substances, the encapsulation of EOs with chitosan nanoemulsions might represent an advantageous alternative when combined with mild heat to preserve fruit juices.


Asunto(s)
Quitosano/química , Emulsiones/farmacología , Conservación de Alimentos/métodos , Jugos de Frutas y Vegetales/microbiología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Bebidas/microbiología , Quitosano/farmacología , Citrus sinensis/química , Recuento de Colonia Microbiana , Emulsiones/química , Escherichia coli O157/efectos de los fármacos , Frutas/química , Calor , Malus/microbiología
11.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32033956

RESUMEN

The recently characterized strain Pseudomonas orientalis F9, an isolate from apple flowers in a Swiss orchard, exhibits antagonistic traits against phytopathogens. At high colonization densities, it exhibits phytotoxicity against apple flowers. P. orientalis F9 harbors biosynthesis genes for the siderophore pyoverdine as well as for the antibiotics safracin and phenazine. To elucidate the role of the three compounds in biocontrol, we screened a large random knockout library of P. orientalis F9 strains for lack of pyoverdine production or in vitro antagonism. Transposon mutants that lacked the ability for fluorescence carried transposons in pyoverdine production genes. Mutants unable to antagonize Erwinia amylovora in an in vitro double-layer assay carried transposon insertions in the safracin gene cluster. As no phenazine transposon mutant could be identified using the chosen selection criteria, we constructed a site-directed deletion mutant. Pyoverdine-, safracin-, and phenazine mutants were tested for their abilities to counteract the fire blight pathogen Erwinia amylovoraex vivo on apple flowers or the soilborne pathogen Pythium ultimumin vivo in a soil microcosm. In contrast to some in vitro assays, ex vivo and in vivo assays did not reveal significant differences between parental and mutant strains in their antagonistic activities. This suggests that, ex vivo and in vivo, other factors, such as competition for resources or space, are more important than the tested antibiotics or pyoverdine for successful antagonism of P. orientalis F9 against phytopathogens in the performed assays.IMPORTANCEPseudomonas orientalis F9 is an antagonist of the economically important phytopathogen Erwinia amylovora, the causal agent of fire blight in pomme fruit. On King's B medium, P. orientalis F9 produces a pyoverdine siderophore and the antibiotic safracin. P. orientalis F9 transposon mutants lacking these factors fail to antagonize E. amylovora, depending on the in vitro assay. On isolated flowers and in soil microcosms, however, pyoverdine, safracin, and phenazine mutants control phytopathogens as clearly as their parental strains.


Asunto(s)
Agentes de Control Biológico/química , Erwinia amylovora/fisiología , Malus/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas/química , Flores/microbiología , Isoquinolinas/química , Oligopéptidos/química , Fenazinas/química , Enfermedades de las Plantas/microbiología , Pseudomonas/genética
12.
Food Chem ; 302: 125288, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419774

RESUMEN

The effects of benzothiadiazole (BTH) on Penicillium expansum development, mitochondria energy metabolism, and changes in the number and structure of mitochondria in apple fruit were investigated after the fruit were immersed in 100 mg L-1 BTH for 10 min and then stored at 22 °C. The results indicated that BTH treatment significantly decreased the lesion diameter of fruit challenged with P. expansum; further, treatment enhanced the activities of mitochondrial respiratory metabolism-related enzymes, such as succinate dehydrogenase, cytochrome oxidase, H+-ATPase and Ca2+-ATPase, along with high ATP level and energy status in apple fruit during storage. Moreover, transmission electron microscopy results indicated that BTH treatment was beneficial for maintaining the number and structure of mitochondria during storage. The results suggested that BTH treatment enhanced ATP levels via mitochondrial energy metabolism, which might contribute to the induced resistance in apple fruit during storage.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Almacenamiento de Alimentos , Frutas/metabolismo , Malus/efectos de los fármacos , Malus/metabolismo , Mitocondrias/efectos de los fármacos , Tiadiazoles/farmacología , Frutas/microbiología , Malus/microbiología , Mitocondrias/metabolismo , Penicillium/fisiología
13.
Arch Microbiol ; 202(3): 455-471, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31696248

RESUMEN

It is known that cell extracts of various algae have antifungal activity against microorganisms in vitro. Antifungal activities of Ulva lactuca, Chlorella vulgaris, Chlorella minutissima, and Chlorella protothecoides were investigated against: Aspergillus niger, Alternaria alternata, and Penicillium expansum fungi to present their fungicide potentials. Aspergillus niger, Alternaria sp., and Penicillium expansum are typical soft-rotting fungi and cause important loss of apple fruit in the storage. In vitro antifungal activity was evaluated by agar disc diffusion assay against pathogenic apple rot fungi. As a result, almost all of the extracts obtained from algae species were revealed to have antifungal activity against selected fungal pathogens. Free radical-scavenging activity of the extracts was determined with 1,1-diphenyl-2 picryl hydrazyl (DPPH) free radical-scavenging method. Extract of C. protothecoides was determined to have a stronger antioxidant activity than other algae extracts. This study reveals that the potential of algae should be investigated for the production of natural fungicide for pharmaceutical and food industries.


Asunto(s)
Chlorella vulgaris/química , Fungicidas Industriales/farmacología , Malus/microbiología , Extractos Vegetales/farmacología , Ulva/química , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Aspergillus/crecimiento & desarrollo , Fungicidas Industriales/química , Pruebas de Sensibilidad Microbiana , Penicillium/efectos de los fármacos , Penicillium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Extractos Vegetales/química
14.
Food Sci Technol Int ; 26(3): 242-253, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31701770

RESUMEN

This work was aimed to investigate the concept of the valorization of apple processing by-products to produce a new preservation system based on apple pomace gels to encourage the viability of antimicrobial Lactobacillus strains. A high frequency (850 kHz) low power (1.3 W/cm2) ultrasound-stimulated cavitation was used for the structure modulating of gels under low-temperature (50 ℃) conditions. Medium esterified apple pectin was added to apple pomace to improve its texture properties and stability. The monitoring of the process of gelation was performed by using acoustic technique and method, based on the measurement of the distance (parameter h, mm) traveled by a free-falling module. The obtained data were then compared to gel texture measurements. The results suggest that low power ultrasound leads to a reduced jelly mass stickiness and increased gel hardness, compared to the thermally treated sample. The immobilization of probiotic cells in low pectin apple pomace gels did not sufficiently protect the microorganisms. The higher viability of immobilized Lactobacillus paracasei (54-77%) compared to L. plantarum (43-59%) was recorded after incubation at acidic conditions (pH 2.0). The most suitable system for preserving bacterial cells during storage can be the apple pomace-pectin gel containing up to 53% pectin as a stabilizer retaining 84% of viable cells after one-month storage at 4 ℃. The apple pomace-pectin hydrogels with gelation rate (dh/dt) of 0.03-0.05 mm/s can be used for the preservation of bacterial cells as a suitable functional ingredient for food.


Asunto(s)
Frutas/microbiología , Lactobacillus , Malus/microbiología , Viabilidad Microbiana , Pectinas , Probióticos , Microbiología de Alimentos , Alimentos Funcionales , Geles , Humanos , Concentración de Iones de Hidrógeno , Reología , Temperatura
15.
J Appl Microbiol ; 128(5): 1460-1471, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31829487

RESUMEN

AIMS: The purpose of this study was to select phosphorus-efficient apple rootstocks under phosphorus deficiency and to reveal the effects of different apple rootstocks on the rhizosphere bacterial community. METHODS AND RESULTS: We used 83 hybrid lines of Malus robusta Rehd. × Malling 9 (M.9) to investigate their physiological traits and the phosphorus deficiency phenotypes of leaves in response to phosphorus deficiency (0·1 mmol l-1 PO4 3- ). All the plants were cultivated in pots in the greenhouse and watered using drip irrigation. In accordance with the results of investigation, we selected the phosphorus-efficient hybrid lines (PE) and the phosphorus-inefficient hybrid lines (PI) to research their root morphology and root hairs (RH). In addition, we used Illumina MiSeq sequencing to determine the bacterial community of the rhizosphere from different rootstocks. The results showed that the PE plants had better growth characteristics and stronger root plasticity than that of the PI plants, and phosphorus deficiency can stimulate the RH growth of PE plants. There was no significant difference in the rhizosphere bacterial diversity, but we found that the bacterial community structure was significantly different at the genus levels; in addition, 89 genera were found to have significant differences between PE and PI plants, especially Bacillus. The PE rhizosphere had more abundant Bacillus compared to the PI. High positive Pearson correlations with the phosphorus concentration in the plantlets of apple rootstocks were detected for the bacterial genera Bacillus (r: 0·776). CONCLUSIONS: The phosphorus-efficient apple rootstocks adapted to phosphorus deficiency by shaping the root morphology. Notably, different apple rootstocks showed alteration of the microbes in rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: This study can provide the materials for exploring the mechanism of apple rootstock phosphorus absorption. In accordance with the different bacterial community compositions, we can develop the inoculants to promote nutrient uptake.


Asunto(s)
Malus/metabolismo , Malus/microbiología , Microbiota , Fósforo/metabolismo , Rizosfera , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Malus/crecimiento & desarrollo , Microbiota/genética , Fósforo/análisis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Suelo/química
16.
J Sci Food Agric ; 99(13): 5792-5798, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31162672

RESUMEN

BACKGROUND: Recently, a producer of fermented ciders observed 'vinyl' off-odors formed during fermentation of pear juice previously depectinized at ≥ 49 °C but not if depectinized at lower temperatures. The objective of this study was to investigate the source of this spoilage and evaluate factors that affect formation. RESULTS: Analysis of untainted and tainted samples obtained from the producer determined the causative agent to be indole, a compound sometimes produced by yeast (Saccharomyces cerevisiae) during fermentation. To mimic commercial depectinization conditions, pectinases were added to pear juices held at 35 °C for 45 min (Treatment A), 49 °C for 45 min (Treatment B), or 49 °C for 90 min (Treatment C). Juice processing conditions did not affect yeast growth nor progress of alcoholic fermentation. Although neither yeast strain (DV10 or MERIT) synthesized indole during fermentation of Treatment A juices, the compound was produced by MERIT in Treatments B (27.05 µg L-1 ) and C (469.9 µg L-1 ). Supplementation of Treatment C juice with pyridoxine (vitamin B6 ) prior to fermentation resulted in no detectable indole formed. However, juices from Treatments A, B, or C contained similar concentrations of pyridoxine and non-detectable amounts of tryptophan, a potential precursor to indole. Furthermore, indole was not detected during fermentations of a synthetic pear juice medium without pyridoxine. CONCLUSION: Supplementation of cider musts with pyridoxine prior to fermentation and choice of yeast strain can lower the risk of formation of off-odors caused by indole. However, other unidentified factors are present which affect its formation in perry. © 2019 Society of Chemical Industry.


Asunto(s)
Bebidas Alcohólicas/análisis , Etanol/metabolismo , Manipulación de Alimentos/métodos , Indoles/metabolismo , Pectinas/metabolismo , Pyrus/química , Saccharomyces cerevisiae/metabolismo , Bebidas Alcohólicas/microbiología , Etanol/análisis , Fermentación , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Indoles/análisis , Malus/química , Malus/microbiología , Odorantes/análisis , Poligalacturonasa/química , Pyrus/microbiología
17.
J Food Sci ; 84(4): 848-858, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30866044

RESUMEN

This study assessed the compromised acceptance threshold (CAT) and rejection threshold (RT) of Citrus lemon (CLEO) and Citrus reticulata essential oil (CREO) in apple and orange juices. The efficacy of CLEO and CREO concentrations below the RT were evaluated alone and combined with mild heat treatment (MHT) (54 °C, up to 12 min) to inactivate the autochthonous spoilage bacteria Lactobacillus brevis, Lactobacillus plantarum, and Leuconostoc mesenteroides in apple and orange juices. The CAT of CLEO and CREO varied from 0.15 to 0.17 µL/mL in orange and apple juices. The RT of CLEO was approximately 0.58 µL/mL in apple and orange juices, and the RT of CREO was 0.68 µL/mL in both juices. When CLEO and CREO were assayed alone, the highest concentration (0.50 µL/mL) decreased counts of all strains approximately 2 log10 CFU/mL after 12 min of exposure to 54 °C. All concentrations of CLEO or CREO in combination with MHT acted synergistically against L. brevis, L. plantarum, and L. mesenteroides. Decreases in counts varied with the strain, CLEO and CREO concentrations, juice type, and exposure time to the combined treatment. CREO was more effective than CLEO in combination with MHT against the strains in apple and orange juices. Effective combinations of CLEO or CREO with MHT to control the autochthonous spoilage bacteria did not compromise the quality parameters (°Brix, pH, and titratable acidity) that characterize unsweetened juices. These results indicate CLEO or CREO at concentrations below the sensory RT in combination with MHT as a feasible technology to control autochthonous spoilage bacteria in fresh fruit juices. PRACTICAL APPLICATION: The present study provides novel information concerning the efficacy of sensorially accepted doses of CLEO and CREO combined with MHT against autochthonous spoilers in fruit juice. The valuable synergistic effects that can be observed when combining CLEO and CREO with MHT reveal a feasible preservation technology and alternative to traditional treatments that are successful because they help reduce treatment intensity, thereby avoiding adverse effects on the sensory, physicochemical, and nutritional properties of these products.


Asunto(s)
Citrus/microbiología , Jugos de Frutas y Vegetales/microbiología , Lactobacillales/clasificación , Malus/microbiología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Citrus/química , Conservación de Alimentos/métodos , Calor , Lactobacillales/efectos de los fármacos , Lactobacillales/fisiología , Malus/química , Aceites Volátiles/química , Aceites de Plantas/química
18.
Food Chem ; 279: 379-388, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30611504

RESUMEN

A package was created that extends apple shelf-life by slowing Penicillium expansum growth. The package consisted of a peelable lid and a tray with a double bottom with inclusion complexes (ICs) of ß-cyclodextrin (ß-CD) containing the essential oils of palmarosa (ICp) or of star anise (ICsa). Oil amounts required for antimicrobial activity were obtained from in vitro assays. After 12 days at 23 °C, P. expansum-inoculated apples in both of the double-bottom antimicrobial packages (DBAP) had 1/3 less fungal growth, less than 50% weight loss and ethylene and CO2 production, and less than 25% firmness loss, TA and SSC increase, and pH decrease compared to controls. The DBAP with ICsa performed better than with ICp in reducing ethylene production, respiration rate, firmness loss, TA increase, and pH decrease. This demonstrates DBAP containing ICp or ICsa can maximize the shelf-life of apples injured by P. expansum, validating a novel type of antimicrobial packaging.


Asunto(s)
Antibacterianos/farmacología , Embalaje de Alimentos/métodos , Malus/microbiología , Aceites Volátiles/farmacología , Antibacterianos/química , Dióxido de Carbono/metabolismo , Cymbopogon/química , Etilenos/metabolismo , Microbiología de Alimentos , Embalaje de Alimentos/instrumentación , Almacenamiento de Alimentos/métodos , Concentración de Iones de Hidrógeno , Illicium/química , Malus/efectos de los fármacos , Malus/metabolismo , Aceites Volátiles/química , Penicillium/efectos de los fármacos , Penicillium/crecimiento & desarrollo , Aceites de Plantas/química , beta-Ciclodextrinas/química
19.
Int J Food Microbiol ; 291: 135-143, 2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500690

RESUMEN

The group of the small-spored Alternaria species is particularly relevant in foods due to its high frequency and wide distribution in different crops. These species are responsible for the accumulation of mycotoxins and bioactive secondary metabolites in food. The taxonomy of the genus has been recently revised with particular attention on them; several morphospecies within this group cannot be segregated by phylogenetic methods, and the most recent classifications proposed to elevate several phylogenetic species-groups to the taxonomic status of section. The purpose of the present study was to compare the new taxonomic revisions in Alternaria with secondary metabolite profiles with special focus on sections Alternaria and Infectoriae and food safety. A total of 360 small-spored Alternaria isolates from Argentinean food crops (tomato fruit, pepper fruit, blueberry, apple, wheat grain, walnut, pear, and plum) was morphologically identified to species-group according to Simmons (2007), and their secondary metabolite profile was determined. The isolates belonged to A. infectoria sp.-grp. (19), A. tenuissima sp.-grp. (262), A. arborescens sp.-grp. (40), and A. alternata sp.-grp. (7); 32 isolates, presenting characteristics overlapping between the last three groups, were classified as Alternaria sp. A high chemical diversity was observed; 78 different metabolites were detected, 31 of them of known chemical structure. The isolates from A. infectoria sp.-grp. (=Alternaria section Infectoriae) presented a specific secondary metabolite profile, different from the other species-groups. Infectopyrones, novae-zelandins and phomapyrones were the most frequent metabolites produced by section Infectoriae. Altertoxin-I and alterperylenol were the only compounds that these isolates produced in common with members of section Alternaria. None of the well-known Alternaria toxins, considered relevant in foods, namely alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) or altenuene (ALT), were produced by isolates of this section. On the other hand, strains from section Alternaria (A. tenuissima, A. arborescens, and A. alternata sp.-grps.) shared a common metabolite profile, indistinguishable from each other. AOH, AME, ALT, TEN, and TeA were the most frequently mycotoxins produced, together with pyrenochaetic acid A and altechromone A. Alternaria section Alternaria represents a substantial risk in food, since their members in all types of crops are able to produce the toxic metabolites.


Asunto(s)
Alternaria/clasificación , Alternaria/metabolismo , Productos Agrícolas/microbiología , Filogenia , Argentina , Arándanos Azules (Planta)/microbiología , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Frutas/microbiología , Juglans/microbiología , Lactonas/análisis , Solanum lycopersicum/microbiología , Malus/microbiología , Micotoxinas/análisis , Péptidos Cíclicos/análisis , Piper nigrum/microbiología , Prunus domestica/microbiología , Pyrus/microbiología , Metabolismo Secundario , Ácido Tenuazónico/análisis , Triticum/microbiología
20.
Food Chem ; 274: 415-421, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372959

RESUMEN

Photodynamic treatment (PDT) is an innovative technology with non-thermal and environmentally sound merits, but the evaluation on the storage qualities of fresh produce was scarce. In this study, the effects of curcumin-based PDT on the quality of fresh-cut 'Fuji' apple slices during storage at 4 °C were investigated. The impacts on the survival of Escherichia coli, color and weight loss were examined under different curcumin concentrations, illumination time or incubation time. Curcumin-based photodynamic inactivation of E. coli on the surface of apple slices reached 0.95 log. Curcumin-based PDT was proven to prevent browning and weight loss. Additionally, PDT significantly reduced the activity of polyphenol oxidase and peroxidases to 48% and 51%, respectively. Moreover, there were few negative changes in total phenolic, ascorbic acid content and anti-oxidant activity of the treated apples. These results indicated that curcumin-based PDT was a viable and promising non-thermal technology to preserve the quality of fresh produce.


Asunto(s)
Curcumina/farmacología , Calidad de los Alimentos , Almacenamiento de Alimentos , Malus/efectos de los fármacos , Malus/efectos de la radiación , Color , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Escherichia coli/efectos de la radiación , Malus/enzimología , Malus/microbiología , Fotoquimioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA