Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 4915, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851747

RESUMEN

The bioavailability of nicotinamide adenine dinucleotide (NAD) is vital for skeletal muscle health, yet the mechanisms or signals regulating NAD homeostasis remain unclear. Here, we uncover a pathway connecting peripheral glucose sensing to the modulation of muscle NAD through TAS1R2, the sugar-sensing G protein-coupled receptor (GPCR) initially identified in taste perception. Muscle TAS1R2 receptor stimulation by glucose and other agonists induces ERK1/2-dependent phosphorylation and activation of poly(ADP-ribose) polymerase1 (PARP1), a major NAD consumer in skeletal muscle. Consequently, muscle-specific deletion of TAS1R2 (mKO) in male mice suppresses PARP1 activity, elevating NAD levels and enhancing mitochondrial capacity and running endurance. Plasma glucose levels negatively correlate with muscle NAD, and TAS1R2 receptor deficiency enhances NAD responses across the glycemic range, implicating TAS1R2 as a peripheral energy surveyor. These findings underscore the role of GPCR signaling in NAD regulation and propose TAS1R2 as a potential therapeutic target for maintaining muscle health.


Asunto(s)
Glucosa , Homeostasis , Músculo Esquelético , NAD , Receptores Acoplados a Proteínas G , Animales , Músculo Esquelético/metabolismo , NAD/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Glucosa/metabolismo , Ratones , Ratones Noqueados , Humanos , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Fosforilación
2.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584609

RESUMEN

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Mitocondrias Musculares/metabolismo
3.
Commun Biol ; 6(1): 374, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029220

RESUMEN

Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Tratamiento Farmacológico de COVID-19
4.
Cell Rep ; 42(3): 112218, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36897780

RESUMEN

Metabolic routing of nicotinamide (NAM) to NAD+ or 1-methylnicotinamide (MeNAM) has impacts on human health and aging. NAM is imported by cells or liberated from NAD+. The fate of 2H4-NAM in cultured cells, mice, and humans was determined by stable isotope tracing. 2H4-NAM is an NAD+ precursor via the salvage pathway in cultured A549 cells and human PBMCs and in A549 cell xenografts and PBMCs from 2H4-NAM-dosed mice and humans, respectively. 2H4-NAM is a MeNAM precursor in A549 cell cultures and xenografts, but not isolated PBMCs. NAM released from NAD+ is a poor MeNAM precursor. Additional A549 cell tracer studies yielded further mechanistic insight. NAMPT activators promote NAD+ synthesis and consumption. Surprisingly, NAM liberated from NAD+ in NAMPT activator-treated A549 cells is also routed toward MeNAM production. Metabolic fate mapping of the dual NAM sources across the translational spectrum (cells, mice, humans) illuminates a key regulatory node governing NAD+ and MeNAM synthesis.


Asunto(s)
NAD , Niacinamida , Humanos , Ratones , Animales , NAD/metabolismo , Niacinamida/farmacología , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Células Cultivadas , Envejecimiento , Citocinas/metabolismo
5.
J Physiol ; 601(11): 2165-2188, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36814134

RESUMEN

Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.


Asunto(s)
Quinurenina , Triptófano , Adulto Joven , Humanos , Anciano , Quinurenina/metabolismo , Triptófano/metabolismo , Ácido Quinurénico , NAD/metabolismo , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología
6.
Res Sq ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36798161

RESUMEN

Muscle fitness and mass deteriorate under the conditions of obesity and aging for reasons yet to be fully elucidated. Herein, we describe a novel pathway linking peripheral nutrient sensing and skeletal muscle function through the sweet taste receptor TAS1R2 and the involvement of ERK2-PARP1-NAD signaling axis. Muscle-specific deletion of TAS1R2 (mKO) in mice produced elevated NAD levels due to suppressed PARP1 activity, improved mitochondrial function, increased muscle mass and strength, and prolonged running endurance. Deletion of TAS1R2 in obese or aged mice also ameliorated the decline in muscle mass and fitness arising from these conditions. Remarkably, partial loss-of-function of TAS1R2 (rs35874116) in older, obese humans recapitulated the healthier muscle phenotype displayed by mKO mice in response to exercise training. Our findings show that inhibition of the TAS1R2 signaling in skeletal muscle is a promising therapeutic approach to preserve muscle mass and function.

7.
Nat Aging ; 2(3): 195-196, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118373
8.
Bioorg Med Chem Lett ; 41: 128007, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798699

RESUMEN

NAD+ is a crucial cellular factor that plays multifaceted roles in wide ranging biological processes. Low levels of NAD+ have been linked to numerous diseases including metabolic disorders, cardiovascular disease, neurodegeneration, and muscle wasting disorders. A novel strategy to boost NAD+ is to activate nicotinamide phosphoribosyltransferase (NAMPT), the putative rate-limiting step in the NAD+ salvage pathway. We previously showed that NAMPT activators increase NAD+ levels in vitro and in vivo. Herein we describe the optimization of our NAMPT activator prototype (SBI-0797812) leading to the identification of 1-(4-((4-chlorophenyl)sulfonyl)phenyl)-3-(oxazol-5-ylmethyl)urea (34) that showed far more potent NAMPT activation and improved oral bioavailability.


Asunto(s)
Citocinas/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Urea/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
9.
Bioorg Med Chem Lett ; 43: 128048, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887438

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step of the NAD+ salvage pathway. Since NAD+ plays a pivotal role in many biological processes including metabolism and aging, activation of NAMPT is an attractive therapeutic target for treatment of diverse array of diseases. Herein, we report the continued optimization of novel urea-containing derivatives which were identified as potent NAMPT activators. Early optimization of HTS hits afforded compound 12, with a triazolopyridine core, as a lead compound. CYP direct inhibition (DI) was identified as an issue of concern, and was resolved through modulation of lipophilicity to culminate in 1-[2-(1-methyl-1H-pyrazol-5-yl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl]-3-(pyridin-4-ylmethyl)urea (21), which showed potent NAMPT activity accompanied with attenuated CYP DI towards multiple CYP isoforms.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Citocinas/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Nicotinamida Fosforribosiltransferasa/metabolismo , Urea/farmacología , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
10.
Am J Clin Nutr ; 114(1): 267-280, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826697

RESUMEN

BACKGROUND: Low-calorie diet (LCD)-induced weight loss demonstrates response heterogeneity. Physiologically, a decrease in energy expenditure lower than what is predicted based on body composition (metabolic adaptation) and/or an impaired capacity to increase fat oxidation may hinder weight loss. Understanding the metabolic components that characterize weight loss success is important for optimizing weight loss strategies. OBJECTIVES: We tested the hypothesis that overweight/obese individuals who had lower than expected weight loss in response to a 28-d LCD would be characterized by 1) impaired fat oxidation and 2) whole-body metabolic adaptation. We also characterized the molecular mechanisms associated with weight loss success/failure. METHODS: This was a retrospective comparison of participants who met their predicted weight loss targets [overweight/obese diet sensitive (ODS), n = 23, females = 21, males = 2] and those that did not [overweight/obese diet resistant (ODR), n = 14, females = 12, males = 2] after a 28-d LCD (900-1000 kcal/d). We used whole-body (energy expenditure and fat oxidation) and tissue-specific measurements (metabolic proteins in skeletal muscle, gene expression in adipose tissue, and metabolites in serum) to detect metabolic properties and biomarkers associated with weight loss success. RESULTS: The ODR group had greater mean ± SD metabolic adaptation (-175 ± 149 kcal/d; +119%) than the ODS group (-80 ± 108 kcal/d) after the LCD (P = 0.030). Mean ± SD fat oxidation increased similarly for both groups from baseline (0.0701 ± 0.0206 g/min) to day 28 (0.0869 ± 0.0269 g/min; P < 0.001). A principal component analysis factor comprised of serum 3-hydroxybutyric acid, citrate, leucine/isoleucine, acetyl-carnitine, and 3-hydroxylbutyrlcarnitine was associated with weight loss success at day 28 (std. ß = 0.674, R2 = 0.479, P < 0.001). CONCLUSIONS: Individuals who achieved predicted weight loss targets after a 28-d LCD were characterized by reduced metabolic adaptation. Accumulation of metabolites associated with acetyl-CoA excess and enhanced ketogenesis was identified in the ODS group.This trial was registered at clinicaltrials.gov as NCT01616082.


Asunto(s)
Adaptación Fisiológica/fisiología , Dieta Reductora , Ingestión de Energía , Metabolismo Energético/fisiología , Sobrepeso , Pérdida de Peso , Adulto , Biomarcadores , Composición Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Estudios Retrospectivos , Factores de Tiempo
11.
Nat Commun ; 10(1): 3241, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324777

RESUMEN

Pharmacological strategies that boost intracellular NAD+ are highly coveted for their therapeutic potential. One approach is activation of nicotinamide phosphoribosyltransferase (NAMPT) to increase production of nicotinamide mononucleotide (NMN), the predominant NAD+ precursor in mammalian cells. A high-throughput screen for NAMPT activators and hit-to-lead campaign yielded SBI-797812, a compound that is structurally similar to active-site directed NAMPT inhibitors and blocks binding of these inhibitors to NAMPT. SBI-797812 shifts the NAMPT reaction equilibrium towards NMN formation, increases NAMPT affinity for ATP, stabilizes phosphorylated NAMPT at His247, promotes consumption of the pyrophosphate by-product, and blunts feedback inhibition by NAD+. These effects of SBI-797812 turn NAMPT into a "super catalyst" that more efficiently generates NMN. Treatment of cultured cells with SBI-797812 increases intracellular NMN and NAD+. Dosing of mice with SBI-797812 elevates liver NAD+. Small molecule NAMPT activators such as SBI-797812 are a pioneering approach to raise intracellular NAD+ and realize its associated salutary effects.


Asunto(s)
Activadores de Enzimas/farmacología , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Células A549 , Animales , Biocatálisis/efectos de los fármacos , Activadores de Enzimas/administración & dosificación , Activadores de Enzimas/química , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Estructura Molecular , Fosforilación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/química
12.
Methods Mol Biol ; 1996: 61-73, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127548

RESUMEN

Pyridine nucleotides which include NAD+, NADH, NADP, and NADPH play vital roles in many different biological processes. These metabolites can be accurately quantified in a wide variety of biological samples using LC-MS/MS. The quality and precision of these measurements was enhanced using heavy isotope-labeled internal standards and carefully crafted protocols for sample processing.


Asunto(s)
Metabolómica/métodos , NADP/análisis , NAD/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/normas , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Oxidación-Reducción , Isótopos de Oxígeno/química , Estándares de Referencia
13.
Methods Mol Biol ; 1996: 297-309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127563

RESUMEN

Acute periods of contractile inactivity cause skeletal muscle atrophy along with profound alterations in tissue metabolism. Hind limb unloading via tail suspension is a commonly used rodent model of muscle atrophy. Here, we describe a sample preparation and LC-MS/MS approach for quantifying specific panels of acylcarnitines, amino acids, and organic acids in small (~8 mg) samples of atrophied mouse soleus following a period of hind limb unloading.


Asunto(s)
Metabolómica/métodos , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Animales , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Suspensión Trasera/efectos adversos , Humanos , Ratones , Músculo Esquelético/patología , Atrofia Muscular/etiología , Espectrometría de Masas en Tándem/métodos
14.
Front Physiol ; 9: 704, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942262

RESUMEN

Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function.

15.
J Gerontol A Biol Sci Med Sci ; 73(10): 1313-1322, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-29562317

RESUMEN

The progression of age-related sarcopenia can be accelerated by impaired recovery of muscle mass following periods of disuse due to illness or immobilization. However, the mechanisms underlying poor recovery of aged muscle following disuse remain to be delineated. Recent evidence suggests that mitochondrial energetics play an important role in regulation of muscle mass. Here, we report that 22- to 24-month-old mice with low muscle mass and low glucose clearance rate also display poor early recovery of muscle mass following 10 days of hind limb unloading. We used unbiased and targeted approaches to identify changes in energy metabolism gene expression, metabolite pools and mitochondrial phenotype, and show for the first time that persistent mitochondrial dysfunction, dysregulated fatty acid ß-oxidation, and elevated H2O2 emission occur concomitantly with poor early recovery of muscle mass following a period of disuse in old mice. Importantly, this is linked to more severe whole-body insulin resistance, as determined by insulin tolerance test. The findings suggest that muscle fuel metabolism and mitochondrial energetics could be a focus for mining therapeutic targets to improve recovery of muscle mass following periods of disuse in older animals.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Suspensión Trasera/efectos adversos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Envejecimiento/genética , Animales , Metabolismo Energético , Ácidos Grasos/metabolismo , Suspensión Trasera/fisiología , Resistencia a la Insulina , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Transcriptoma
16.
Mol Metab ; 7: 1-11, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146412

RESUMEN

OBJECTIVE: Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme in the salvage pathway that produces nicotinamide adenine dinucleotide (NAD+), an essential co-substrate regulating a myriad of signaling pathways. We produced a mouse that overexpressed NAMPT in skeletal muscle (NamptTg) and hypothesized that NamptTg mice would have increased oxidative capacity, endurance performance, and mitochondrial gene expression, and would be rescued from metabolic abnormalities that developed with high fat diet (HFD) feeding. METHODS: Insulin sensitivity (hyperinsulinemic-euglycemic clamp) was assessed in NamptTg and WT mice fed very high fat diet (VHFD, 60% by kcal) or chow diet (CD). The aerobic capacity (VO2max) and endurance performance of NamptTg and WT mice before and after 7 weeks of voluntary exercise training (running wheel in home cage) or sedentary conditions (no running wheel) were measured. Skeletal muscle mitochondrial gene expression was also measured in exercised and sedentary mice and in mice fed HFD (45% by kcal) or low fat diet (LFD, 10% by kcal). RESULTS: NAMPT enzyme activity in skeletal muscle was 7-fold higher in NamptTg mice versus WT mice. There was a concomitant 1.6-fold elevation of skeletal muscle NAD+. NamptTg mice fed VHFD were partially protected against body weight gain, but not against insulin resistance. Notably, voluntary exercise training elicited a 3-fold higher exercise endurance in NamptTg versus WT mice. Mitochondrial gene expression was higher in NamptTg mice compared to WT mice, especially when fed HFD. Mitochondrial gene expression was higher in exercised NamptTg mice than in sedentary WT mice. CONCLUSIONS: Our studies have unveiled a fascinating interaction between elevated NAMPT activity in skeletal muscle and voluntary exercise that was manifest as a striking improvement in exercise endurance.


Asunto(s)
Citocinas/metabolismo , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Consumo de Oxígeno , Condicionamiento Físico Animal , Animales , Citocinas/genética , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética
17.
JACC Heart Fail ; 5(11): 823-832, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29096792

RESUMEN

OBJECTIVES: This study sought to derive and validate plasma metabolite associations with survival in heart failure (HF) patients. BACKGROUND: Profiling of plasma metabolites to predict the course of HF appears promising, but validation and incremental value of these profiles are less established. METHODS: Patients (n = 1,032) who met Framingham HF criteria with a history of reduced ejection fraction were randomly divided into derivation and validation cohorts (n = 516 each). Amino acids, organic acids, and acylcarnitines were quantified using mass spectrometry in fasting plasma samples. We derived a prognostic metabolite profile (PMP) in the derivation cohort using Lasso-penalized Cox regression. Validity was assessed by 10-fold cross validation in the derivation cohort and by standard testing in the validation cohort. The PMP was analyzed as both a continuous variable (PMPscore) and dichotomized at the median (PMPcat), in univariate and multivariate models adjusted for clinical risk score and N-terminal pro-B-type natriuretic peptide. RESULTS: Overall, 48% of patients were African American, 35% were women, and the average age was 69 years. After a median follow-up of 34 months, there were 256 deaths (127 and 129 in derivation and validation cohorts, respectively). Optimized modeling defined the 13 metabolite PMPs, which was cross validated as both the PMPscore (hazard ratio [HR]: 3.27; p < 2 × 10-16) and PMPcat (HR: 3.04; p = 2.93 × 10-8). The validation cohort showed similar results (PMPscore HR: 3.9; p < 2 × 10-16 and PMPcat HR: 3.99; p = 3.47 × 10-9). In adjusted models, PMP remained associated with mortality in the cross-validated derivation cohort (PMPscore HR: 1.63; p = 0.0029; PMPcat HR: 1.47; p = 0.081) and the validation cohort (PMPscore HR: 1.54; p = 0.037; PMPcat HR: 1.69; p = 0.043). CONCLUSIONS: Plasma metabolite profiles varied across HF subgroups and were associated with survival incremental to conventional predictors. Additional investigation is warranted to define mechanisms and clinical applications.


Asunto(s)
Insuficiencia Cardíaca/sangre , Metaboloma/fisiología , Metabolómica/métodos , Medición de Riesgo/métodos , Anciano , Biomarcadores/sangre , Causas de Muerte/tendencias , Femenino , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Pronóstico , Volumen Sistólico , Tasa de Supervivencia/tendencias , Estados Unidos/epidemiología
18.
Anal Chem ; 88(23): 11799-11803, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27782384

RESUMEN

Organic acids (OAs) serve as metabolites that play pivotal roles in a host of different metabolic and regulatory pathways. The polar nature of many OAs poses a challenge to their measurement using widely practiced analytical methods. In this study, a targeted metabolomics method was developed using ion chromatography/triple quadrupole mass spectrometry (IC/MS) to quantitate 28 polar OAs with limits of quantitation ranging from 0.25 to 50 µM. The interday assay precisions ranged from 1% to 19%, with accuracies ranging from 82% to 115%. The IC/MS assay was used to quantitate OAs in quadriceps muscle from sedentary mice compared to fatigued mice subjected to either a low intensity, long duration (LILD) or high intensity, short duration (HISD) forced treadmill regimen. Among the OAs examined, significant differences were detected for hippuric acid, malic acid, fumaric acid, and 2-ketoglutaric acid between the sedentary and fatigued mice. In conclusion, the IC/MS method enabled the separation and quantitative survey of a broad range of polar OAs that are difficult to analyze by chromatographic techniques.

19.
Circulation ; 133(8): 698-705, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26819376

RESUMEN

BACKGROUND: Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. METHODS AND RESULTS: Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of ß-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. CONCLUSIONS: These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.


Asunto(s)
Dieta Cetogénica/métodos , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Cuerpos Cetónicos/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/dietoterapia , Ratones , Ratones Endogámicos C57BL
20.
Metabolomics ; 12(10)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28217401

RESUMEN

INTRODUCTION: Atenolol, a commonly prescribed ß blocker for hypertension, is also associated with adverse cardiometabolic effects such as hyperglycemia and dyslipidemia. Knowledge of the mechanistic underpinnings of these adverse effects of atenolol is incomplete. OBJECTIVE: We sought to identify biomarkers associated with risk for these untoward effects of atenolol. We measured baseline blood serum levels of acylcarnitines (ACs) that are involved in a host of different metabolic pathways, to establish associations with adverse cardiometabolic responses after atenolol treatment. METHODS: Serum samples from Caucasian hypertensive patients (n = 224) who were treated with atenolol in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study were interrogated using a quantitative LC/MS assay for a large number of unique ACs in serum. For the 23 ACs that were detected in serum from ≥80 % of all patients, we conducted linear regression for changes in cardiometabolic factors with baseline AC levels, baseline cardiometabolic factors, age, sex, and BMI as covariates. For the 5 ACs that were detected in serum from 20 to 79 % of the patients, we similarly modeled changes in cardiometabolic factors, but with specifying the AC as present/absent in the regression. RESULTS: Among the 28 ACs, the presence (vs. absence) of arachidonoyl-carnitine (C20:4) was significantly associated with increased glucose (p = 0.0002), and was nominally associated with decreased plasma HDL-C (p = 0.017) and with less blood pressure (BP) lowering (p = 0.006 for systolic BP, p = 0.002 for diastolic BP), after adjustment. CONCLUSION: Serum level of C20:4 is a promising biomarker to predict adverse cardiometabolic responses including glucose and poor antihypertensive response to atenolol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA