Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Fungi (Basel) ; 9(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37998866

RESUMO

Manganese superoxide dismutases (MnSODs) play a pivotal role in the preservation of mitochondrial integrity and function in fungi under various endogenous and exogenous stresses. Deletion of Aspergillus nidulans mnSOD/SodB increased oxidative stress sensitivity and apoptotic cell death rates as well as affected antioxidant enzyme and sterigmatocystin productions, respiration, conidiation and the stress tolerance of conidiospores. The physiological consequences of the lack of sodB were more pronounced during carbon starvation than in the presence of glucose. Lack of SodB also affected the changes in the transcriptome, recorded by high-throughput RNA sequencing, in menadione sodium bisulfite (MSB)-exposed, submerged cultures supplemented with glucose. Surprisingly, the difference between the global transcriptional changes of the ΔsodB mutant and the control strain were relatively small, indicating that the SodB-dependent maintenance of mitochondrial integrity was not essential under these experimental conditions. Owing to the outstanding physiological flexibility of the Aspergilli, certain antioxidant enzymes and endogenous antioxidants together with the reduction in mitochondrial functions compensated well for the lack of SodB. The lack of sodB reduced the growth of surface cultures more than of the submerged culture, which should be considered in future development of fungal disinfection methods.

2.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186990

RESUMO

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Vitamina K 3/farmacologia , Vitamina K 3/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
Pest Manag Sci ; 78(3): 974-981, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34738317

RESUMO

BACKGROUND: Botrytis cinerea, the causal agent of gray mold has a great economic impact on several important crops. This necrotrophic fungus causes disease symptoms during vegetative growth and also into postharvest stages. The current method to combat this disease is fungicide application, with high economic costs and environmentally unsustainable impacts. Moreover, there is an increasing general public health concern about these strategies of crop protection. We studied the protection of tomato plants against B. cinerea by previous root treatment with menadione sodium bisulfite (MSB), a known plant defense activator. RESULTS: Root treatment 48 h before inoculation with MSB 0.6 mmol L-1 reduced leaf lesion diameter by 30% and notably cell deaths, compared to control plants 72 h after inoculation. We studied the expression level of several pathogenesis-related (PR) genes from different defense transduction pathways, and found that MSB primes higher PR1 expression against B. cinerea. However, this stronger induced resistance was impaired in transgenic salicylic acid-deficient NahG line. Additionally, in the absence of pathogen challenge, MSB increased tomato plant growth by 28% after 10 days. Our data provide evidence that MSB protects tomato plants against B. cinerea by priming defense responses through the salicylic acid (SA)-dependent signaling pathway and reducing oxidative stress. CONCLUSION: This work confirms the efficacy of MSB as plant defense activator against B. cinerea and presents a novel alternative to combat gray mold in important crops.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Botrytis , Resistência à Doença , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica de Plantas , Humanos , Doenças das Plantas , Vitamina K 3
4.
Anticancer Agents Med Chem ; 22(13): 2411-2418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34875993

RESUMO

BACKGROUND: Colon cancer is one of the most important causes of death in the entire world. New pharmacological strategies are always needed, especially in resistant variants of this pathology. We have previously reported that drugs such as menadione (MEN), D, L-buthionine-S,R-sulfoximine or calcitriol, used in combination, enhanced cell sensibility of breast and colon tumour models, due to their ability to modify the oxidative status of the cells. Melatonin (MEL), a hormone regulating circadian rhythms, has anti-oxidant and anti-apoptotic properties at low concentrations, while at high doses, it has been shown to inhibit cancer cell growth. OBJECTIVE: The objective of this study is to determine the antitumoral action of the combination MEN and MEL on colon cancer cells. METHODS: Caco-2 cells were employed to evaluate the effects of both compounds, used alone or combined, on cellular growth/morphology, oxidative and nitrosative stress, and cell migration. RESULTS: MEN plus MEL dramatically reduced cell proliferation in a time and dose-dependent manner. The antiproliferative effects began at 48 h. At the same time, the combination modified the content of superoxide anion, induced the formation of reactive nitrogen species and enhanced catalase activity. Cell migration process was delayed. Also, changes in nuclear morphology consistent with cell death were observed. CONCLUSION: The enhanced effect of simultaneous use of MEN and MEL on Caco-2 cells suggests that this combined action may have therapeutic potential as an adjuvant on intestinal cancer acting in different oncogenic pathways.


Assuntos
Neoplasias do Colo , Melatonina , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Butionina Sulfoximina/farmacologia , Células CACO-2 , Neoplasias do Colo/tratamento farmacológico , Humanos , Melatonina/farmacologia , Estresse Oxidativo , Vitamina K 3/farmacologia
5.
Heliyon ; 6(12): e05741, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364504

RESUMO

Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 µM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 µM 3BP. ROS generated in mitochondria were enhanced at 30 µM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 µM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.

6.
Free Radic Biol Med ; 147: 69-79, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857234

RESUMO

Fuchs Endothelial Corneal Dystrophy (FECD) is an age-related genetically complex disease characterized by increased oxidative DNA damage and progressive degeneration of corneal endothelial cells (HCEnCs). FECD has a greater incidence and advanced phenotype in women, suggesting a possible role of hormones in the sex-driven differences seen in the disease pathogenesis. In this study, catechol estrogen (4-OHE2), the byproduct of estrogen metabolism, induced genotoxic estrogen-DNA adducts formation, macromolecular DNA damage, and apoptotic cell death in HCEnCs; these findings were potentiated by menadione (MN)-mediated reactive oxygen species (ROS). Expression of NQO1, a key enzyme that neutralizes reactive estrogen metabolites, was downregulated in FECD, indicating HCEnC susceptibility to reactive estrogen metabolism in FECD. NQO1 deficiency in vitro exacerbated the estrogen-DNA adduct formation and loss of cell viability, which was rescued by the supplementation of N-acetylcysteine, a ROS scavenger. Notably, overexpression of NQO1 in HCEnCs treated with MN and 4-OHE2 quenched the ROS formation, thereby reducing the DNA damage and endothelial cell loss. This study signifies a pivotal role for NQO1 in mitigating the macromolecular oxidative DNA damage arising from the interplay between intracellular ROS and impaired endogenous estrogen metabolism in post-mitotic ocular tissue cells. A dysfunctional Nrf2-NQO1 axis in FECD renders HCEnCs susceptible to catechol estrogens and estrogen-DNA adducts formation. This novel study highlights the potential role of NQO1-mediated estrogen metabolite genotoxicity in explaining the higher incidence of FECD in females.


Assuntos
Distrofia Endotelial de Fuchs , Adutos de DNA , Dano ao DNA , Células Endoteliais , Endotélio Corneano , Estrogênios/toxicidade , Feminino , Distrofia Endotelial de Fuchs/genética , Humanos , NAD(P)H Desidrogenase (Quinona)/genética
7.
Nutrients ; 11(6)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181639

RESUMO

BACKGROUND: 1,4-naphthoquinones, especially juglone, are known for their anticancer activity. However, plumbagin, lawsone, and menadione have been less investigated for these properties. Therefore, we aimed to determine the effects of plumbagin, lawsone, and menadione on C6 glioblastoma cell viability, ROS production, and mitochondrial function. METHODS: Cell viability was assessed spectrophotometrically using metabolic activity method, and by fluorescent Hoechst/propidium iodide nuclear staining. ROS generation was measured fluorometrically using DCFH-DA. Oxygen uptake rates were recorded by the high-resolution respirometer Oxygraph-2k. RESULTS: Plumbagin and menadione displayed highly cytotoxic activity on C6 cells (IC50 is 7.7 ± 0.28 µM and 9.6 ± 0.75 µM, respectively) and caused cell death by necrosis. Additionally, they increased the amount of intracellular ROS in a concentration-dependent manner. Moreover, even at very small concentrations (1-3 µM), these compounds significantly uncoupled mitochondrial oxidation from phosphorylation impairing energy production in cells. Lawsone had significantly lower viability decreasing and mitochondria-uncoupling effect, and exerted strong antioxidant activity. CONCLUSIONS: Plumbagin and menadione exhibit strong prooxidant, mitochondrial oxidative phosphorylation uncoupling and cytotoxic activity. In contrast, lawsone demonstrates a moderate effect on C6 cell viability and mitochondrial functions, and possesses strong antioxidant properties.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Glioblastoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Oxidantes/farmacologia , Desacopladores/farmacologia , Animais , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/tratamento farmacológico , Mitocôndrias/metabolismo , Naftoquinonas/uso terapêutico , Oxidantes/uso terapêutico , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Desacopladores/uso terapêutico , Vitamina K 3/farmacologia , Vitamina K 3/uso terapêutico
8.
Placenta ; 71: 6-12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30415746

RESUMO

INTRODUCTION: Smokers have a significantly decreased risk of pre-eclampsia (PE), possibly attributed to an increase in blood carbon monoxide (CO) concentrations. At physiological concentrations, CO has been demonstrated to have placental vasodilatory and anti-inflammatory properties. Increasing endogenous CO production may have therapeutic potential to either prevent or treat PE. Menadione (MD), synthetic vitamin K3, increases CO in rat microsomes. Our objective was to investigate MD's ability to increase endogenous CO concentrations in pregnancy. METHODS: Three experiments were completed. First, in vitro CO production was measured using isolated GD15 placentas. Second, non-pregnant normotensive mice received no, 1.5, 4.0 or 6.5 g/L MD for 7 days. Lastly, pregnant normotensive mice received either no or 6.5 g/L MD in water from GD10.5 to GD17.5. Consumption was measured as average daily water intake per gram of body weight. Maternal and fetal CO levels in the blood and tissue were quantified using headspace gas chromatography. RESULTS: MD significantly increased CO production in isolated GD15 placentas. In both pregnant and non-pregnant experiments, splenic CO, hepatic CO, and splenic mass were higher in treated mice compared to controls (all p < 0.05). Maternal %COHb and Hb in treated dams were not significantly different compared to controls. The fetal:placental mass ratio was significantly lower in the treatment group (p = 0.002). DISCUSSION: Placental CO production was observed in GD15 placentas after co-incubation with MD. MD administration increased CO in the liver and spleens of pregnant mice. Further investigation into different doses of MD is required to identify one without demonstrable fetal/placental effects.


Assuntos
Monóxido de Carbono/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/prevenção & controle , Vitamina K 3/uso terapêutico , Vitaminas/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos , Placenta/efeitos dos fármacos , Gravidez , Resultado da Gravidez , Vitamina K 3/farmacologia , Vitaminas/farmacologia
9.
Biochim Biophys Acta Gen Subj ; 1862(10): 2226-2235, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036601

RESUMO

Protein misfolding and aggregation are associated with amyloidosis. The toxic aggregation of amyloid-ß 1-42 (Aß42) may disrupt cell membranes and lead to cell death and is thus regarded as a contributing factor in Alzheimer's disease (AD). 1,4-naphthoquinone (NQ) has been shown to exhibit strong anti-aggregation effects on amyloidogenic proteins such as insulin and α-synuclein; however, its high toxicity and poor solubility limit its clinical application. Menadione sodium bisulfite (MSB, also known as vitamin K3), is used clinically in China to treat hemorrhagic diseases caused by vitamin K deficiency and globally as a vitamin K supplement. We hypothesized that MSB could inhibit amyloid formation since its backbone structure is similar to NQ. To test our hypothesis, we first investigated the effects of MSB on Aß42 amyloid formation in vitro. We found that MSB inhibited Aß42 amyloid formation in a dose dependent manner, delayed the secondary structural conversion of Aß42 from random coil to ordered ß-sheet, and attenuated the ability of Aß42 aggregates to disrupt membranes; moreover, the quinone backbone rather than lipophilicity is esstial for the inhibitory effects of MSB. Next, in cells expressing a pathogenic APP mutation (Osaka mutation) that results in the formation of intraneuronal Aß oligomers, MSB inhibited the intracellular aggregation of Aß. Moreover, MSB treatment significantly extended the life span of Caenorhabditis elegans CL2120, a strain that expresses human Aß42. Together, these results suggest that MSB and its derivatives may be further explored as potential therapeutic agents for the prevention or treatment of AD.


Assuntos
Peptídeos beta-Amiloides/química , Animais Geneticamente Modificados/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas/prevenção & controle , Vitamina K 3/farmacologia , Vitaminas/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Longevidade , Fragmentos de Peptídeos/efeitos dos fármacos
10.
BMC Complement Altern Med ; 18(1): 163, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788962

RESUMO

BACKGROUND: There are increasing interests in natural compounds for cancer chemoprevention. Blocking agents represent an important class of chemopreventive compounds. They prevent carcinogens from undergoing metabolic activation and thereby suppressing their interaction with cellular macromolecular targets. METHODS: The effect of phenolic compounds isolated from Barleria cristata var. alba as chemopreventive agent was evaluated. The ethyl acetate fraction of B. cristata was subjected to different chromatographic techniques for isolation of its major phenolic compounds. The isolated compounds were evaluated for their potential to induce the cancer chemopreventive enzyme marker NAD(P)H quinonereductase 1 (NQO1) in murine Hepa-1c1c7 cell model. RESULTS: The ethyl acetate fraction of B. cristata var. alba yielded five known compounds identified as verbascoside (1), isoverbascoside (2), dimethoxyverbascoside (3), p-hydroxy benzoic acid (4), and apigenin-7-O-glucoside (5). Among the tested compounds, isoverbascoside (2) was shown to potently induce the activity of the enzyme in a dose -dependent manner. As a functional assay for detoxification, compound 2 was the strongest to protect Hepa-1c1c7 against the toxicity of menadione, a quinone substrate for NQO1. CONCLUSION: This effect seemed to be attributed to the compound's potential to induce both the catalytic activity and protein expression of NQO1 as revealed by enzyme assay and Western blotting, respectively.


Assuntos
Acanthaceae , Anticarcinógenos/farmacologia , NAD(P)H Desidrogenase (Quinona) , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
11.
Toxicology ; 393: 123-139, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141199

RESUMO

Menadione, also known as vitamin K3, is a 2-methyl-1,4 naphthoquinone with a potent cytotoxic activity mainly resulting from its quinone redox-cycling with production of reactive oxygen species (ROS). Although increased ROS generation is considered a relevant mechanism in cancer cell death, it may not be sufficiently effective to kill cancer cells due to phenotypic adaptations. Therefore, combining ROS-generating agents with other molecules targeting important cancer cell phenotypes can be an effective therapeutic strategy. As mitochondrial dysfunction has been implicated in many human diseases, including cancer, we describe here the discovery of a mitochondrial-directed agent (MitoK3), which was developed by conjugating a TPP cation to the C3 position of the menadione's naphthoquinone ring, increasing its selective accumulation in mitochondria, as well as led to alterations of its redox properties and consequent biological outcome. MitoK3 disturbed the mitochondrial bioenergetic apparatus, with subsequent loss of mitochondrial ATP production. The combinatory strategy of MitoK3 with anticancer agent doxorubicin (DOX) resulted in a degree of cytotoxicity higher than those of the individual molecules, as the combination triggered tumour apoptotic cell death evident by caspase 3/9 activities, probably through mitochondrial destabilization or by interference with mitochondrial redox processes. The results of this investigation support the importance of drug discovery process in developing molecules that can be use as adjuvant therapy in patients with specific cancer subtypes.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Vitamina K 3/análogos & derivados , Vitamina K 3/farmacologia , Células A549 , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio , Ratos
12.
Eur J Pharmacol ; 815: 381-390, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970010

RESUMO

Glycyrrhiza (the roots and rhizomes of licorice) has been used worldwide as both an herbal nutraceutical and herbal medicine. In addition, it is well known that Glycyrrhiza contains various compounds with biological effects, such as anti-viral, anti-inflammatory, immunoregulatory, anti-tumor and neuroprotective effects. Among the various compounds in Glycyrrhiza, the active compounds that show biological activity are thought to include glycyrrhizin, glycyrrhetinic acid, glabridin, licochalcones and liquiritin. In the present study, we investigated the biological effects of three of these compounds (glycyrrhizin, liquiritin and isoliquiritin) on B65 neuroblastoma cells derived from serotonergic neurons. Among these three compounds, only liquiritin enhanced the proliferation of B65 neuroblastoma cells. In contrast, both glycyrrhizin and isoliquiritin, particularly at high concentrations had cytotoxic effects. Cells were treated with various cytotoxic agents and liquiritin could ameliorate the cytotoxicity induced by menadione sodium bisulfate in a dose-dependent manner. We also examined the effect of liquiritin on cell survival by evaluating the expression levels of phospho-p44/42 mitogen-activated protein kinase, cyclin-related proteins and glucose-6-phosphate dehydrogenase, which produces nicotinamide adenine dinucleotide phosphate. Under treatment with liquiritin, the protein expression level of glucose-6-phosphate dehydrogenase increased in a dose-dependent manner. In contrast, the protein expression level of cyclin-related proteins did not change at all under treatment with liquiritin. These results suggest that liquiritin, which is contained in Glycyrrhiza, may enhance cell survival by increasing the protein expression level of glucose-6 phosphate dehydrogenase.


Assuntos
Antioxidantes/farmacologia , Flavanonas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Glucosídeos/farmacologia , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-28732794

RESUMO

The aim of this study was to investigate whether glutamine (GLN) could block the inhibition of the intestinal Ca2+ absorption caused by menadione (MEN), and elucidate the underlying mechanisms. To do this, one-month old chicks were divided in four groups: 1) controls, 2) MEN treated, 3) GLN treated and 4) GLN treated before or after MEN treatment. Intestinal Ca2+ absorption as well as protein expression of molecules involved in the transcellular Ca2+ pathway were determined. Glutathione (GSH) and superoxide anion and activity of enzymes of the antioxidant system were evaluated. Apoptosis was measured by the TUNEL technique, the expression of FAS and FASL and the caspase-3 activity. A previous dose of 0.5gGLN/kg of b.w. was necessary to show its protector effect and a dose of 1g/kg of b.w. could restore the intestinal Ca2+ absorption after MEN treatment. GLN alone did not modify the protein expression of calbindin D28k and plasma membrane Ca2+-ATPase, but blocked the inhibitory effect of the quinone. GLN avoided changes in the intestinal redox state provoked by MEN such as a decrease in the GSH content, and increases in the superoxide anion and in the SOD and CAT activities. GLN abrogated apoptotic effects caused by MEN in intestinal mucosa, as indicated by the reduction of TUNEL (+) cells and the FAS/FASL/caspase-3 pathway. In conclusion, GLN could be an oral nutritional supplement to normalize the redox state and the proliferation/cell death ratio in the small intestine improving the intestinal Ca2+ absorption altered by oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Glutamina/farmacologia , Intestinos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Galinhas , Relação Dose-Resposta a Droga , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Vitamina K 3/farmacologia
14.
Acta Trop ; 167: 163-173, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017859

RESUMO

Schistosomiasis is one of the neglected tropical diseases affecting nearly quarter of a billion people in economically challenged tropical and subtropical countries of the world. Praziquantel (PZQ) is the only drug currently available to treat this parasitic disease in spite being ineffective against juvenile worms and concerns about developing resistance to treat reinfections. Our earlier in vitro viability studies demonstrated significant antiparasitic activity of menadione (MEN) (vitamin K3) against Schistosoma mansoni adult worms. To gain insight into plausible mechanism of antischistosomal activity of MEN, its effect on superoxide anion levels in adult worms were studied in vitro which showed significant increases in both female and male worms. Further confirmation of the deleterious morphological changes in their teguments and organelles were obtained by ultrastructural analysis. Genotoxic and cytotoxic studies in male Swiss mice indicated that MEN was well tolerated at the oral dose of 500mg/kg using the criteria of MNPCE frequency and PCE/RBC ratio in the bone marrow of infected animals. The in vivo antiparasitic activity of MEN was conducted in female BALB/c mice infected with S. mansoni and significant reductions (P<0.001) in total worm burden were observed at single oral doses of 40 and 400mg/kg (48.57 and 61.90%, respectively). Additionally, MEN significantly reduced (P<0.001) the number of eggs in the liver of infected mice by 53.57 and 58.76%, respectively. Similarly, histological analysis of the livers showed a significant reduction (P<0.001) in the diameter of the granulomas. Since MEN is already in use globally as an over-the-counter drug for a variety of common ailments and a dietary supplement with a safety record in par with similar products when used in recommended doses, the above antiparasitic results which compare reasonably well with PZQ, make a compelling case for considering MEN to treat S. mansoni infection in humans.


Assuntos
Antiparasitários/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Vitamina K 3/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Granuloma/parasitologia , Fígado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Schistosoma mansoni/ultraestrutura , Esquistossomose/tratamento farmacológico
15.
J Basic Microbiol ; 55(8): 973-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25707543

RESUMO

The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology.


Assuntos
Antifúngicos/farmacologia , Betametasona/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Vitamina K 3/farmacologia , Anfotericina B/farmacologia , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candidíase/microbiologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nistatina/farmacologia , Estresse Oxidativo
16.
Anal Chim Acta ; 804: 273-9, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24267093

RESUMO

The use of menadione (MD) as a pre-column reagent for high performance liquid chromatography (HPLC) analysis of aliphatic thiols is proposed. The reaction was carried out for 5 min at room temperature and pH 8.5. The developed method was applied to the N-acetylcysteine (NAC) analysis of alimentary supplements and pharmaceutical formulations. The effect of the complex matrix was evaluated by the study of the thiol derivatization reaction both in standard and in placebo solutions. The yield of NAC-MD adduct was found to be quantitative at a reagent to thiol molar ratio of about 4 in comparison with an authentic specimen of synthesized NAC adduct, which was characterized by (1)H NMR, IR and UV. The routine chromatographic separations were performed on a Synergi MAX-RP column using a mobile phase consisting of methanol/triethylammonium (TEA) phosphate buffer (pH 3; 0.05 mol L(-1)) 70:30 (v/v) at a flow-rate of 0.4 mL min(-1). UV-diode array detection was used setting the wavelength at λ=260 nm. The validation parameters such as linearity, sensitivity, accuracy, precision, selectivity and ruggedness were found to be highly satisfactory. Similar linear responses were observed by standard and placebo solutions (determination coefficient: 0.9996). Limit of detection was about 0.019 µg g(-1). Intra-day precision (relative standard deviation, R.S.D.) was ≤0.81% for NAC to internal standard (IS) peak area ratio, ≤0.28% and ≤0.32%, respectively, for NAC and IS retention times (tR), without significant differences between intra- and inter-day data. NAC recovery studies gave good results (100.12%) with R.S.D.=1.05%.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Suplementos Nutricionais , Preparações Farmacêuticas/análise , Compostos de Sulfidrila/análise , Vitamina K 3/análise , Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas/administração & dosagem , Compostos de Sulfidrila/administração & dosagem , Vitamina K 3/administração & dosagem
17.
Food Chem Toxicol ; 60: 479-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933359

RESUMO

Diet-induced changes in the lipid composition of mitochondrial membranes have been shown to influence physiological processes. However, the modulation effect of diet on mitochondrially-active drugs has not yet received the deserved attention. Our hypothesis is that modulation of membrane dynamics by diet impacts drug-effects on liver mitochondrial functioning. In a previous work, we have shown that a diet rich in rapeseed oil altered mitochondrial membrane composition and bioenergetics in Wistar rats. In the present work, we investigated the influence of the modified diet on hepatic mitochondrial activity of two drugs, menadione and nimesulide, and FCCP, a classic protonophore, was used for comparison. The results showed that the effects of menadione and nimesulide were less severe on liver mitochondria for rats fed the modified diet than on rats fed the control diet. A specific effect on complex I seemed to be involved in drug-induced mitochondria dysfunction. Liver mitochondria from the modified diet group were more susceptible to nimesulide effects on MPT induction. The present work demonstrates that diet manipulation aimed at modifying mitochondrial membrane properties alters the toxicity of mitochondria active agents. This work highlights that diet may potentiate mitochondrial pharmacologic effects or increase drug-induced liabilities.


Assuntos
Gorduras na Dieta/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Óleos de Plantas/farmacologia , Sulfonamidas/toxicidade , Vitamina K 3/toxicidade , Animais , Dieta , Ácidos Graxos Monoinsaturados , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Óleo de Brassica napus , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA